Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100
|
|
- Emil Viken
- 8 år siden
- Visninger:
Transkript
1 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011
2 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen
3 3 Voksende og avtagende funksjoner Definisjon En funksjon f definert på intervallet I kalles 1 voksende hvis f(a) < f(b) for alle par a < b av tall i I. 2 avtagende hvis f(a) > f(b) for alle par a < b av tall i I.
4 4 En konsekvens av mellomverdisatsen Korollar (3) Anta at f er kontinuerlig på [a, b] og deriverbar på (a, b). 1 Hvis f (x) < 0 for hver x i (a, b) så er f avtagende på [a, b]. 2 Hvis f (x) > 0 for hver x i (a, b) så er f voksende på [a, b]. Eksempel Finn de kritiske punktene til f(x) = x 3 3x 1 og hvor den vokser og avtar.
5 5 Førstederiverte-testen for lokale ekstrema Setning Gitt kritisk punkt c for kontinuerlig funksjon f og la f(x) være deriverbar i et intervall rundt c, muligens med untak av i c. Lest fra venstre til høyre, hvis 1 f endrer verdi fra negativ til positiv, i c så har f(x) lokalt minimum i c 2 f endrer verdi fra positiv til negativ, i c så har f(x) lokalt maksimum i c 3 f ikke endrer verdi fra negativ til positiv, i c så har f(x) hverken lokalt minimum elller lokalt maksimum i c.
6 6 Eksempel Eksempel Finn ekstrempunktene til f(x) = (2x 2 6)e x og bestem monotoni-egenskapene. Løsning:
7 6 Eksempel Eksempel Finn ekstrempunktene til f(x) = (2x 2 6)e x og bestem monotoni-egenskapene. Løsning: Vi deriverer f (x) = (2x 2 + 4x 6)e x
8 6 Eksempel Eksempel Finn ekstrempunktene til f(x) = (2x 2 6)e x og bestem monotoni-egenskapene. Løsning: Vi deriverer f (x) = (2x 2 + 4x 6)e x Vi faktoriserer f (x) = 2 (x 1) (x + 3) e x
9 6 Eksempel Eksempel Finn ekstrempunktene til f(x) = (2x 2 6)e x og bestem monotoni-egenskapene. Løsning: Vi deriverer f (x) = (2x 2 + 4x 6)e x Vi faktoriserer f (x) = 2 (x 1) (x + 3) e x Kritiske punkter x = 1 og x = 3.
10 6 Eksempel Eksempel Finn ekstrempunktene til f(x) = (2x 2 6)e x og bestem monotoni-egenskapene. Løsning: Vi deriverer f (x) = (2x 2 + 4x 6)e x Vi faktoriserer f (x) = 2 (x 1) (x + 3) e x Kritiske punkter x = 1 og x = 3. (x + 3) (x 1) f (x)
11 6 Eksempel Eksempel Finn ekstrempunktene til f(x) = (2x 2 6)e x og bestem monotoni-egenskapene. Løsning: Vi deriverer f (x) = (2x 2 + 4x 6)e x Vi faktoriserer f (x) = 2 (x 1) (x + 3) e x Kritiske punkter x = 1 og x = 3. (x + 3) (x 1) f (x) f(x) øker på (, 3], har maks i x = 3, avtar på [ 3, 1], minimum i x = 1 og øker på [1, )
12 Kapittel 4.4. Konkavitet og kurve-skisser
13 8 Konkavitet Definisjon (Konkavitet) En funksjon er konkav opp på et åpent intervall I hvis f øker på intervallet I. En funksjon er konkav ned på et åpent intervall I hvis f avtar på intervallet I.
14 9 Andre-deriverttesten for konkavitet Setning La f(x) være 2 ganger deriverbar. Dvs f (x) er fefinert for alle x I og f (x) også eksisterer. Da gjelder 1 Hvis f (x) > 0 på I, så er grafen til f(x) konkav opp på I. 2 Hvis f (x) < 0 på I, så er grafen til f(x) konkav ned på I.
15 10 Vendepunkt Definisjon (Vendepunkt) Et vendepunkt er et punkt på grafen til en funksjon der konkaviteten skifter y = 3 x 1 π/2 π/2 y = sin x
16 11 Andrederiverttesten for lokale ekstrema Teorem Anta at f (x) er kontinuerlig på et åpent inervall som inneholder c. Hvis f (c) = 0 og 1 f (c) < 0, så har f lokalt maksimum i x = c. 2 f (c) > 0, så har f lokalt minimum i x = c. 3 f (c) = 0, så feiler testen. Eksempel Anvend teoremet på y = x 4, y = x 3 og y = x x 4 1 x
17 12 Strategi illustrert ved eksempel Eksempel Tegn grafen til funksjonen x x Symmetrier, definisjonsmengde?? 2 Finn y og y 3 Finn de kritiske punktene 4 Hvor stiger kurven og hvor avtar kurven? 5 Finn vendepunkter og bestem konkavitet. 6 Finn asymptotene 7 Tegn inn punktene fra 1 til 6 og skisser kurven
18 Kapittel 4.5. Anvendt optimering
19 14 Distanse - tid optimering Problem En turist skal gå fra en parkeringsplass (P) til en hytte (H). Hytta ligger 8 kilometer sør for et punkt (C) på veien som ligger 20 km vest for parkeringsplassen. I terenget kan han gå 3 km/h, men langs veien kan han gå i 5 km/h. Hvor langt fra P bør han gå langs veien for å komme fortest frem. C 20,0 km Vei P 8,0 km H
20 14 Distanse - tid optimering Problem En turist skal gå fra en parkeringsplass (P) til en hytte (H). Hytta ligger 8 kilometer sør for et punkt (C) på veien som ligger 20 km vest for parkeringsplassen. I terenget kan han gå 3 km/h, men langs veien kan han gå i 5 km/h. Hvor langt fra P bør han gå langs veien for å komme fortest frem. C 20,0 km Vei P 8,0 km H
21 14 Distanse - tid optimering Problem En turist skal gå fra en parkeringsplass (P) til en hytte (H). Hytta ligger 8 kilometer sør for et punkt (C) på veien som ligger 20 km vest for parkeringsplassen. I terenget kan han gå 3 km/h, men langs veien kan han gå i 5 km/h. Hvor langt fra P bør han gå langs veien for å komme fortest frem. C 20,0 km Vei x km? P 8,0 km H
22 14 Distanse - tid optimering Problem En turist skal gå fra en parkeringsplass (P) til en hytte (H). Hytta ligger 8 kilometer sør for et punkt (C) på veien som ligger 20 km vest for parkeringsplassen. I terenget kan han gå 3 km/h, men langs veien kan han gå i 5 km/h. Hvor langt fra P bør han gå langs veien for å komme fortest frem. 20,0 km C Vei P tid = vei x km? fart 8,0 km H
23 14 Distanse - tid optimering Problem En turist skal gå fra en parkeringsplass (P) til en hytte (H). Hytta ligger 8 kilometer sør for et punkt (C) på veien som ligger 20 km vest for parkeringsplassen. I terenget kan han gå 3 km/h, men langs veien kan han gå i 5 km/h. Hvor langt fra P bør han gå langs veien for å komme fortest frem. 8,0 km 20,0 km C Vei P tid = vei H x km? fart t = x (20 x) 2 3
24 15 Optimerigsproblem løsning tiden det tar å gå t = x (20 x) 2 3
25 15 Optimerigsproblem løsning tiden det tar å gå t = x (20 x) 2 3 Setter den deriverte av tiden mhp x lik 0 dt dx = x (20 x) = 0 2
26 15 Optimerigsproblem løsning tiden det tar å gå t = x (20 x) 2 3 Setter den deriverte av tiden mhp x lik 0 dt dx = x (20 x) = 0 2 Løser problemet x = 14
27 15 Optimerigsproblem løsning tiden det tar å gå t = x (20 x) 2 3 Setter den deriverte av tiden mhp x lik 0 Løser problemet dt dx = x (20 x) = 0 2 x = 14 Han må gå 14 km langs veien før han tar av inn mot hytta.
28 16 Areal - optimering Problem En rektangulær formet park skal anlegges på en øy som er formet som en halvsirkel. Øyas diameter er 200 meter. Vi vil at parkens areal skal være størst mulig. Hva blir dens bredde og lengde? 200 meter
29 16 Areal - optimering Problem En rektangulær formet park skal anlegges på en øy som er formet som en halvsirkel. Øyas diameter er 200 meter. Vi vil at parkens areal skal være størst mulig. Hva blir dens bredde og lengde? Lengde = x 2 Bredde = x x meter 200 meter
30 16 Areal - optimering Problem En rektangulær formet park skal anlegges på en øy som er formet som en halvsirkel. Øyas diameter er 200 meter. Vi vil at parkens areal skal være størst mulig. Hva blir dens bredde og lengde? x meter Lengde = x 2 Bredde = x A = 2x x 2 A 2 = x 2 4x meter
31 16 Areal - optimering Problem En rektangulær formet park skal anlegges på en øy som er formet som en halvsirkel. Øyas diameter er 200 meter. Vi vil at parkens areal skal være størst mulig. Hva blir dens bredde og lengde? x meter Lengde = x 2 Bredde = x A = 2x x 2 A 2 = x 2 4x 4 2AA = x 16x 3 = meter
32 16 Areal - optimering Problem En rektangulær formet park skal anlegges på en øy som er formet som en halvsirkel. Øyas diameter er 200 meter. Vi vil at parkens areal skal være størst mulig. Hva blir dens bredde og lengde? x meter 200 meter Lengde = x 2 Bredde = x A = 2x x 2 A 2 = x 2 4x 4 2AA = x 16x 3 = 0 x = 100/ 2 70,71 meter.
33 Kapittel 4.6. Ubestemte former og L Hôpitals regel
34 18 Repetisjon om grenser Regel (Grenser av brøkuttrykk) Hvis så er f(x) og g(x) er kontinuerlig i x = c og g(c) 0 lim x c f(x) g(x) = f(c) g(c)
35 18 Repetisjon om grenser Regel (Grenser av brøkuttrykk) Hvis så er f(x) og g(x) er kontinuerlig i x = c og g(c) 0 Eksempel lim x c f(x) g(x) = f(c) g(c) x lim x 0 cos x = 1 1 = 1
36 19 Ubestemt form 0/0 og / Hvilke grenseuttrykk er på ubestemt form 0/0 og / : sin x 1 lim x 0 x 2 lim x 2 x 2 x lim x sin x x ln x 4 lim x e x
37 19 Ubestemt form 0/0 og / Hvilke grenseuttrykk er på ubestemt form 0/0 og / : sin x 1 lim : 0/0 x 0 x 2 lim x 2 x 2 x lim x sin x x ln x 4 lim x e x
38 19 Ubestemt form 0/0 og / Hvilke grenseuttrykk er på ubestemt form 0/0 og / : sin x 1 lim : 0/0 x 0 x x 2 2 lim x 2 x 2 : Ingen av dem (grensen er 0/2 = 0) 2 3 lim x sin x x ln x 4 lim x e x
39 19 Ubestemt form 0/0 og / Hvilke grenseuttrykk er på ubestemt form 0/0 og / : sin x 1 lim : 0/0 x 0 x x 2 2 lim x 2 x 2 : Ingen av dem (grensen er 0/2 = 0) 2 sin x 3 lim : Ingen av dem. (Grensen går mot 0, sandwich x x teoremet) ln x 4 lim x e x
40 19 Ubestemt form 0/0 og / Hvilke grenseuttrykk er på ubestemt form 0/0 og / : sin x 1 lim : 0/0 x 0 x x 2 2 lim x 2 x 2 : Ingen av dem (grensen er 0/2 = 0) 2 sin x 3 lim : Ingen av dem. (Grensen går mot 0, sandwich x x teoremet) ln x 4 lim x e x : /
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema
DetaljerDerivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100
Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)
DetaljerPotensrekker Forelesning i Matematikk 1 TMA4100
Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet
DetaljerMAT jan jan jan MAT Våren 2010
MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive
DetaljerDerivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011
Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner
DetaljerLøsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
DetaljerDeleksamen i MAT111 - Grunnkurs i Matematikk I
Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
DetaljerTMA4100: Repetisjon før midtsemesterprøven
TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.
DetaljerFlere anvendelser av derivasjon
Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:
DetaljerPotensrekker Forelesning i Matematikk 1 TMA4100
Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen
DetaljerKontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100
Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte
DetaljerNewtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100
Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av
Detaljer= x lim n n 2 + 2n + 4
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten
DetaljerPotensrekker Forelesning i Matematikk 1 TMA4100
Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For
DetaljerVolum Lengde Areal Forelesning i Matematikk 1 TMA4100
Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 4. oktober 011 Kapittel 6.. Volum ved sylindriske skall 3 Skall-metoden z = g(x) 1 1 1 1 3 1 1 3 z
DetaljerTMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon
DetaljerLøsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.
Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)
DetaljerLøsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og
DetaljerNicolai Kristen Solheim
Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn
DetaljerLøsningsforslag. f(x) = 2/x + 12x
Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Detaljerarbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100
arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. oktober 2011 Kapittel 6.6. Arbeid 3 Arbeid definisjon Definisjon (Arbeid
DetaljerAreal mellom kurver Volum Forelesning i Matematikk 1 TMA4100
Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning
DetaljerKonvergenstester Forelesning i Matematikk 1 TMA4100
Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.3. Integrasjonstesten 3 Ikke-avtagende delsummer Husker at n-te delsum av
DetaljerProblem 1. Problem 2. Problem 3. Problem 4
Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2
DetaljerGrenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100
Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 24. august 2010 2 Grenselover for x ± L = lim f(x) M = lim g(x) 1. lim (f(x) ± g(x))
DetaljerUNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
DetaljerOPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11
OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.
DetaljerFunksjonsdrøfting MAT111, høsten 2017
Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln
DetaljerForelesning Matematikk 4N
Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er
DetaljerLøsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon
DetaljerOppfriskningskurs i matematikk 2008
Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-
DetaljerFunksjonsdrøfting MAT111, høsten 2016
Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f
DetaljerForelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger:
Forelesning 0 MA000, Tirsdag 8/9-0 Asymptoter og skissering av grafer Bittinger:.-. Asymptoter Definisjon. La f være en funksjon. Vi sier at linjen l() = a + b er en skrå asymptote for f dersom minst ett
DetaljerTMA4100 Matematikk 1, høst 2013
TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på
DetaljerEksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler
Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor
DetaljerEn (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).
Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom
DetaljerIntegrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100
Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle
DetaljerOppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:
Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon
Detaljerx 3 x x3 x 0 3! x2 + O(x 7 ) = lim 1 = lim Denne oppgaven kan også løses ved hjelp av l Hôpitals regel, men denne må da anvendes tre ganger.
TMA400 Høst 0 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4..4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet Maclaurinpolynomet til sin x om x =
DetaljerNTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).
NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk
Detaljer. Følgelig er csc 1 ( 2) = π 4. sin θ = 3
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln
DetaljerTMA4100 Matematikk1 Høst 2008
TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen
DetaljerNTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29
MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt
DetaljerOPPGAVE 1 LØSNINGSFORSLAG
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument
DetaljerLøsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
DetaljerLøsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1
Løsningsforslag til Mat2 Obligatorisk Oppgave, våren 206 Oppgave Avgjør om følgende rekker er konvergente: (a) n + n n + n + Løsning: rekken lim : n n + n n + n + Vi bruker grensesammenligningstesten mhp.
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon
DetaljerSom vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerMA oppsummering så langt
MA1101 - oppsummering så langt Torsdag 29. september 2005 http://www.math.ntnu.no/emner/ma1101/2005h/ MA1101- oppsummering så langt p.1/21 Pensum til semesterprøven Kapittel P Kapittel 1 Kapittel 2: avsnittene
DetaljerLøsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7
Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning
DetaljerLØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
DetaljerLøsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
DetaljerFunksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis
DetaljerPrøveeksamen i MAT 1100, H-03 Løsningsforslag
Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger
DetaljerFremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet
1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate
DetaljerAndre forelesning Forelesning i Matematikk 1 TMA4100
Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.
DetaljerDen deriverte og derivasjonsregler
Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)
DetaljerAnvendelser av derivasjon.
Ukeoppgaver, uke 39, i Matematikk, Anvendelser av derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 39 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
Detaljerlny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx
NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 2 Avsnitt 3.7 95 Vi antar at > 0 og får Avsnitt 3.8 6 a) 2π/3 b) π/4 c) 5π/6 ln = (ln) 2 = 2ln = 2ln = 2ln ln.
DetaljerNotasjon i rettingen:
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 07 Notasjon i rettingen: R = Rett R = Rett, men med liten tulle)feil
DetaljerLøsningsforslag til utvalgte oppgaver i kapittel 5
Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag
DetaljerLøsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
DetaljerNotater nr 9: oppsummering for uke 45-46
Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,
DetaljerOPPGAVESETT MAT111-H17 UKE 39. Oppgaver til seminaret 29/9
OPPGAVESETT MAT111-H17 UKE 39 Avsnitt 3.1: 9, 23, 34 Avsnitt 3.3: 48, 61 Avsnitt 3.4: 1, 2, 9 På settet: S.1 Oppgaver til seminaret 29/9 Oppgaver til gruppene uke 40 Løs disse først så disse Mer dybde
DetaljerFaktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto
Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer
DetaljerRepetisjon i Matematikk 1: Derivasjon 2,
Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,
DetaljerFunksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en
DetaljerLøsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014 2.8.2 Vi merker oss først at funksjonen f er båe kontinuerlig og eriverbar på intervallet [1,2],
DetaljerKonvergenstester Forelesning i Matematikk 1 TMA4100
Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.6. Alternerende rekker Absolutt og betinget konvergens 3 Alternerende rekker
DetaljerQED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)
DetaljerLøsningsforslag til eksamen i fag MA1101/MA6101 Grunnkurs i analyse I Høst 2008
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Løsningsforslag til eksamen i fag MA111/MA611 Grunnkurs i analyse I Høst 2 Oppgave 1 Funksjonen g er definert ved
DetaljerOPPGAVE 1 NYNORSK. LØYSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 16. mai 2012 kl. 09:00-14:00. a) La z 1 = 3 3 3i, z 2 = 4 + i,
LØYSINGSFORSLAG Eksamen i MAT - Grunnkurs i matematikk I onsdag 6. mai kl. 9:-4: NYNORSK OPPGAVE a) La z = i, z = 4 + i, finn (skriv på forma a + bi): i) z z og ii) z z. : i) z z = ( i)(4 + i) = i i =
DetaljerLøsningsforslag til underveiseksamen i MAT 1100, 6/
Løsningsforslag til underveiseksamen i MAT 00, 6/0-008. ( poeng) Det komplekse tallet z har polarkoordinater r =, θ = 7π 6. Da er z lik: i + i i i + i Riktig svar: c) i. Begrunnelse: z = ( cos 7π 6 + i
DetaljerOppfriskningskurs i Matematikk
Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en
DetaljerLYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1
LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 011 kl. 09:00-1:00 NYNORSK OPPGAVE 1 Gitt dei komplekse tala z = 3 + i, w = 1 + i a Rekn ut (skriv på forma a + bi (i z + 3w,
DetaljerUNIVERSITETET I BERGEN
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar
DetaljerAreal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100
Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate
DetaljerFunksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden
Detaljerx, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier.
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving 3 Avsnitt 3. u 49 a) Fra tabell 3.4 på sie i boka: (cosh u) = sinh u. Her har vi at u = w H, og u = w y H. Det følger
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerMA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,
DetaljerTrasendentale funksjoner
Trasendentale funksjoner Department of Mathematical Sciences, NTNU, Norway September 9, 2014 Kap. 3.1 og 3.2. Forelesning 8. September. Inverse funksjoner, definisjon og eksistens Deriverte av inverse
Detaljer. Følgelig er csc 1 ( 2) = π 4. sinθ = 3
NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)
Detaljer