Konvergenstester Forelesning i Matematikk 1 TMA4100

Størrelse: px
Begynne med side:

Download "Konvergenstester Forelesning i Matematikk 1 TMA4100"

Transkript

1 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011

2 Kapittel 8.6. Alternerende rekker Absolutt og betinget konvergens

3 3 Alternerende rekker Definisjon En alternerende rekke er en rekke der hvert ledd er annenhver positivt og negativt. Eksempel ( 1)n+1 n ( 1)n n ( 1) n+1 n +

4 4 Alternerende rekketest Teorem (Leibniz s teorem) Rekken ( 1) n+1 u n n=1 konvergerer hvis hver av følgende tre betingelser er oppfyllt

5 4 Alternerende rekketest Teorem (Leibniz s teorem) Rekken ( 1) n+1 u n n=1 konvergerer hvis hver av følgende tre betingelser er oppfyllt 1 Alle u n -ene er positive.

6 4 Alternerende rekketest Teorem (Leibniz s teorem) Rekken ( 1) n+1 u n n=1 konvergerer hvis hver av følgende tre betingelser er oppfyllt 1 Alle u n -ene er positive. 2 u n u n+1 for alle n N for et tilstrekkelig stort naturlig tall N.

7 4 Alternerende rekketest Teorem (Leibniz s teorem) Rekken ( 1) n+1 u n n=1 konvergerer hvis hver av følgende tre betingelser er oppfyllt 1 Alle u n -ene er positive. 2 u n u n+1 for alle n N for et tilstrekkelig stort naturlig tall N. 3 u n 0

8 5 Den alternerende harmoniske rekken Eksempel (Den alternerende harmoniske rekken) ( 1) n+1 1 n = n=1

9 6 Estimering av alternerende rekker Hvis en alternerende rekke tilfredstiller kriteriene for Leibniz s teorem så estimerer den n-te delsummen s n = u 1 u 2 + u ( 1) n+1 u n rekken med en absoluttverdi av feilen mindre enn det første ubrukte leddet a n+1.

10 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001

11 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001 u 1 = 0, > 0,0001

12 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001 u 1 = 0, > 0,0001 u 2 = 0, > 0,0001

13 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001 u 1 = 0, > 0,0001 u 2 = 0, > 0,0001 u 3 = 0, > 0,0001

14 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001 u 1 = 0, > 0,0001 u 2 = 0, > 0,0001 u 3 = 0, > 0,0001 u 4 = 0, > 0,0001

15 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001 u 1 = 0, > 0,0001 u 2 = 0, > 0,0001 u 3 = 0, > 0,0001 u 4 = 0, > 0,0001 u 5 = 0, > 0,0001

16 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001 u 1 = 0, > 0,0001 u 2 = 0, > 0,0001 u 3 = 0, > 0,0001 u 4 = 0, > 0,0001 u 5 = 0, > 0,0001 u 6 = 0, < 0,0001

17 7 insert title Eksempel Estimer ( 1) n+1 1 n!2 n n=1 med feil mindre enn 0,0001 u 1 = 0, > 0,0001 u 2 = 0, > 0,0001 u 3 = 0, > 0,0001 u 4 = 0, > 0,0001 u 5 = 0, > 0,0001 u 6 = 0, < 0,0001 Da er estimatet av summen lik u 1 u 2 +u 3 u 4 +u 5 = 0,

18 8 Absolutt og betinget konvergens Definisjon (Absolutt konveregens) En rekke a n konvergerer absolutt hvis a n konvergerer. Definisjon (Betinget konvergens) En rekke som konvergerer men som ikke konvergerer absolutt kalles betinget konvergent. Teorem (Absolutt konvergens-test) Hvis a n konvergerer så konvergerer n=1 n=1 a n

19 9 Absolutt konvergens-test Eksempel (Absolutt konvergens-test) ( 1) n+1 1 n 2 n=1 cos n 2 n=1 n 2 ( 1) n+1 n p n=1

20 10 Omstokking av ledd Teorem Hvis n=1 a n konvergerer absolutt og b 1, b 2, b 3,... er en vilkårlig re-arrangering av leddene a 1, a 2, a 3,... så er a n = n=1 n=1 b n

21 Kapittel 8.7. Potensrekker

22 12 Potensrekker Definisjon (potensrekke om x = 0) En rekke på formen c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x c n x n + n=0 kalles en potensrekke om x = 0. Eksempel n=0 x n = 1, når x < 1 1 x

23 13 Potensrekker Definisjon (potensrekke om x = a) En rekke på formen c n (x a) n = c 0 +c 1 (x a)+c 2 (x a) 2 +c 3 (x a) 3 + +c n (x a) n + n=0 kalles en potensrekke om x = a.

24 14 Potensrekker Eksempel Rekken 1 (x 1) + (x 1) ( 1) n (x 1) n +

25 14 Potensrekker Eksempel Rekken 1 (x 1) + (x 1) ( 1) n (x 1) n + 1 Geometrisk rekke ar n med r = (x 1) og a = 1.

26 14 Potensrekker Eksempel Rekken 1 (x 1) + (x 1) ( 1) n (x 1) n + 1 Geometrisk rekke ar n med r = (x 1) og a = 1. 2 Konvergent for r = x 1 < 1. Dvs for 0 < x < 2.

27 14 Potensrekker Eksempel Rekken 1 (x 1) + (x 1) ( 1) n (x 1) n + 1 Geometrisk rekke ar n med r = (x 1) og a = 1. 2 Konvergent for r = x 1 < 1. Dvs for 0 < x < 2. 3 Sum lik 1 x

28 15 Potensrekker og tilnærming av 1/x For 0 < x < 2 er 1 x = 1 (x 1) + (x 1)2 + + ( 1) n (x 1) n + Estimeringer av 1/x:

29 15 Potensrekker og tilnærming av 1/x For 0 < x < 2 er 1 x = 1 (x 1) + (x 1)2 + + ( 1) n (x 1) n + Estimeringer av 1/x: 1 P 0 (x) =

30 15 Potensrekker og tilnærming av 1/x For 0 < x < 2 er 1 x = 1 (x 1) + (x 1)2 + + ( 1) n (x 1) n + Estimeringer av 1/x: 1 P 0 (x) = 1 2 P 1 (x) = 2 x

31 15 Potensrekker og tilnærming av 1/x For 0 < x < 2 er 1 x = 1 (x 1) + (x 1)2 + + ( 1) n (x 1) n + Estimeringer av 1/x: 1 P 0 (x) = 1 2 P 1 (x) = 2 x 3 P 2 (x) = x 2 3x

32 15 Potensrekker og tilnærming av 1/x For 0 < x < 2 er 1 x = 1 (x 1) + (x 1)2 + + ( 1) n (x 1) n + Estimeringer av 1/x: 1 P 0 (x) = 1 2 P 1 (x) = 2 x 3 P 2 (x) = x 2 3x P 3 (x) = x 3 + 4x 2 6x

33 15 Potensrekker og tilnærming av 1/x For 0 < x < 2 er 1 x = 1 (x 1) + (x 1)2 + + ( 1) n (x 1) n + Estimeringer av 1/x: 1 P 0 (x) = 1 2 P 1 (x) = 2 x 3 P 2 (x) = x 2 3x P 3 (x) = x 3 + 4x 2 6x

34 16 Konvergens av potensrekker Eksempel For hvilke x konvergerer rekkene ( 1) n 1 x n n n=1 = x x x 3 3 (1) x 2n 1 2n 1 n=1 = x x x 5 5 (2) x n n! n=0 = 1 + x + x 2 2! + x 3 3! + (3) n!x n = 1 + x + 2!x 2 + 3!x 3 + 4!x 4 + (4) n=0

35 17 Konvergens av potensrekker Teorem (Konvergensteoremet for potenrekker) Hvis potensrekken a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + n=0

36 17 Konvergens av potensrekker Teorem (Konvergensteoremet for potenrekker) Hvis potensrekken a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + n=0 1 Konvergerer for x = c 0, så konvergerer den absolutt for x < c

37 17 Konvergens av potensrekker Teorem (Konvergensteoremet for potenrekker) Hvis potensrekken a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + n=0 1 Konvergerer for x = c 0, så konvergerer den absolutt for x < c 2 Divergerer for x = d, så divergerer den for x > d

38 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0

39 Setning Konvergensen til 1 Rekken c n (x a) n kan beskrives på nøyaktig 3 måter n=0

40 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R

41 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R og divergerer for x a > R, der R er et positivt reelt tall. Uvisst for x = a R og x = a + R.

42 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R og divergerer for x a > R, der R er et positivt reelt tall. Uvisst for x = a R og x = a + R. 2 Rekken konvergerer absolutt for alle x (R = )

43 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R og divergerer for x a > R, der R er et positivt reelt tall. Uvisst for x = a R og x = a + R. 2 Rekken konvergerer absolutt for alle x (R = ) 3 Rekken konvergerer i x = a og divergerer ellers (R = 0)

44 19 Konvergensradius til en potensrekke Definisjon Størrelsen R kalles for konvergensradiusen til potensrekkenrekken. Definisjon Intervallet der potensrekken konvergerer kalles konvergensintervallet til potensrekken

45 20 Konvergens analyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R

46 20 Konvergens analyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten

47 20 Konvergens analyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest

48 20 Konvergens analyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest integraltest

49 20 Konvergens analyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest integraltest eller alternerende rekketest.

50 20 Konvergens analyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest integraltest eller alternerende rekketest. 3 For x a > R, DIVERGERER potensrekken

51 21 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0

52 21 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0 f(x) kan deriveres så mange ganger vi vil.

53 21 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0 f(x) kan deriveres så mange ganger vi vil. Vi deriverer f(x) ved å derivere ledd for ledd f (x) = n c n (x a) n 1 n=1 f (x) = n(n 1) c n (x a) n 2 n=2

54 21 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0 f(x) kan deriveres så mange ganger vi vil. Vi deriverer f(x) ved å derivere ledd for ledd f (x) = n c n (x a) n 1 n=1 f (x) = n(n 1) c n (x a) n 2 n=2 De deriverte konvegerer også for x a < R.

55 22 Integrasjon av potensrekker Anta f(x) = c n (x a) n konvergerer for x a < R. n=0

56 22 Integrasjon av potensrekker Anta f(x) = c n (x a) n konvergerer for x a < R. n=0 1 Da konvergerer c n (x a) n+1 for x a < R. n + 1 n=0

57 22 Integrasjon av potensrekker Anta f(x) = c n (x a) n konvergerer for x a < R. n=0 1 Da konvergerer 2 f(x) dx = c n (x a) n+1 for x a < R. n + 1 n=0 c n (x a) n+1 + C for x a < R. n + 1 n=0

58 23 Multiplikasjon av potensrekker ( ) ( ) ( ) a n x n b n x n = c n x n n=0 n=0 n=0 Hva er c n? Setning n c n = a 0 b n + a 1 b n a n b 0 = a k b n k k=0

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For

Detaljer

Konvergenstester Forelesning i Matematikk 1 TMA4100

Konvergenstester Forelesning i Matematikk 1 TMA4100 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.3. Integrasjonstesten 3 Ikke-avtagende delsummer Husker at n-te delsum av

Detaljer

Rekker, Konvergenstester og Feilestimat

Rekker, Konvergenstester og Feilestimat NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 28. oktober 2010 2 Fremdriftplan I går 7.7 Uegentlige integraler 8.1 Følger I dag

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

Uendelige rekker. Konvergens og konvergenskriterier

Uendelige rekker. Konvergens og konvergenskriterier Uendelige rekker. Konvergens og konvergenskriterier : Et absolutt nødvendig, men ikke tilstrekkelig vilkår for konvergens er at: lim 0 Konvergens vha. delsummer :,.,,,. I motsatt fall divergerer rekka.

Detaljer

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014 Department of Mathematical Sciences, NTNU, Norway November 10, 2014 Forelesning (03.01.2014): kap 9.1 og 9.2 Beskrivelse av følger eksempler og definisjon Egenskaper med følger Grenseverdi for følger (og

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1 Løsningsforslag til Mat2 Obligatorisk Oppgave, våren 206 Oppgave Avgjør om følgende rekker er konvergente: (a) n + n n + n + Løsning: rekken lim : n n + n n + n + Vi bruker grensesammenligningstesten mhp.

Detaljer

Velkommen til oversiktsforelesninger i Matematikk 1. med Jørgen Endal

Velkommen til oversiktsforelesninger i Matematikk 1. med Jørgen Endal Velkommen til oversiktsforelesninger i Matematikk 1 med Jørgen Endal Nytt tema: Følger, rekker, og potensrekker (kap. 9.1 9.7) Nytt tema: Følger, rekker, og potensrekker (kap. 9.1 9.7) Forelesning 1 (kap.

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Oversikt over Matematikk 1

Oversikt over Matematikk 1 1 Oversikt over Matematikk 1 Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens av ekstrempunkt Elementære funksjoner Derivasjon Sekantsetningen Integrasjon Differensialligninger Kurver i planet

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar

Detaljer

MAT Grublegruppen Uke 37

MAT Grublegruppen Uke 37 MAT00 - Grublegruppen Uke 37 Jørgen O. Lye Bemerkning: Mye av stoffet i dette notatet er å finne i Kalkulus, kapittel. Dette kapittelet er leselig etter man vet hva følger er, men er ikke pensum før i

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering Innleveringsfrist Tirsdag. februar 203 kl. 0:30 Antall oppgaver: 9 Løsningsforslag Avgjør om følgende rekker konvergerer. Finn summen

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på

Detaljer

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU Generelle teoremer og definisjoner MA110 Grunnkurs i analyse II - NTNU Lærebok: Kalkulus, Universitetsforlaget, 006, 3. utgave av Tom Lindstrøm Jonas Tjemsland 9. april 015 3 Komplekse tall 3.1 Regneregler

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2015

MA1102 Grunnkurs i Analyse II Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i Analyse II Vår 215 Løsningsforslag Øving 5 11.3:3 f n (x) = 2n+1 x? = x 1 2n+1. (Det er muligens en forskjell

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M = Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2017

MA1102 Grunnkurs i Analyse II Vår 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA2 Grukurs i Aalyse II Vår 27 Løsigsforslag Øvig 7 2.5: For hvilke x kovergerer rekke? b) (2x) c) (l x) e) 2 si x 2 b) Dette er

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN

Høgskolen i Agder Avdeling for realfag EKSAMEN Høgskolen i Agder Avdeling for realfag EKSAMEN Emnekode: MA 40 Emnenavn: Analyse Dato: 9. desember 999 Varighet: 09.00-5.00 Antall sider inklusivt forside: Tillatte hjelpemidler: Merknader: 2 Alle, også

Detaljer

MAT jan jan feb MAT Våren 2010

MAT jan jan feb MAT Våren 2010 MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. oktober 2011 Kapittel 6.6. Arbeid 3 Arbeid definisjon Definisjon (Arbeid

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag på 19. oktober 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100 Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem

Detaljer

Løsningsforslag til eksamen i MAT1110, 13/6-07

Løsningsforslag til eksamen i MAT1110, 13/6-07 Løsningsforslag til eksamen i MAT, 3/6-7 Oppgaveteksten er gjengitt i kursiv Oppgave : a) Finn de stasjonære (kritiske) punktene til f(x, ) = x + 4x Løsning: Finner først de partiellderiverte: (x, ) x

Detaljer

Integrasjon Forelesning i Matematikk 1 TMA4100

Integrasjon Forelesning i Matematikk 1 TMA4100 Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1

s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1 TMA400 Høst 06 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 0 9.3.30 Me vil fia det miste itervallet som me ka vera sikker på at summe s k k + 4 ligg i. Om

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Løsningsforslag, Ma-2610, 18. februar 2004

Løsningsforslag, Ma-2610, 18. februar 2004 Løsningsforslag, Ma-60, 8. februar 004 For sensor og kandidater.. Lineær uavhengighet Avgjør hvorvidt de følgende funksjonene er lineært uavhengige på den reelle tallinja: f(x) x g(x) 3x h(x) 5x 8x Svaralternativ

Detaljer

Volum Lengde Areal Forelesning i Matematikk 1 TMA4100

Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 4. oktober 011 Kapittel 6.. Volum ved sylindriske skall 3 Skall-metoden z = g(x) 1 1 1 1 3 1 1 3 z

Detaljer

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100 Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle

Detaljer

Løsning til prøveeksamen i MAT2400, V-11

Løsning til prøveeksamen i MAT2400, V-11 Løsning til prøveeksamen i MAT400, V-11 Oppgave 1 a) Vi ser at den deriverte f (x) = 1 1+x alltid er mindre enn eller lik 1 i tallverdi. Gitt to punkter x, y R, finnes det ifølge middelverdisetningen en

Detaljer

Oblig 3 - fasit. 1. Avgjør hvilken konvergenstest som vil avgjøre konvergensen til rekka (og stopp der; du skal ikke utføre testen): n ln n.

Oblig 3 - fasit. 1. Avgjør hvilken konvergenstest som vil avgjøre konvergensen til rekka (og stopp der; du skal ikke utføre testen): n ln n. Oblig 3 - fasit. Avgjør hvilken konvergenstest som vil avgjøre konvergensen til rekka og stopp der; du skal ikke utføre testen): a) b) c) d) e) n n ln n n te-terms-test. Den divergerer. n + 6 3 n n n 3

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

x 3 x x3 x 0 3! x2 + O(x 7 ) = lim 1 = lim Denne oppgaven kan også løses ved hjelp av l Hôpitals regel, men denne må da anvendes tre ganger.

x 3 x x3 x 0 3! x2 + O(x 7 ) = lim 1 = lim Denne oppgaven kan også løses ved hjelp av l Hôpitals regel, men denne må da anvendes tre ganger. TMA400 Høst 0 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4..4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet Maclaurinpolynomet til sin x om x =

Detaljer

Anvendelser av potensrekker

Anvendelser av potensrekker Anvendelser av potensrekker Forelest: 6 Okt, 2004 Vi kan bare skrape på toppen av isfjellet som er anvendelsene av potensrekker En spesielt viktig anvendelse er innenfor enhver form for differensialligninger

Detaljer

Figur 2: Fortegnsskjema for g (x)

Figur 2: Fortegnsskjema for g (x) Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <

Detaljer

Institutionen för Matematik, KTH

Institutionen för Matematik, KTH Institutionen för Matematik, KTH Lösningsforslag till tentamen, 200-2-7, kl. 8.00-.00. 5B04, Envariabel. Uppgift. Den karakteristiske ligningen r 2 r + 2 0 kan omskrives som (r )(r 2) 0. Den generelle

Detaljer

Eksamen R2, Høst 2012

Eksamen R2, Høst 2012 Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

x n+1 = x n f(x n) f (x n ) = x n x2 n 3

x n+1 = x n f(x n) f (x n ) = x n x2 n 3 TMA4 Høst 26 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4.2.8 Vi setter f(x) = x 2 3. Da blir f (x) = 2x, og iterasjonen blir f (x n ) = x n x2 n 3 2x n () Siden vi har

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

R2 Eksamen V

R2 Eksamen V R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 2. september 2010 2 Fremdriftplan I går 3.6 Implisitt derivasjon 3.7 Derivasjon

Detaljer

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag SIF53 Matematikk 1, 6. desember 2 Oppgave 1 Dreid om y aksen: iv). Dreid om x = 1: iii). Oppgave 2 Om bredden på rektanglet er 2x og høyden er y finner vi for det ukjente arealet A og den kjente omkretsen

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Ma1101. Part I. 1 Grunnleggende. 1.1 Noen symboler. 1.2 Tallene. 1.3 Noen algebraiske lover

Ma1101. Part I. 1 Grunnleggende. 1.1 Noen symboler. 1.2 Tallene. 1.3 Noen algebraiske lover Prt I M1101 1 Grunnleggende 1.1 Noen symboler Union A B i A og/eller B Snitt A B i både A og B Element i B er et element i B Undersett A B A er et undersett v B Skikkelig undersett A B A er et undersett

Detaljer

Oppsummering MA1101. Kristian Seip. 23. november 2017

Oppsummering MA1101. Kristian Seip. 23. november 2017 Oppsummering MA1101 Kristian Seip 23. november 2017 Forelesningen 23. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i MA1101 noen tips for eksamensperioden

Detaljer

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger.

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Kalkulus 1 Grenser Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Vi sier at funksjonen f(x) har en grense f(a)

Detaljer

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen 3 Oversikt over Mtemtikk Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens v ekstrempunkt Elementære funksjoner Derivsjon Sekntsetningen Integrsjon Differensilligninger Kurver i plnet Rekker

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 2 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

Andre forelesning Forelesning i Matematikk 1 TMA4100

Andre forelesning Forelesning i Matematikk 1 TMA4100 Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1012

Arne B. Sletsjøe. Kompendium, MAT 1012 Arne B. Sletsjøe Kompendium, MAT 2 Forord Dette kompendiet dekker analysedelen av pensum i kurset MAT 2 ved Universitetet i Oslo. Kurset bygger på MAT og legger mer vekt på anvendelser av teorien enn på

Detaljer

EKSAMENSOPPGÅVE. Kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider).

EKSAMENSOPPGÅVE. Kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider). Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-2, Kalkulus 2 Dato: 2. mai 28 Klokkeslett: 9.-. Stad: Asgårdvegen 9 Lovlege hjelpemiddel: Kalkulator, Rottmanns tabellar og 2 A4

Detaljer

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz Test, Algebra Innhold. Tallfølger.... Tallrekker.... Uendelige geometriske rekker... 7. Induksjonsbevis... 0 Grete Larsen. Tallfølger ) En rekursiv formel uttrykker et ledd i en tallfølge ved hjelp av

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer