UNIVERSITETET I OSLO
|
|
- Reidar Dahle
- 5 år siden
- Visninger:
Transkript
1 UNIVERSITETET I OSLO Det matematik-naturvitenkapelige fakultet Ekamen i: Oppgaveettet er på: Vedlegg: Tilatte hjelpemidler Fy60 4 ider ingen Elektronik kalkulator, godkjent for videregående kole Rottman: Matematik formelamling Øgrim og Lian: Fyike tørreler og enheter To A4 ark med notater arkene kan bekrive på begge ider Kontroller at oppgaveettet er komplett før du begynner å bevare oppgavene. Du må i oppgavene begrunne dine var. Oppgave Vi kal i denne oppgaven tudere overflatevekt av atomer av en betemt type. Vi er på et ytem med temperatur T, volum V og kjemik potenial µ for atomene. Når det er N atomer i ytemet kan du tenke deg at det danner en øyle med høyde h = bn, hvor b er en typik tørrele lengde for et atom. Du kan anta at for N atomer er det kun en mulig tiltand for ytemet og at denne tiltanden har energien Nɛ, dv. at det er en energi ɛ aoiert med bindingen av hvert enkelt atom til overflaten eller til andre atomer. Du kan i denne oppgaven få bruk for ummene: x i = x og ix i x = x. i=0 i=0 a Vi at Gibb um, T, V, µ for dette ytemet er = e µ ɛ/kt For dette ytemet er Gibb um gitt om = N hvor ɛ = Nɛ og Det gir e Nµ ɛs/kt = e Nµ ɛ/kt = q N = q, 3 q = e µ ɛ/kt. 4 = e µ ɛ/kt 5 b Finn midlere antall atomer N i ytemet.
2 Vi finner N fra N = N = N enµ ɛ/kt = Nq N = Ne Nµ ɛ/kt 6 q q q = q q = eµ ɛ/kt e µ ɛ/kt = e ɛ µ/kt. 8 Vi kjenner dette igjen om Boe-Eintein fordelingfunkjonen. c Finn midlere energi E for ytemet. 7 Vi kan finne denne på flere måter. Vi kan direkte e at E = ɛn, og dermed er E = ɛ N. Dette fremkommer ogå om vi prøver å regne ut E direkte: E = N ɛ e Nµ ɛ/kt = N ɛn e Nµ ɛ/kt = ɛ N. 9 d Vi antar at en overflate betår av mange like øyler etter hverandre. Hvordan kan vi finne bredden av en lik overflate, målt om tandardavviket til høyden? Du kal kun finne et uttrykk for hvordan vi kan finne bredden, du behøver ikke å regne den ut. Vi finner bredden om tandard avviket av høyden w = h h = h h hvor h = Nb. Det gir w = N N b e Nµ ɛ/kt b N. 0 Z g Oppgave Vi kal i denne oppgaven tudere faelikevekt mellom en væke og et fat toff. Ført utvikler vi en modell for en ideell væke baert på en ideell ga. For en partikkel i en tre-dimenjonal bok er energitiltandene gitt om ɛn x, n y, n z = h n ml x + n y + n z = an, hvor a = h /ml, L er tørrelen på boken, m er maen til partiklene, og n k = 0,,,... angir tiltanden på vanlig måte for k = x, y, z. a Vi at partijonfunkjonen for en partikkel i en bok V = L 3 er Z = n Q T V, hvor n Q T = πmkt/h 3/. Vi finner partijonfunkjonen ved å ummere over alle mulige tiltander, dv.
3 over alle mulige verdier av n x, n y, n z : Z = e an /kt = e an /kt dn x dn y dn z = n e an x /kt dn x 3 = z 3. Vi kriver dette integralet om ved å innføre u = n x a/kt /, lik at z = e u a/kt / du = a/kt / e u du = π/ a/kt, 3 hvor vi har funnet integralet fra en formelamling. Vi etter inn og finner Z = z 3 = πmkt/h 3/. b Vi at Helmholtz frie energi for gaen med N partikler er F g = NkT [ln n Q /n + ], 4 hvor n = N/V. Hint: Bruk Stirling formel lnx! = xlnx x. Vi finner Helmholtz frie energi fra F = kt ln Z N = kt lnz N /N!, hvor vi etter inn uttrykket for Z og bruker Stirling tilnærming til fakultetetfunkjonen: F g = kt ln Z N ln N + N = NkT lnn Q V ln N + = NkT lnn Q /n +. 5 Vi kal lage en modell for en væke baert på modellen for en ideell ga. I væken er den en tiltrekkende kraft mellom alle partikler, lik at alle partiklene har en poteniell energi bindingenergi ɛ v hvor ɛ v > 0. Deuten har hver partikkel i væken et volum v v, lik at volumet til væken er V v = N v v v. Helmholtz frie energi for væken er: [ ] F v T, V v, N v = N v kt ln n Q T v v e ɛv/kt +. 6 c Finn Gibb frie energi, GT, p, N v, for væken. G v T, p, N v = N v kt [ ] ln n Q T v v e ɛv/kt + + pn v v v. 7 d Finn det kjemike potenialet, µ v p, T, til væken. Gv µ v = N v T,p = kt [ln n Q T v v + ] ɛ v + pv v. 8 Vi ønker å bruke en Eintein-krytall om modell for det fate toffet. Du kan anta at hver partikkel i krytallen opptar et volum, v, lik at volumet til krytallen er V = N v. 3
4 e Vi at partijonfunkjonen for en enkelt harmomik ocillator med energinivåer ɛ i = i ɛ er Z = e ɛ/kt. 9 Vi finner partijonfunkjonen ved å ummere over alle mulige energitiltander: Z = e ɛn/kt = q n = q =. 0 e ɛ/kt n=0 n=0 f Vi at Helmholtz frie energi for en krytall med N partikler er F T, V, N = 3N kt ln e ɛ/kt N ɛ, hvor ɛ er bindingenergien for en enkelt partikkel. For et ytem med N adkillbare partikler lik det er i en krytall er partijonfunkjonen Z N til N partikler gitt om Z N = Z N. Men for hver partikkel er det tre ocillatorer, lik at partijonfunkjonen varer til Z 3N. Dermed er Helmholtz frie energi: F = kt ln Z = 3NkT ln Z = 3NkT ln e ɛ/kt. Vi må deuten ta henyn til bindingenergien, om er ɛ for hver partikkel, tilammen N ɛ : F = 3N kt ln e ɛ/kt N ɛ. 3 g Finn Gibb frie energi for krytallen. Vi finner Gibb frie energi fra G = F + pv lik at G = F + pv = F + pn v = 3N kt ln e ɛ/kt N ɛ + pn v, 4 hvor V = N S v. h Finn det kjemike potenialet for krytallen. Vi finner det kjemike potenialet ved G µ = = 3kT ln e ɛ/kt ɛ + pv. 5 N T,p i Vi at damptrykket, p, for likevekt mellom væke og fat toff i modellene er gitt om p v v v = 3kT ln e ɛ/kt +kt [ln n Q v v + ] ɛ ɛ v. 6 4
5 Når væke og fat toff er i likevekt må det kjemike potenialet være det amme i de to faene. Det gir at: µ v = kt [ln n Q T v v + ] ɛ v +pv v = µ = 3kT ln e ɛ/kt ɛ +pv, 7 pv v v = kt ln e ɛ/kt + kt [ln n Q T v v + ] + ɛ v ɛ, 8 j Bruk Clauiu-Clapeyron likning til å vie at fordampningvarmen per partikkel, l = L/N, for høye temperaturer i denne modellen er l p v v v + ɛ ɛ v 3 kt, 9 og kommenter reultatet. Du kan her få bruk for at xe x / e x når x 0. Clauiu-Clapeyron likning gir at Vi finner v v v dp/dt : dp dt = v vt dp dt = l, 30 v v v dp dt = 3k ln e ɛ/kt + 3kT ɛ/kt e ɛ/kt e ɛ/kt = T pv v v ɛ v ɛ 3kT xe x e x + 3 kt + k [ln n Q T v v + ] + kt 3 T 3 3 om gir at l = p v v v ɛ v ɛ 3 kt. 33 Oppgave 3 Vi kal i denne oppgaven tudere et ytem med to-dimenjonale pinn i det kanonike ytemet, det vil i i et ytem med gitt T, V, N. Ett enkelt pinn kan være i fire mulige tiltander angitt ved en enhetvektor S, om kan peke i poitiv x-retning S =, 0, i negativ x-retning S =, 0, i poitiv y- retning S = 0,, eller i negativ y-retning S = 0,. Spinnet vekelvirker med et ytre magnetfelt B = B 0 0,. Energien til pinnet er ɛ S = m B S, hvor m er en kontant. a Finn partijonfunkjonen til et ytem med ett enkelt pinn. Vi finner partijonfunkjonen ved å ummere over alle tiltandene. Tiltandene er S =, 0, S =, 0, S 3 = 0,, og S 4 = 0,. De repektive 5
6 energiene er E = S B = 0, E = 0, E 3 = mb 0, og E 4 = mb 0. Partijonfunkjonen er da Z = e 0 +e 0 +e mb0/kt +e mb0/kt = + coh mb 0 /kt = + coh mb 0 /kt. 34 b Finn partijonfunkjonen til et ytem med N pinn om ikke vekelvirker. For et ytem med N pinn om ikke vekelvirker og om er adkillbare er partijonfunkjonen: Z N = Z N = + coh mb 0 /kt N. 35 c Vi at Helmholtz frie energi for et ytem med N pinn er F T, V, N = NkT ln + coh mb 0 kt. 36 Helmholtz frie energi er F = kt ln Z N om er F = kt ln Z N = NkT ln + coh mb 0 /kt. 37 d Finn entropien ST, V, N til et ytem med N uavhengige pinn. Vi finner S fra F S = T V,N = Nk ln + coh mb 0 /kt NkT inh mb 0/kT mb 0 /kt + coh mb 0 /kt 38 Vi ønker nå å lage et program om imulerer et likt ytem med N pinn. e Skier en funkjon m = pinnyteml om returnerer en tiltand m med N tilfeldige pinn S. f Skier en funkjon e = energym om returnerer energien til en tiltand m og forklar hvordan vi kan bruke denne til å etimere partijonfunkjonen og energien til ytemet i likevekt. g Forklar hvordan metoden vil endre eg hvi vi ogå innfører en vekelvirkning mellom pinnene lik at energien til pinn i ogå er avhengig av energien til pinn i og i + : ɛ i = m S i B i J S i S i J S i S i+, 39 hvor J er en kontant om er oppgitt. 6
7 Oppgave 4 Vi kal i denne oppgaven tudere en modell for en ga-turbin. Denne modellen kalle en Brayton makin. En ideell Brayton yklu betår av fire delproeer med en ideell ga om medium: En ientrop komprejon. Luft trekke inn i kompreorene og trykke ammen. 3 En iobar ekpanjon. Den komprimerte luften trømmer gjennom forbrenningkammeret, hvor ga brenne og varmer opp luften. Dette er en profe ved kontant trykk. 3 4 En ientrop ekpanjon. Den oppvarmede luften ekpanderer gjennom en turbin. 4 En iobar komprejon. Varmen lippe ut til atmofæren. Ført kal vi e på noen egenkaper til en ideell ga. Entropien til en ideell monatomik ga er gitt av Sackur-Tetrode likning: [ ] 3/ V 4πmE SE, V, N = Nk ln N 3Nh a Utled adiabatlikningen pv 5/3 = cont.. b Skier en ideell Brayton makin i et p-v -diagram. Marker punktene til 4 fra bekrivelen ovenfor. c Finn arbeidet W,3 uttrykt ved p, V, og V 3, hvor V i er volumet i punkt i og p i er trykket i punkt i. d Finn varmen Q,3 uttrykt ved p i og V i. 7
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys216 Eksamensdag: Tirsdag 8. desember 215 Tid for eksamen: 143 183 Oppgavesettet er på: 4 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerEKSAMENSOPPGAVE. Fys-2001 Statistisk fysikk og termodynamikk. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: NEI Hvis JA: ca. kl.
Fakultet for naturvitenkap og teknologi EKSAMESOPPGAE Ekamen i: Dato: 6.0.8 Klokkelett: 09.00-3.00 Fy-00 Statitik fyikk og termodynamikk Sted: Adm.bygget B.54 Tillatte hjelpemidler: Type innføringark (rute/linje):
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys26 Eksamensdag: Fredag 5. desember 24 Tid for eksamen: 43 83 Oppgavesettet er på: 3 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerEKSAMENSOPPGAVE. Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Onsdag 02. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9
EKSAMESOGAE Ekamen i: Fy-00 Statitik fyikk og termodynamikk Dato: Ondag 0. deember 05 Tid: Kl 09:00 :00 Sted: Ågårdvegen 9 Tillatte hjelpemidler: Tabeller og formler i fyikk for FY og FY K. Rottmann: Matematik
DetaljerOppgave 1 V 1 V 4 V 2 V 3
Oppgave 1 Carnot-syklusen er den mest effektive sykliske prosessen som omdanner termisk energi til arbeid. I en maskin som anvender Carnot-syklusen vil arbeidssubstansen være i kontakt med et varmt reservoar
DetaljerØVING 4. @V @x i. @V @x
FY006/TFY425 - Øving 4 Frit for innlevering: tirdag 8. februar, kl 7.00 Oppgåve ØVING 4 Vibrerande to-partikkel-ytem Som dikutert på ide 0 i boka til Hemmer, er det eit viktig poeng både i klaik mekanikk
DetaljerEKSAMENSOPPGAVE I FYS-2001
Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerUNIVERSITETET I OSLO
NIVERSIEE I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys60 Eksamensdag: Fredag 6. desember 03 id for eksamen: 430 830 Oppgavesettet er på: 4 sider Vedlegg: ingen ilatte hjelpemidler Godkjente
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 RONDHEIM ALM005M-A Matematikk 1 Grunnlagfag - 10 tudiepoeng Cae Høt 011 Le dette ført Caen er en "hjemmeoppgave"
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskaelige fakultet Eksamen i: Fys6 Eksamensdag: Fredag 6. desember 3 Tid for eksamen: 43 83 Ogavesettet er å: 4 sider Vedlegg: ingen Tilatte hjelemidler Elektronisk
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: okmål Mandag 7.mai 0 5 timer LM006M Matematikk E 0 Faglærer(e): (navn og
DetaljerKap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere
Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere
DetaljerEksamen i TMA4130 Matematikk 4N
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Yura Lyubarkii: mobil 9647362 Anne Kværnø: mobil 92663824 Ekamen i TMA430 Matematikk 4N Bokmål
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
ALM6M-A Matematikk : Kontinuajonekamen augut HØGSKOLEN I SØR-TRØNELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Augut 9-4 ALM6M Emnenavn: Matematikk Klae(r): EL Studiepoeng:
DetaljerOppgaver til Dynamiske systemer 1
Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t
DetaljerEksamen i TMA4135 Matematikk 4D
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk
DetaljerNorges teknisk- naturvitenskapelige universitet. Institutt for teknisk kybernetikk. Lsningsforslag ving 7. a) Ser pa lokomotiv og en vogn.
Norge teknik- naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 992/PJN, September 96 Utlevert: 23..96 4334 SERVOTEKNIKK Lningforlag ving 7 Oppgave a) Ser pa lokomotiv og en vogn. Laplacetranformerer
DetaljerEksamen i TMA4135 Matematikk 4D
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.
DetaljerEksamen i TMA4122 Matematikk 4M
Noreg teknik naturvitkaplege univeritet Intitutt for matematike fag Side av 5 Fagleg kontakt under ekamen: Erik Lindgren Mobil: 454 75 993 Ekamen i TMA422 Matematikk 4M Nynork Måndag 9. deember 20 Tid:
Detaljer1 d 3 p. dpp 2 e β Z = Z N 1 = U = N 6 1 kt = 3NkT.
Oppgave a) Partisjonsfunksjonen for én oscillator: Z d p (2π h) (4π)2 8π h 2 π h ( k hω (2mk )/2 ), d re β 2m p2 βmω2 2 r 2 dpp 2 e β ( 2k mω 2 2m p2 ) /2 ( drr 2 e βmω2 2 r 2 dxx 2 e x2 ) 2 der integralet
DetaljerLøsningsforslag oppgaver FYS3220 uke43 H2009 HBalk
Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram
DetaljerTALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING 5 5 klokketimer TLM- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
DetaljerSignalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag
Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,
DetaljerEKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl
Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerEKSAMEN I TMA4130 MATEMATIKK 4N Bokmål Fredag 17. desember 2004 kl. 9 13
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Inkluive formelark og Laplacetabell Faglig kontakt under ekamen: Finn Faye Knuden tlf. 73 59 35 23 Sigmund Selberg tlf.
DetaljerSLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
Høgkolen i elemark Avdeling for teknologike fag SLUPRØVE Løningforlag EMNE: EE49 Modellbaert regulering LÆRERE jell-erik Wolden og Han-Petter Halvoren LASSE(R): IA DAO: 9.5. PRØVEID, fra-til (kl.): 9..
DetaljerEksamen TFY4165 Termisk fysikk kl august 2018 Nynorsk
TFY4165 9. august 2018 Side 1 av 7 Eksamen TFY4165 Termisk fysikk kl 09.00-13.00 9. august 2018 Nynorsk Oppgåve 1. Partiklar med tre diskrete energi-nivå. (Poeng: 6+6+8=20) Eit system består av N uavhengige
DetaljerSamfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 13. mars 2002
Samfunnøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 3. mar 00 Måling av graden av riikoaverjon Blant konkave nyttefunkjoner: Mer konkav betyr terkere riikoaverjon Vanlig å måle grad av konkavitet
DetaljerLøsningsforslag til øving 10
FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU Våren 2015 Løsningsforslag til øving 10 Oppgave 1 a) Helmholtz fri energi er F = U TS, slik at df = du TdS SdT = pdv SdT +µdn, som viser at Entalpien
DetaljerTMA4125 Matematikk 4N
Norge teknik-naturvitenkapelige univeritet Intitutt for matematike fag TMA4125 Matematikk 4N Løningforlag - Øving 4 Fra Kreyzig, avnitt 5.6 3 Vi øker f(t) L 1 {F ()} for F () ( 2 + 9 9)/( 3 9) og delbrøkopppalter
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
LM6M- Matematikk -Ekamen 9.mai HØGSKOLEN I SØR-TRØNELG veling for teknologi Kaniatnr: Ekamenato: Varighet/ekamenti: Emnekoe: Manag 9.mai 9-4 LM6M Emnenavn: Matematikk Klae(r): EL Stuiepoeng: Faglærer(e):
DetaljerUNIVERSITETET I OSLO
Kandidatnr.: Side UNIVERSITETET I OSLO et matematik-naturvitenkapelige fakultet Ekamen i: Ekamendag: Tid for ekamen: Oppgaveettet er på Vedlegg: Tillatte hjelpemidler: INF4 Ondag 29. november kl. 4:3-8:3
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
DetaljerDET TEKNISK-NATURVITENSKAPELIGE FAKULTET
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5
DetaljerØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l.
FY1006/TFY4215 - Øving 12 1 Frit for innlevering: Tirdag 22. april kl.1700 Oppgåve 1 ytem ØVING 12 Vinkelfunkjonar, radialfunkjonar og orbitalar for hydrogenliknande For ein partikkel om bevegar eg i eit
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
DetaljerTFY4106 Eksamen 9 aug Løsningsforslag
TFY416 Ekamen 9 aug 14. Løningforlag Oppgave 1 a) Når m 1 og m er i ro er trekkraften i tauet om holder m 1 lik tyngdekraften: F1 m1 F betemme ut fra at det totale dreiemomentet om aken av trinen er null
DetaljerFysikkolympiaden Norsk finale 2013
Nork fyikklærerforening Fyikkolympiaen Nork finale. uttakingrune Freag. mar kl. 9. til. Hjelpemiler: Tabell/formelamling, lommeregner og utelt formelark Oppgaveettet betår av 6 oppgaver på ier Lykke til!
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Bokmål Ekamendato: ugut 0 Varighet/ekamentid: Emnekode: 5 timer LM006M Emnenavn: Matematikk Klae(r): E Studiepoeng: 0 Faglærer(e): (navn og telefonnr
DetaljerBEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998
BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998 Lineær programmering og bedriftøkonomike problemer Tor Tangene BI - Sandvika V-00 Dipoijon Bruk av LP i økonomike problemer Et LP-problem Begreper og noen grunnleggende
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerSammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven
Sammendrag, forelesning onsdag 17/10 01 Kjemisk likevekt og minimumspunkt for G Reaksjonsligningen for en kjemisk reaksjon kan generelt skrives: ν 1 X 1 + ν X +... ν 3 X 3 + ν 4 X 4 +... 1) Utgangsstoffer
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 11. desember 2015 Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Svarark,
DetaljerSLUTTPRØVE KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
1 SLUTTPRØVE EMNE: EE417 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 17.1.1 PRØVETID, fra - til (kl.): 9. 1. Oppgaveettet betår av følgende: Antall ider (inkl.vedlegg): 11
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.6. 014 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: 0 Varighet/ekamentid: Emnekode: Emnenavn: 5 timer TLM00 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr på ekamendagen)
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING Mandag 4.. klokketimer TLM4- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
DetaljerTEP 4120 Termodynamikk 1. Oppsummering Kap. 5. Oppsummering Kap. 5
Oppummering - Kap. 5 ermodynamikken. Lov Spontane Proeer Varmeoverføring ( omg ), Ekpanjon (P P omg ), og Frigjort Mae i Gravitajonfelt er Ekempler Energibalaner kan ikke prediktere Retning Hva kan ermodynamikken.
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Mandag 5.mai 04 5 timer TLM004 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.1. 01 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerEKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG Torsdag 6 juni 013 kl 1500-1900 Oppgave 1 Ti flervalgsoppgaver Poeng: pr
DetaljerEksamensoppgave i TALM1004 Matematikk 2 LØSNING
Fakultet for teknologi Ekamenoppgave i TLM Matematikk LØSNING Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerEKSAMENSOPPGAVE. FYS-2001 Statistisk fysikk og termodynamikk Dato:
Fakultet for naturvitenskap og teknologi EKSAMESOGAVE Eksamen i: FYS-00 Statistisk fysikk og termodynamikk Dato: 4..07 Klokkeslett: 09.00 -.00 Sted: Åsgårdvn. 9 Tillatte jelpemidler: Type innføringsark
DetaljerTFY4106 FORMLER
TFY406 Fyikk Ekamen 6. mai 209 FORMLER Fete ymboler: Vektorer. Symbol med hatt over: Enhetvektor. MEKANISK FYSIKK INKL SVINGNINGER Newton andre lov: F = dp=dt p = m m _r Kontant akelerajon: v 0 + at x
DetaljerEksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: 7. ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler: lt
DetaljerUniversitetet i Oslo Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS60 ermodynamikk og statistisk fysikk Dato: irsdag 9 desember 003 id for eksamen: 0900-00 Oppgavesettet: 3 sider illatte hjelpemidler:
DetaljerEksamensoppgaver i Fys
Eksamensoppgaver i Fys 114 1998-2002 (Tilrettelagt for web-publisering av Magne Guttormsen) 2002 Fysisk institutt Universitetet i Oslo Eksamensoppgaver i Fys 114, 1998-2002, side 1 Universitetet i Oslo
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark
DetaljerSvar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.
I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider
DetaljerTALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Progra for elektro- og datateknikk 7004 RONDHEIM ALM1003-A Mateatikk 1 Grunnlagfag - 10 tudiepoeng Cae: Regulering av vækenivået i en tank Høt 013 Le dette
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:
DetaljerEKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
DetaljerPD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare
Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)
DetaljerEksamen S2 høst 2009 Løsning Del 1
S Ekamen, høten 009 Løning Ekamen S høt 009 Løning Del Oppgave a) Deriver funkjonene: ) ln f f ln ln f ln ln f f ) g e e u, u g e e g e e e g 6e b) Vi har en aritmetik rekke der a 8 og a8. Betem a, d og
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte
DetaljerOppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek-
MOT310 Statitike metoder 1 Løningforlag til ekamen vår 010,. 1 Oppgave 1 a) Modell: Y i α + βx i + ε i der ε 1,..., ε n u.i.f. N 0, σ ). b) Vil tete: Tettørrele H 0 : β 0 mot H 1 : β 0 B β T t n under
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNVERTETET OLO Det matematisk-naturitenskapelige fakultet Eksamen i: Fys1120 Eksamensdag: Onsdag 12. desember 2018 Tid for eksamen: 0900 1300 Oppgaesettet er på: 5 sider Vedlegg: Formelark Tilatte hjelpemidler
DetaljerEKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2
EKSAMENSOPPGAVE Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger
Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerEksamen i TMA4135 Matematikk 4D
Noreg teknik naturvitkaplege univeritet Intitutt for matematike fag Side av 5 Fagleg kontakt under ekamen: Mariu Thaule telefon 73 59 35 30 Ekamen i TMA35 Matematikk D Nynork Laurdag. deember 0 Tid: 09.00
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Mandag 6. desember 21. Tid for eksamen: 9: 13:. Oppgavesettet er på 5 sider.
DetaljerAnalyse av passive elektriske filtrer
HØGSKOEN I SØ-TØNDEAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TONDHEIM TAM004-A Matematikk 2 (Grunnlagfag, 0 tudiepoeng) ærebok: Anthony roft, obert Davion, Martin Hargreave: Engineering
DetaljerTermodynamikk og statistisk fysikk Oblig 7
FYS2160 Termodynamikk og statistisk fysikk Oblig 7 Sindre Rannem Bilden 4. november 2015 Oppgave 0.11 - Fase likevekt i en van der Waals system a) is at trykket, p(n,, T ), til van der Waals gassen er
DetaljerRegneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl )
Institutt for fysikk, NTNU TFY4165 og FY1005 Termisk fysikk, våren 011. Regneøving 9. (Veiledning: Fredag 18. mars kl. 1.15-14.00 og mandag 1. mars kl. 17.15-19.00.) Oppgave 1 Damptrykket for vann ved
DetaljerNorges teknisk-naturvitenskapelige universitet Institutt for fysikk
Sideav5 (inklusiv formelliste Norges teknisk-naturvitenskapelige universitet Institutt for fysikk EKSAMENSOPPGAE I SIF06 - TERMISK FYSIKK EKSAMENSOPPGAE I SIF06 - FYSIKK Eksamensdato: Lørdag 25. mai 2002
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerEKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen.
EKSAMEN Emnekode: ITD12011 Emne: Fysikk og kjemi Dato: 6. Mai 2016 Eksamenstid: kl.: 9:00 til kl.: 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kommuniserende kalkulator. Gruppebesvarelse,
DetaljerEKSAMENSOPPGAVE. Fys-2001 Statistisk fysikk og termodynamikk. 14 med forbehold om riktig telling
Fakultet for naturvitenskap og teknologi EKSAMESOPPGAVE Eksamen i: Fys- Statistisk fysikk og termodynamikk Dato: 5. desember 7 Klokkeslett: 9.-3. Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Type innføringsark
DetaljerEKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
DetaljerLøsningsforslag til eksamen i MAT 1100, H06
Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
Detaljergass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:
NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN
DetaljerPrøveeksamen i MAT 1100, H-03 Løsningsforslag
Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan
DetaljerEksamensoppgave i TFY4190 Instrumentering
Intitutt for fyikk Ekamenoppgave i FY49 Intrumentering Faglig kontakt under ekamen: Steinar Raaen lf.: 48 96 758 Ekamendato: 3. mai 4 Ekamentid (fra-til): 9: 3: Hjelpemiddelkode/illatte hjelpemidler: Alternativ
DetaljerEksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00
EKSAMENSOPPGAVE Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: irsdag 26. februar 2013 id: Kl 09:00 13:00 Sted: B154 illatte jelpemidler: K. Rottmann: Matematisk Formelsamling, O. Øgrim:
Detaljer