Prosjektkategori: Bacheloroppgave Fritt tilgjengelig x Omfang i studiepoeng: 20 Fritt tilgjengelig etter:

Størrelse: px
Begynne med side:

Download "Prosjektkategori: Bacheloroppgave Fritt tilgjengelig x Omfang i studiepoeng: 20 Fritt tilgjengelig etter:"

Transkript

1 Avdeling for ingeniørfag PROSJEKTRAPPORT Prosjektkategori: Bacheloroppgave Fritt tilgjengelig x Omfang i studiepoeng: 0 Fritt tilgjengelig etter: Fagområde: Konstruksjonsteknikk Rapporttittel: Vurdering av løsninger for å i vareta stabiliteten til tresøyler Tilgjengelig etter avtale med samarbeidspartner Dato: Antall sider:5 Antall vedlegg:3 Forfattere: Madis Pedai, Aleksander Babola, Kristoffer Ulvedalen og Khaled Al Bastami Veileder: Geir Flote Avdeling / linje: Bygg 1 Prosjektnummer: B15B03 Utført i samarbeid med: Høyer Finseth AS Kontaktperson hos samarbeidspartner: Jan Ivar Pedersen Ekstrakt: Oppgaven går ut på å designe og dimensjonere momentstiv treforbindelse for en lagerhall. Prosjekteringen og designfilosofi skal bevises med beregninger og analyse i programvare. Det skal tas hensyn til både utførelse og realistisk prosjektering. Økonomiske aspekter skal ikke utelates men denne biten skal ikke være avgjørende i prosjektet. 3 emneord: Stabilitet Treforbindelser Konstruksjon

2 Faculty of Engineering PROJECT REPORT Category of Project: Bachelor Free accessible: x Number of stp: 0stp Free access after: Engineering field: Structural design Project title: Assessments of solutions to safeguard the stability of wooden columns. Accessible after agreement with the contractor Date: Number of pages:5 Number of attachments:3 Authors: Madis Pedai, Aleksander Babola, Kristoffer Ulvedalen and Khaled Bastami Department / line: Bygg 1 Produced in cooperation with: Høyer Finseth AS Councellor: Geir Flote Project code: B15B03 Contact person at the contractor: Jan Ivar Pedersen Extract: The project task is to design and engineer moment connections for the load bearing system produced in glue-laminated timber for a warehouse. The engineering and design will be proven through calculations and analysis in computer software. The ability to construct and come up with a realistic design was heavy. Economic aspects are evaluated, but were not crucial to the result. 3 indexing terms: Stability Wooden connections Construction

3 Forord Denne rapporten er resultatet av bacheloroppgaven til fire avgangsstudenter ved Høgskolen i Østfold. Oppgaven er utarbeidet i samarbeid med Høyer Finseth AS, og har konstruksjonsteknikk som hovedtema. Høyer Finseth AS ønsket å se på muligheter for alternativ avstivning av innersøylene. På bakgrunn av dette kom vi frem til problemstillingen hvor mulighetene for momentstive forbindelser og sammenligning av stål og tre blir drøftet. Oppgaven går ut på å finne innovative og lønnsomme løsninger av knutepunkter i en lagerbygning i Fredrikstad kommune. Byggherre og arkitekt har satt begrensninger i form av materialvalg og arkitektur. Det har blitt bestemt at hovedbæresystemet skal utføres av limtre og vegg- og takkonstruksjon skal bestå av sandwitchelementer i stål. Veiledere opplyste gruppen i tidlig fase om at dette temaet var teoretisk tungt og det finnes lite kompetanse innen temaet i Norge. Problemstillingen går utover pensum i fagene ved høgskolen og studentene har tatt initiativ til å tilnærme seg nødvendige kunnskaper på egenhånd. Dette medførte at man brukte mye tid på selvstudier før det var mulig for gruppen å gjennomføre konkret arbeid. Ved løsning av oppgaven har gruppen benyttet seg av flere forskjellige profesjonelle programvarer (Mathcad, Tekla og Robot) som ikke benyttes i studiet og har lært seg dette i stor grad på egenhånd. Målet var at gruppen skulle vise kompetanse innen det teoretiske de har lært i konstruksjonsteknikkfagene og gjennom læring på egenhånd ved å undersøke og vurdere de aktuelle løsningene for tiltaket. Arbeidet med oppgaven startet i januar 015 og ble levert 10.juni 015. Gruppen består av følgende medlemmer: Madis Pedai, Aleksander Babola, Kristoffer Ulvedalen og Khaled Al Bastami. Gruppen er veiledet av Geir Flote fra høgskolens side, Jan Ivar Pedersen og Anders Kokkim fra Høyer Finseth AS. I tillegg til interne veiledere har gruppen også fått assistanse av flere eksterne aktører. Blant annet grunnleggende opplæring i Autodesk Robot av Mohamed Al-Akabi, firmaet EDR Medeso AS i tegneverktøyet Tekla Structures, støttelitteratur fra Kjetil Novang Gulbrandsen (lektor ved Høgskole i Østfold) og firmaet Peetri Puit OU fra Estland. Det rettes også en stor takk til byggherre Borg Havn IKS og BAS arkitekter for å gi gruppen tilgang til tegninger og modellfiler. Det rettes en stor takk til alle som har veiledet og bistått oss i prosjektet med tilbakemeldinger, undervisning og veiledning underveis i prosjektet! Madis Pedai Aleksander Babola Kristoffer Ulvedalen Khaled Bastami 1

4 Innhold Forord... 1 Sammendrag... 4 Summary... 5 Orientering... 6 Om oppdragsgiver... 6 Problemstilling... 6 Begreper... 7 Konstruksjonsforutsetninger... 7 Designfilosofi... 7 Kontroll og kvalitet... 7 Konsekvensklasse... 7 Pålitlighetsklasse... 8 Kvalitetssikring... 8 Materialkvalitet... 8 Laster... 8 Egenlaster... 8 Nyttelaster... 8 Snølast... 9 Totale laster i Akse Horisontale laster Bygningsdeler Tak Fundament Avstivning Bærende søyler Randdrager Metode Fremgangsmåte Bruk av verktøy... 1 Mathcad... 1 Tekla Structures... 1 Autodesk Robot... 1 Revit

5 Løsninger av Knutepunkter Fundament Fotplate Løsningsvalg- Oppsveist hulprofil Løsningsvalg kryssplate Knutepunkt Søyle- Randdrager (Toppen av søylen) Løsningsvalg 1 Step Joint Løsningsvalg -T-Forbindelse Løsningsvalg 3 - Skråstaver med innslisset trykk stålplate Globalstabilitet Knekklengde Vurdering av rammesystem Vurdering av rammesystem Vurdering av ramme system Vurdering av forskjellige aspekter og valg av den beste løsningen Alternativt materialvalg- stål Fagverket Knutepunkt Søyle Utførelse/ Byggeteknikk Konklusjon Kilder

6 Sammendrag Figur 1. BAS Arkitekter, 014. Tverrsnitt A tegningsnr. A30-1. Prosjekt Lagerhall 1- Norline. Det var ønske fra utbygger og arkitekt å benytte treverk i størst mulig grad og samtidig ha størst mulig takhøyde. Dette har resultert i en problemstilling for utforming av momentstive forbindelser mellom tresøyle og fundament, og tresøyle og takoppbygning slik at man i størst mulig grad kan unngå plasskrevende avstivningssystemer mellom aksene. Den mest interessante søylen er i akse 3 siden takhøyden er lavest. Det finnes mange muligheter for utforming av slike knutepunkt og mange mulige geometrier, men gruppen har begrenset omfanget til noen få interessante løsninger. Arkitekt og byggherre har valgt flere kombinasjoner av sagtak, pulttak og saltak på lagerbygget. Dette medfører store snølommer som igjen fører til store laster mot søylene i bygget. Takkonstruksjonen skal holdes oppe av store gitterdragere som spenner opp mot m og støttes av ca. 7.m lange søyler. Beregninger har blitt utført i alle tilfeller og inkluderer lastvirkning på søylen, takkonstruksjon og fundament. Lastvirkning har blitt kontrollert i Autodesk Robot. Beregninger av kapasiteter i de forskjellige knutepunktstilfellene har blitt gjort i PTC Mathcad iht. respektive Eurokoder og litteratur. Gruppen valgte å vurdere tre forskjellige knutepunkter som mulige løsninger mellom søyle og takoppbygning og to løsninger mellom søyle og fundamentet. Fundamentet og fotplatens kapasitet er også vurdert, da dette gir et klart bilde på hvorvidt løsningen er gjennomførbar. Det er vurdert forskjellige aspekter rundt knutepunktene som konstruksjonssikkerhet, utførelse og økonomi. Det er også vurdert et alternativt materiale, hvor søylen og gitterdrager er utformet av stål istedenfor treverk. Gjennomførte beregninger viser at det er mulig å lage momentstive forbindelser ved bruk av limtre i dette prosjektet. I noen tilfeller måtte tverrsnittet økes på grunn av kapasitetsproblematikk fordi lengre knekklengde på søylen ga dårligere kapasitet. 4

7 Summary The developer and the architect have chosen timber (Glue laminated timber, glulam) as the main component in the structure, and at the same time, they decided to keep the stability of the construction without decreasing the ceiling heights. The problem in question is regarding moment connections between column - foundation, and column - roof construction, so that it would be possible to avoid bracing between the axes and by doing so reducing the loss from the upper area. The most interesting relevant columns would be those in axis 3 where the ceiling height is at the lowest. There are many possibilities for the design of these types of the mentioned connections and just as many different geometries. The project group has limited these possibilities to a few interesting solutions. The chosen combination of different roof shapes; Saddle roof, Shed roof and Saw tooth roof were found to be snow pockets forming, these pockets leads to great loads on the columns. The roof construction is held up by massive girders made out of glulam beams spanning up to m and supported by 7.m tall columns. All calculations regarding loads on the column, roof construction and foundation were done manually by hand. The calculations have been controlled by using Autodesk Robot. The capacities of the different connections were calculated using PTC Mathcad according to the respective Euro codes and literature. The project group has chosen to consider two connections as possible solutions for a connection between the column and foundation, and three connections between the column and roof construction. The capacity of the foundation and footplate has also been evaluated and calculated, this has given a clear indication of whether the solutions considered where possible to be used and to construct. Several aspects were considered regarding the connections; safety (construction capacity), execution and economy. Another aspect was controlled using an alternative material where the column and girders were produced out of steel instead of glulam. Calculations and evaluations show that it would be possible to make moment connections while using glulam in this project. In some of the solutions, the section of the column had to be increased because of capacity issues caused by the increased buckling length of the column, which gives lower capacity as it increases. 5

8 Orientering Prosjektering av lagerbygg på Øra i Fredrikstad kommune. Ansvarlig prosjekterende: Gruppe B15B03 konstruksjonsteknikk ved Høgskolen i Østfold Teamleder: Madis Pedai Øvrige gruppemedlemmer: Aleksander Babola, Khaled al Bastami og Kristoffer Ulvedalen. Om oppdragsgiver Høyer Finseth er med sine vel 90 medarbeidere en betydelig aktør innen bygningsteknisk prosjektering og rådgivning. De er et spesialisert rådgivende ingeniørselskap som gjennom godt samarbeid med andre også leverer totalløsninger. Høyer Finseths spesialfelt er komplett byggeteknisk prosjektering innen prefabrikkert og plassbygd stål og betong, antikvarisk rehabilitering, brannsikkerhet, bygningsfysikk, miljø og prosjektadministrasjon. Høyer Finseth har kapasitet og kompetanse til å dekke hele byggeprosessen og er med i konkurransen om de store prosjekteringsoppgavene i Norge. Hovedkontoret ligger på Skøyen i Oslo, men har også avdelingskontorer i Revetal (Vestfold), Fredrikstad (Østfold) og Ålesund (Møre og Romsdal). (Høyer Finseth, 015). Problemstilling I samarbeid med Høyer Finseth AS har gruppen kommet frem til en problemstilling med trekonstruksjoner som hovedtema. «Vurdering av løsninger for å ivareta stabiliteten til tresøyler i et bæresystem» Høyer Finseth skal våren/ sommeren 015 prosjektere konstruktive løsninger for en ny lagerhall. Bygget skal hovedsakelig være i treverk, inkludert det bærende systemet. Dette medfører noen utfordringer da dette ikke er særlig utbredt i Norge. Lagerhallen skal benyttes til bl. a. skipscontainere og det vil derfor være store trucker i drift. Problemstillingen går utover følgende punkter: Momentstive forbindelser mot fundament i store trekonstruksjoner og dens påvirkning på den globale stabiliteten. Utforming av knutepunkt ved fotplaten mtp. ulykker og faren for konstruksjonssvikt ved påkjøring Utforming av knutepunkt mellom søyler og gitterdrager for å unngå plasskrevende avstivning mellom søyler. Hvordan koble sammen stål og tre i en momentstiv forbindelse hvis trevirke ikke klarer belastningen alene. Vurdering av økonomiske aspekter mtp. utførelse i tre eller stål. 6

9 Begreper Knekklengde: Lengden av en søyle som er utsatt for knekking. Gitterdrager/ fagverk: Bjelke bygd opp av skråstaver som danner flere trekanter. Fast innspent: Innfestingssituasjon for moment overføres. Fritt opplagt: Infestingssituasjon hvor kun skjær og normalkraft overføres Hullkanttrykk: Belastning i hull hvor bolten presser på kanten av hullet. Skjærflate: En flate som fungerer som avskjærer for bolt. F. eks plater. Konstruksjonsforutsetninger Byggets geometri sammen med noen forutsetninger om materialer er definert i forkant av Høyer Finseth AS og arkitekt/ byggherre. Følgende er bestemt: Bygget er plassert i industriområdet på Øra, i Fredrikstad kommune. Byggets geometri er: BxLxH=90mx114mx13. m. Høyde (H) måles fra overkant gulv på grunn til overkant takbjelker. Bredde (B) og Lengde (L) er mellom senter stålbæring i veggene. Bygget er fordelt til 3 deler- kaldt,- varmtlager og kontor. Kontordelen er på etasjer og lagerdelene er på en etasje. Hovedbæresystem i taket ønskes utført med fagverksbjelker av tre. Fri høyde i de fleste steder i lager bygningen er på 6m. Yttervegg utføres med isolerte sandwichelementer som spenner fra søyle til søyle. Med spennvidde som varierer fra 10.5m- 1.8m. Fasaden virker ikke avstivende for bygget. Tak utføres med takplater som gir skivevirkning i takplanet. Bygget fundamenteres direkte på grunn. Designfilosofi Det ble bestemt å se på flere løsninger og til slutt konkludere med løsningen gruppen anser som best. Denne løsningen skal være materialeffektiv og det skal være lettest mulig å montere på byggeplass. Det er tatt utgangspunkt i «vanlige» løsninger og tilpasset der det var nødvendig. For å gjøre det lettest mulig å designe bæresystemet har programmet Tekla Structures blitt benyttet på grunn av sine overlegne 3D modelleringsmuligheter. I tillegg til dette har Autodesk Robot blitt benyttet for kontrollberegninger av laster. Kontroll og kvalitet Plan- og bygningsloven krever at all prosjektering skal kvalitetssikres. I tillegg til kvalitetssikring skal det gjennomføres sidemannskontroll. Alle beregninger har blitt sidemanns kontrollert underveis i prosjektet. Konsekvensklasse NS EN 1990:00+NA:008 tabell B1 definerer konsekvensklasse for byggverk. Bygg med betydelig konsekvens ved brudd fører til CC. 7

10 Pålitlighetsklasse NS EN 1990:00+NA:008 tabell NA. A1 (901) definerer pålitlighetsklasse for byggverk. Større lagerbygg er i pålitlighetsklasse CC/ RC. Kvalitetssikring NS EN 1990:00+NA:008 tabell NA. A1 (90) definerer graden av prosjekteringskontroll. Pålitlighetsklasse CC/ RC fører til normal kontroll som innebærer følgende: Global likevekt Kritiske komponenter (konstruksjonsdeler, knutepunkter, opplegg og tverrsnitt) Beregninger og tegninger Samsvar mellom beregninger og tegninger At funksjonskravene er oppfylt Lastantakelser og beregningsmodeller for laster Modeller for konstruksjonsanalyse og beregning av lastvirkninger At det foreligger tilstrekkelig kjennskap til grunnforhold for å bestemme karakteristiske parametere Materialkvalitet Det er valgt å benytte limtrekvalitet GL30C på alle konstruksjonsdeler og stål av kvalitet S355. Bolter av klasse 8.8 og 10.9 skal benyttes. Laster Laster som er definert under dette kapitlet er kun de lastene som opptrer på søylen. Lastene er definert hver for seg som følgende. Egenlaster Egenlaster er de permanente lastene som dannes av egenvekt fra konstruksjonsdeler. Egenlast varierer avhengig av materialet. Konstruksjon Egenlast Last enhet TAKKONSTRUKSJON OPPBYGGING 0.5 KN/M GITTERDRAGER 1.8 KN/M SØYLER 0.7 KN/M Nyttelaster Nyttelaster er variable laster som virker over en periode eller sesong. Nyttelaster varierer fra en konstruksjon til en annen, avhengig av byggets bruksområde. Nyttelaster er hentet fra NS EN :00+NA:008, punkt , tabell 6.1 som definerer laster etter brukskategorier. Nyttelast fra kontor: kategori B 3.0kN/m Nyttelast fra lagerbygg: kategori E1 7.5kN/m 8

11 Snølast Snølast er klassifisert under naturlige laster, som varierer avhengig av årstid, klima, høyde over havet og byggets beliggenhet i Norge. Snølastfaktorer og regler er hentet fra Eurokode Først må snølast på mark finnes før snølast på tak beregnes. Sammenhengen mellom snølast på mark og på tak er faktorer som bestemmes ut ifra takets geometri. Snølast på tak er delt i to etter belastningssituasjonen, normal snølast og tilleggslast pga. høydeforskjellene på taket. Snølast på mark har blitt beregnet til.5 kn/m. Takvinkel varierer, men er under 30 grader og dermed har vi normal formfaktor 0.8. Total snølast blir da.67 kn/m Formfaktor for taket er beregnet til 1.07 som følge av snølommen. Snølast har blitt beregnet i Mathcad etter NS EN :003+NA:008. Snølommen oppstår som vist på figur. Figur. BAS Arkitekter, 014. Tverrsnitt A tegningsnr. A30-1. Prosjekt Lagerhall 1- Norline. Totale laster i Akse 3 Søylen utsettes for krefter fra snølast, nyttelast, egenlast, en horisontalkraft som følge av normalkraft og en ulykkeslast. Ulykkeslasten kommer fra påkjøring av truck. NS-EN :006+NA:008 (Ulykkeslaster på konstruksjoner) hadde to alternativer for påkjøringslast: alternativ 1 var en fast last fra påkjøring med lastebil, 150kN 0.75m over bakkenivå. Alternativ var en energibetraktning for vekt og fart på kjøretøyet ble tatt i betraktning. Alternativ var alternativet som virket mest fornuftig, men det viste seg å være problematisk fordi resulterende kraft var energi (Joule) og hverken gruppen eller veileder klarte å se en logisk måte å tolke resultatet på. Opptredende kraft ble derfor satt til 150kN i ulykkeslast. I følge NS-EN 1990:00+NA:008 skal lastene kombineres og tilfellet med høyest last benyttes. Første kombinasjon var en kombinasjon av kreftene i bruddgrensetilstand. Her kombineres kreftene slik at egenlaster økes med 35% og største nyttelast økes med 50%. Ulykkeslast skal ikke tas med i bruddgrensetilstand. Dette førte til en reaksjonskraft i bunnen av søylen på ca. 1330kN. Jan Ivar Pedersen anbefalte at det skulle tas hensyn til en horisontallast på 1.5% av normalkraften som 9

12 horisontallast i øvre del av søylen. Denne anbefalingen refererer til ENV :1997 Tower, masts and chimneys. Dette førte til at søylen ble utsatt for en tilleggslast på 0kN. Andre kombinasjon er ulykkesgrense. Her kombineres kreftene slik at hverken egenlaster, nyttelaster eller ulykkeslaster økes eller reduseres. Dette resulterer i en normalkraft på 500kN, horisontalkraft på 7.5kN og ulykkeslast på 150kN. Det viste seg i de fleste beregninger at første kombinasjon, bruddgrense er dimensjonerende fordi tilleggslasten til horisontalkraft bidrar med et veldig stort moment mot bunnen av søylen. Programmet Autodesk Robot var behjelpelig med kontroll av beregninger slik vist på figur under. Figur 3. Skjermdump fra Autodesk Robot. Horisontale laster Vindlast og skjevstillingslaster er ikke blitt beregnet av gruppen siden problemstillingen innebærer dimensjonering av innvendig søyler. Horisontale krefter tas opp av avstivningssystem i yttervegger. Bygningsdeler Tak Det er vurdert fagverksbjelker i takkonstruksjonen. Beregninger er utført av Høyer Finseth AS. Vurderte fagverksbjelke i tre og stål. Konstruksjonen skal ta opp følgende laster: Egenvekt fagverksbjelke Oppbygning av tak Snølaster 10

13 Fundament Reaksjonslasten i fundamentet skal bæres direkte av grunnen. Bæreevnen kan ikke overbelastes, da vil det oppstå grunnbrudd og det vil oppstå setninger. Konstruksjonen vil da kunne få forskyvninger. Denne forskyvning vil i verste fall lede til at deler eller i verste fall hele konstruksjonen vil kollapse. Fundamentet er dimensjonert og beregnet etter NS-EN :004+NA:008 (også kjent som Eurokode eller EK ) og Betongelementboken bind B og C. Fundamentet er bevist å ha tilstrekkelig kapasitet mot de lastene som overføres til fundamentet fra andre konstruksjonsdeler. Fundamentets kapasitet påvirker ikke løsningene som er valgt. Avstivning Det skal være vindavstivning i yttervegger og i akse 4 vil det være vindkryss. I akse 5 vil det være skille mellom kaldt og varmt lager som danner en stiv skive. Taket vil virke som en stiv skive. Avstivningen vil ta opp horisontale krefter. Bærende søyler Det er tatt utgangspunkt i søylene i akse 3. For øvrige søyler har det blitt benyttet dimensjonene oppgitt av Høyer Finseth AS. Løsningene som er opparbeidet vil være aktuelle for søylene i de andre aksene. Randdrager Det skal være randdrager i akse 1, 3, 4, og 6. Dimensjonene på Randdrager vil være 400x400mm. Randdrager skal plasseres i samme høyde som overgurt for å gi størst mulig takhøyde. Dette medfører utfordringer i prosjektering av momentstiv forbindelse som denne rapporten vil gå ut på. Metode Fremgangsmåte Definere en riktig og konkret problemstilling slik at det skulle være lettere å jobbe mot ønsket resultat. Beregne lastvirkning. Drøfte forskjellige løsninger og muligheter. Velge de mest interessante- og realistiske løsningene. Utføre numeriske beregninger og kontroll av kapasiteter. Kombinere ulike løsninger for å oppnå størst fordelaktig resultat. Vurdere oppnådde resultater mot forventninger. Forkaste urealistiske resultater. Vurdere alternativt materialvalg. Konkludere med beste kombinasjon av løsninger. 11

14 Bruk av verktøy Mathcad Mathcad er et regneark på lik linje med Microsoft Excel, som er et mer vanlig verktøy. Forskjellen er at Mathcad lar deg regne på samme måte som man ville når man regner på papir. Dette betyr at når man definerer en lengde eller høyde kan man referere direkte til denne lengden/ høyden senere i regnearket. Dette lar deg holde et ryddig og oversiktlig regneark hvor det kommer mye tydeligere frem hvordan/ hva du regner ut og lar deg kontrollere det mye lettere enn når du kun referer til celler i et regneark som i Microsoft Excel. Det at man får bedre oversikt over hva som er gjort er en stor fordel i reelle tilfeller hvor det skal utføres uavhengig kontroll på beregninger. Det å kunne ha et regneark med alle funksjoner det har, men oversikten man får fra penn og papir gjør det veldig godt egnet for konstruktive beregninger. Tekla Structures Tekla Structures er et 3D modelleringsprogram brukt primært i forbindelse med stål, prefabrikkertog plasstøpt betong. Programmet lar brukeren jobbe i 3D til enhver tid og er et kraftig verktøy for modellering. Det er et veldig allsidig program og lar en definere egne materialer og egenskaper slik at det er mulig å modellere med akkurat det materialet som er ønskelig. På bakgrunn av dette falt valget på Tekla siden det skulle modelleres noe krevende detaljer og det er var veldig viktig å kunne gi gode illustrasjoner på dette, noe som er umulig i D. Det å hele tiden kunne tegne i 3D og ha muligheten til å definere ulike farger på ulike deler i knutepunktet gjør hele prosessen lettere. Dette gir brukeren mulighet til å oppdage evt. designfeil/ problemer meget enkelt. Autodesk Robot Autodesk Robot er et FEM- program, eller Finite Element Method som betyr at en konstruksjon eller et element blir delt opp i uendelig mange biter og analysert. Robot lar en modellere deler aveller hele konstruksjonen du jobber med og legge inn forskjellige betingelser for så å kunne kjøre analyser. Programmet er brukt mye til dynamiske analyser som f. eks jordskjelvanalyser for å kunne ta ut mer eksakte lastverdier og finne dimensjonerende tilfeller. I dette prosjektet er Robot brukt for å gi oversikt over hvordan konstruksjonen påvirkes av forskjellige oppleggsbetingelser. Dette er noe som kan gjøres raskere i Robot enn for hånd. Man kan også få ut andre interessante opplysninger som er ønskelig samt illustrasjoner på belastninger og sterkt utsatte soner ved hjelp av kartleggingsfunksjonen. Hvis man ønsker kan også Robot analysere konstruksjonen og dimensjonere den. Denne funksjonen har ikke blitt brukt i denne oppgaven. Revit 015 Revit er et utbredt program og en del enklere og raskere enn Tekla til å tegne enkle detaljer i D for å få rask oversikt over hvordan dimensjonene man har tenkt stemmer overens. Programmet er brukt til nettopp dette, til å produsere enkle plan oversikter over løsninger. 1

15 Løsninger av Knutepunkter Fundament Design Figur 4. Armeringsprinsipp fundament. Reinforcement of an isolated spread footing. (Usikkert årstall) Fundament dimensjoneres med utgangspunkt i vertikallast fra søyle med lastvirkning 1330kN og fra moment 144kNm. Disse kreftene må fordeles av fundamentet slik at grunnens bæreevne ikke overbelastes. Det er derfor nødvendig å beregne nødvendige dimensjoner på fundamentet først. Valg av fundament type er kvadratiske søylefundament med betongkvalitet B45 med dimensjonene 5000x5000x1000mm. For å unngå påvirkning av telehiv plasseres fundamentene på frostfri dybde gitt av datablad , tabell 3 i Sintef Byggforskserien. For Fredrikstad kommune er frostfri dybde 1.5m. Dette innebærer at det er nødvendig å bruke en kort betongsøyle for å unngå å føre det oppsveiste hulprofilet ned i jord (oppsveist hulprofil er beskrevet i kapittel 1.). Det vil dermed være behov for å dimensjonere betongsøylen også. Armering består av B500C armeringsjern som er bøyde i endene for å få mest mulig heft. Denne bøyningen er i seg selv ikke nødvendig da forankringslengden av rette stenger er god nok, men av god vane blir disse bøyd. Søylen vil være kvadratisk med dimensjon 800x800mm. Bredden på søylen er i utgangspunktet valgt for å kunne plassere det oppsveiste hulprofilet på den. Søylene vil bestå av 8Ø16 som lengdearmering med bøyler 5Ø8 c/c 00mm. 13

16 Beregninger Alle beregninger er utført i form av egenproduserte Mathcad regneark som anses til å være den beste metoden for å fange opp feil og ta endringer underveis i arbeidet. I utgangspunktet er det antatt at grunnens bæreevne er tilstrekkelig for konstruksjonen. Grunnens bæreevne ble satt til 00kN/m som anses å være realistisk. Det ble opplyst i starten av arbeidet at det blir fundamentert rett på bakken ved bruk av søylefundamenter. Laster som blir ført til fundamentet er 1330 kn aksiallast og 144kNm moment per fundament. Betongkvaliteten til fundamentet ble valgt til B45 med Eksponeringsklasse XC3 og bestandighetsklasse M60 som er grunnleggende for selveste beregningen av fundamentet. Armeringen for fundamentet er B500C som er også vanlig kvalitet for armering. Først ble det valgt fundamentbredde på 5m som ble kontrollert med formelverket fra NS-EN :004+NA:008. Overdekningen ble satt til 35mm etter EK Deretter ble det beregnet ut egenlaster for de forskjellige deler av konstruksjonen både over og under bakken for å finne ut lastene som egentlig virker på fundamentet. Fundamentbredden ble deretter kontrollert ved forholdet mellom opptredende spenningen og kapasitet i bakken. 14

17 Etter nødvendig armeringsareal ble regnet ut til mm kunne det beregnes fordeling av armeringen som er grunnlaget til valg av plassering iht. NS Eurokode gir ingen retningslinjer på fordeling av armering og tidligere NS 3473 blir derfor brukt til dette. Kontroll av skjærarmering ble gjennomført etter NS-EN :004+NA:008 kapittel 6... Det som kom fram var at det var ikke behov for skjærarmering i fundamentet men det settes inn minimums skjærarmering Eurokode, kapittel Skjærkraftskapasitet ble kontrollert mot NS-EN :004+NA:008 kapittel og det viser at forholdet mellom kapasitet og dimensjonerende kraft er tilfredsstillende. Forankring av stenger ble vurdert etter Eurokode, kapittel som kan sees i vedlegg 4. Armeringen i den korte betongsøylen over fundamentet ble bestemt etter NS-EN :004+NA:008 kapittel 9.5. utrykk 9.1N. 15

18 Figur 5. NS-EN :004+NA:008 fig s. 163 Beregnet minimumsarmering viser at det må velges 8 stk armeringsstenger med Ø16mm. Deretter måtte det velges bøyler til den korte søylen. Minimums kravet etter Eurokode, kapittel er Ø6, men det er valgt å bruke Ø8 for å være konservative. Den korte søylen armeres langsgående med 8 stk Ø16mm og det benyttes Ø8 bøyler med 00mm senteravstand. Fotplate For fotplaten har det blitt valgt en løsning med innstøpt plate 68x70x30mm forankret i fundamentet med 1 stk gjengestag med diameter 0mm, kantavstand 60mm og senteravstand mellom stagene 187mm. Stagene er plukket ut fra tabell B19.7. fra Betong Elementboka Bind B. Beregning av knutepunktet er angitt i vedlegg 4. 16

19 .1.1 Design Fotplaten mellom fundamentet og det oppsveiste hulprofilet er beregnet til å være 68x70x30mm. Det oppsveiste hulprofilet overfører momentet fra søylen til fotplaten, dermed må den ha tilstrekkelig kapasitet mot bøyning og skjær. På bakgrunn av dette får vi de dimensjonene som kommer fram i detaljerte beregninger. Det er beregnet fastsveisede støtteskiver mellom fotplate og hulprofilet for nødvendig sveislengden som tar opp krefter i form av moment, skjær og ulykkes laster. Boltene har blitt valgt etter Betongdelementboken Bind B Tabell B Tabellen gir også forslag til nødvendig forankringslengde som er 540mm for M0 bolter. Vindkreftene som virker på byggets langside er ikke tilstrekkelig store i forhold til egenlast for å gi oppløft av den innstøpte platen. Dette betyr at det ikke er behov for å regne dimensjonerende forankringslengde mtp. oppløft fra vindkrefter. Fotplaten blir forankret mot momentet som overføres fra toppen av konstruksjonen. Fordi det var ønske om å få til et momentstivt knutepunkt mellom søylen og fundamentet måtte fotplaten forankres godt inn i fundamentet. Det brukes 540mm som forankringslengde foreslått av Betongelementboken Bind B, tabell B Nødvendig platetykkelse er beregnet til 17.54mm etter Betongelementboken Bind B og er tatt et konservativt valg på 30 mm Beregninger Grunnlaget for beregninger er Betongelementboken Bind B, Bind C, NS-EN :005+NA:009 (også kjent som Eurokode eller EK 3-1-8), NS-EN :004+NA008 og egne notater fra forelesninger. Alle beregninger har blitt utført i form av Mathcad regneark. Utgangspunktet for beregninger var tidligere utregnet vertikale laster og moment som blir videreført til fotplaten som er støpt inn i fundamentet. Momentet som virker på fotplaten er 144kN og den vertikale kraften 1330kN. De to kreftene gjør at vi får en fordeling av kreftene mellom stagene vi har under platen. I starten ble det valgt M0 gjenge stag fra tabell Betongelementboken Bind B basert på dimensjonerende kraft til stag. 17

20 Deretter ble stålets avskjæringskapasitet beregnet og kontrollert mot den dimensjonerende horisontale kraften som i dette tilfellet er ulykkeslast i form av påkjøring med truck. Beregningen er utført etter EK 3-1-8, tabell 3.4 Stålets strekkapasitet ble beregnet til 180.9kN som er dimensjonerende kapasitet. I videre beregninger er det bare brukt strekkapasitet sammen med momentkapasitet for å være konservativ. Momentkapasitet for stålet: Det ble forutsatt at støp fastholder stag mot knekking. Skjærkraftkapasitet i betongen for gjengestag ble regnet ut etter Betongelementboken Bind B Beregningen utføres for å finne ut om det må armeres mot brudd i kantene ved bruk av geometrien som er valgt, både for søylen og stagene. Beregningen tar hensyn til flere forskjellige 18

21 korreksjoner for å få mest nøyaktige verdier. Faktorene er valgt på bakgrunn av mest konservative resultat. Tillat skjærkraft uten korreksjoner: Skjærkraft med korreksjon: Beregningen viser at søylekantene ikke må armeres. Hvis utnyttelsen hadde vært over 1 da måtte det armeres som vist på figur 5 for å unngå brudd i kantene pga. skjærkrefter. Figur 6.Betongelementforeningen 01. Dimensjonering av fotplaten er gjort iht. EK tabell 3.4 og NS-EN :005+NA:008 (også kjent som Eurokode 3 eller EK 3). Det viser seg at en 30mm tykk plate er tilfredsstillende mtp. avskjæring og hullkanttrykk og det er mulighet for å redusere dimensjonen om ønskelig. Hullkanttrykk: 19

22 Avskjæring: Beregninger for fotplaten viser at valgte geometrien 68x70x30mm med 1 M0 gjengestag støpt inn i søylefundament er tilfredsstillende mtp. kreftene som virker på platen. En rekke med konservative antakelser ble gjort for begrensning av oppgaven siden det var ønske fra starten for å konsentrere mer på treforbindelser i andre deler av konstruksjonen. 1. Løsningsvalg- Oppsveist hulprofil Figur 7. Skjermdump fra Tekla. For knutepunktet mellom søyle og fundament er det tenkt en innstøpt fotplate sammensveiset med en oppsveist hulprofil med lengde 100mm og 40x40x10mm i høyde/ bredde/ tykkelse. Med dette tillates det full momentoverføring fra søylen til fundament. Fordeler med dette er at limtresøylens knekklengde forkortes betraktelig som gir mulighet til å velge rimeligere dimensjoner. Denne løsningen er også ganske fleksibel og det kan være mulig å øke lengden på sokken for å forkorte knekklengden. Denne kombinasjonen av stål og treverk har også mulighet til å være med på å gi bygget det arkitektoniske preget som ønskes med et bæresystem i tre, uten at man må ha uhensiktsmessige dimensjoner. 0

23 Ulempen kan være utfordringer ved innsetting av limtresøylen mtp. utførelse på byggeplassen samt økonomiske aspekter som skal vurderes videre i rapporten. Denne sokken kan også føre til fuktproblematikk og at treverket går i forråtnelse. På grunn av dette var det nødvendig å legge inn luftespalter slik at treverket har mulighet til å tørke i endeveden Design Det oppsveiste hulprofilet, eller stålsokken er bygd opp av fire stålplater med tykkelse 10mm. For at profilet skal virke som en sokk er det nødt til å omfavne søylen. Dette er gjort ved å forlenge bredden på to av platene med én platetykkelse i hver ende. På denne måten går platene kant i kant. Dette fører til at platene på kortsiden av søylen blir 0mm lengre enn søylene på langsiden av søylen. Ved design av hulprofilet ble det tatt hensyn til to lasttilfeller. Tilfelle 1; bruddgrense. Søylen utsettes for en normalkraft på 1330kN og en skjærkraft i toppen av søylen på 0kN. Denne skjærkraften fører til et stort moment mot hulprofilet som det skal motstå. Tilfelle ; ulykkeslast. Her utsettes søylen for en normalkraft på 500kN, en skjærkraft på 7.5kN og en ulykkeslast på 150kN. Skjærkraften og ulykkeslasten fører til et moment mot profilet. Til tross for den store ulykkeslasten er det bruddgrense, tilfelle 1. som er dimensjonerende på grunn av det store moment som opptrer med en større skjærkraft. En viktig grunn til at det er foreslått en sokk og ikke en plate på hver side er at i en ulykkessituasjon kan lasten inntreffe på hvilken som helst side av søylen. Dette vil føre til et problem med videreføring av momentet til fundamentet fordi platene ikke har tilstrekkelig kapasitet mot disse kreftene. Den kvadratiske løsningen sikrer at momentet kan tas opp, motstås og videreføres i enhver lastsituasjon. Fordi det var nødvendig med lufting av treverket var det nødvendig å lage åpninger i hulprofilet for å sikre utluftning. Fuktutfordringen ble først påpekt av Høyer Finseth ved Anders Kokkim da forslaget først ble presentert for oppdragsgiver. Dette ble også bekreftet i eksempler på lignende problematikk gruppen fant i en amerikansk presentasjon på knutepunkter i buede trekonstruksjoner. Her ble det anbefalt å holde deler av treverket fritt for fastholdning (f. eks stålplater) for å sikre lufting. Det ble da testet flere forskjellige dimensjoner, men som det sees nærmere på i underkapitlet beregninger var det utfordringer med sveiselengden og tverrsnittets motstandsmoment som ble utfordrende på grunn av nødvendig luftespalte. Det har ikke lykkes gruppen å finne eksakte beregninger/ krav til lufting i bunnen av søylen, men det er i samarbeid med Jan Ivar Pedersen i Høyer Finseth AS kommet frem til en fornuftig dimensjon. Luftespalten ble til slutt på 70mm på hver side av søylen og 10mm høy. Det ble også avgjort at søylen med fordel kan freses ut i bunnen for å sørge for optimal lufting. Denne utfresingen er planlagt å være 10mm høy. 1

24 Figur 8. Søylens tverrsnitt ved utfresing. Skjermdump fra Revit 015 Fordi arealet av hulprofilet må reduseres for å gi tilstrekkelig utluftning gir dette redusert sveiselengde som viste seg å være en utfordring. For å få mer sveiselengde blir det benyttet to avstivere på hver side, totalt åtte avstivere. Disse avstiverne vil gi den ekstra sveiselengden som behøves og de vil utformes som trekanter med grunnlinje 40mm og høyde 100mm. Figur 9. Avstivere mot hulprofilet. Skjermdump fra Tekla.

25 1.. Beregning Ved beregning av nødvendig dimensjon på stålsokken startet vi med å finne riktig tverrsnittsklasse for det oppsveiste profilet. Dette er gjort etter Eurokode 3 tabell 5. s. 4. Tverrsnittet utsettes for bøyning fra skjærkraften og trykk fra normalkraften. Dette fører til en litt mer komplisert utregning enn hvis det kun opptrer bøyning eller trykk. Tverrsnittsklassen avgjøres ut ifra forholdet mellom indre høyde på tverrsnittet og tykkelse. Dette sammenlignes så med forholdet mellom trykk og strekk i tverrsnittet. Figur 10.Forholdet mellom trykk og strekk, α c. Standard Norge, Eurokode , 005. S. 4. Utregning av spenningsforhold i tverrsnittet ved bruddgrense, a større enn 0.5 betyr at det er mer trykk enn strekk i tverrsnittet. Tverrsnittsklassen bestemmer om man får regne tverrsnittet elastisk eller plastisk, noe som får betydning for kapasiteten. Med tverrsnittsklasse 1 beregnes det elastisk. Dette betyr at man får bruke hele arealet til tverrsnittet og tar ikke hensyn til plateknekking og evt. utbuling av tverrsnittet. 3

26 Beregning av bøyningskapasitet er gjort ved å legge til Steiner sats. Alle tverrsnitt har en egen evne til å motsette seg bevegelse. Denne motstanden ligger kun i geometrien og kalles motstandsmoment forkortet til W. Det finnes ferdig formelverk for utregning av fast geometri, f.eks. firkanter og sirkler. For standard profiler finner man ferdig utregnede tverrsnittsegenskaper, men når man sveiser opp profiler må dette regnes ut med et såkalt Steinertillegg Dette er gjort ved å ta utgangspunkt i en nøytralakse midt i tverrsnittet og regne ut tverrsnittets stivhet om denne aksen. Etter at motstandsmomentet for hele tverrsnittet er utregnet kan åpningene for luftehullene trekkes ifra og det totale motstandsmomentet for profilet regnes ut. Totalt motstandsmomentet etter fratrekk. Med motstandsmomentet på plass er det mulig å regne tverrsnittets kapasitet mot bøyning. Bøyningskapasitet og utnyttelse. Sveiselengden er bestemt ut ifra profilets hjørner hvor selve profilet henger sammen mot fotplaten. Denne hjørnelengden på 361mm var ikke tilstrekkelig sveiselengde og det må derfor monteres avstivere mot profilet for å gi tilstrekkelig sveiselengde. Disse avstiverne gir oss 48mm lengre sveiselengde pr. side av søylen. 4

27 1.3 Løsningsvalg kryssplate. Figur 11. Illustrasjon av kryssplateløsning. Skjermdump fra Tekla. For å oppnå momentstiv forbindelse mellom søyle og fundament er det vurdert en løsning med stålplater sveiset på en innstøpt fotplate. Det er tenkt fire stålplater i kryss sveiset på høykant av fotplaten. Det må slisses spor for stålplatene inn i selve søylen som kan ferdigstilles på fabrikk. Det skal deretter monteres to boltegrupper i hver av platene. For å ha tilstrekkelig kapasitet mot hullkanttrykk i tverrsnittet er det nødvendig å ha et ganske bredt søyletverrsnitt. Det opprinnelige søyletverrsnittet er ikke tilstrekkelig. Løsningen er å benytte en konsoll på begge sider av søylen. Videre dikterer nødvendig avstand mellom belastet kant og boltegruppen bredden på konsollen ytterligere. Fordelen med løsningen er at det er relativt enkel å montere da man kun skal feste bolter til tverrsnittet. Arkitekt og byggherre ønsket et bæresystem i tre og denne løsningen skjuler selve knutepunktet siden alt er slisset inn i treverket og man ser kun de fire boltegruppene og tresøylen. 5

28 Ulempen med løsningen er at den nederste meteren av søylen bli veldig massiv, nærmere ett kubikk med limtre. Dette vil være en veldig kostbar løsning og utførelse på fabrikk kan være veldig krevende på grunn av tverrsnittet. Fordi konsollen blir så massiv vil den også stjele gulvareal, man mister nesten en meter mellom hver søyleakse i forhold til det opprinnelige tverrsnittet på søylen. I tillegg til størrelsen vil søylen også være meget tung og kan gjøre transport fra fabrikk utfordrende med tanke på antall søyler man kan transportere av gangen Design For at løsningen skal være momentstiv måtte boltene i forbindelsen ha kapasitet til å ta opp momentet fra lastsituasjonen. Det er valgt fire boltegrupper i sirkel med boltediameter 30mm. Sirklene er plassert 360mm fra hverandre med diameter 150mm. Stålplatene i knutepunktet vil være 0mm tykke og gå på tvers av hele søylen i begge retninger. Platene vil være 965mm høye for å gi plass til boltegruppene i begge retninger. Ved design av boltegruppen er NS-EN :004+A1:008+NA:009 (også kjent som Eurokode 5 eller EK 5) benyttet for å beregne minimumsavstander i fiberretningen og på tvers av fiberretningen. Eurokode 5 angir avstand i forhold til en vinkel mellom kraftretning og fiberretning. På grunn av forholdet mellom horisontalkraft og normalkraft er vinkelen tilnærmet 90 grader på fiberretningen. Dette fører til en avstand mellom senter av bolter på fire ganger boltediameter i fiberretning og vinkelrett på fiberretning. Det er benyttet en avstand på fem ganger boltediameter i løsningen. Vinkel mellom resultant og fiberretning. Eurokode angir ingen spesielle krav til bolteavstander i stål når man benytter sirkelgruppe. Det er derfor valgt avstander innad i gruppen som overstiger kravene som vanligvis brukes til firkantede skruegrupper i stål. Dette fører også til at opptredende hullkanttrykk reduseres kraftig i forhold til hva det ville vært med minimumskrav. Krav til kantavstand og faktisk valg Beregning Beregning av knutepunktet er gjort ved å se på to lasttilfeller; tilfelle 1 hvor søylen utsettes for bruddgrenselast i form av normalkraft og skjærkraft fra randdrager som fører med seg et moment i knutepunktet. Tilfelle er ulykkeslast hvor søylen utsettes for en ulykkeslast 0.75m over gulvnivå, en normalkraft og en skjærkraft fra randdrager som fører til moment som i tilfelle 1. Det dimensjonerende tilfellet viste seg veldig raskt å være tilfelle 1. Dette lasttilfellet påfører søylen store normalkrefter og en mindre skjærkraft der søylen og randdrager møtes. Denne skjærkraften forårsaker et moment som inntreffer i senter av forbindelsen, 550mm over søylefoten. 6

29 Total lastvirkning på forbindelsen er beregnet ved hjelp av utledning av formler fra forelesninger fra Mars 010 av Nils Bovin ved NMBU og Structural Timber Design to Eurocode 5 av Jack Porteous og Abdy Kermani 007 s Kraftvirkningen er et resultat av dekomponering av krefter. Kreftene dekomponeres fra skjær, moment og normalkraft til en ren skjærkraft pr. forbinder. Forbindelsen er designet så den kan ta opp moment om begge akser. Dette er viktig fordi ulykkeslasten kan oppstå på alle sider av søylen og det er derfor umulig å bestemme hvilken vei lasten kommer fra. Forbindelsen er derfor designet slik at to boltegrupper kan ta opp all kraften alene. Dette er også grunnen til at det er behov for en kvadratisk konsoll slik at det er nok treverk i alle retninger å fordele trykket på. Knutepunktets kapasitet er beregnet etter Eurokode 5 og Eurokode Eurokode 5 tar for seg kapasiteten i treverket og tar hensyn til hullkanttrykk, størrelse på mellomlagsskiver og uttrekning av boltegruppen, mens etter Eurokode er boltenes kapasitet mot avskjæring, platenes kapasitet mot hullkanttrykk beregnet. Utrivning av skruegruppe er ikke aktuelt i denne lastsituasjonen da det kun er trykk i forbindelsen og kantavstanden er veldig stor som følge av nødvendig geometri. Ved beregning av knutepunkt mellom treverk og stål i henhold til Eurokode 5 skal kapasiteten utrykkes som skjærkapasitet pr. forbinder pr. skjærflate. Dette betyr at ved å designe en dobbeltsnittet forbindelse (to skjærflater) dobler man kapasiteten pr. forbinder. Dette betyr at man har muligheten til å styre kapasiteten til en forbindelse med å legge til eller trekke ifra skjærflater. Det er i denne forbindelsen én plate i tresøylen, altså to skjærflater. Figur 1. Aktuelle bruddformer for forbindelsen. NS-EN :004+A1:008+NA:009 fig. 8.3 s. 59. De aktuelle bruddformene for forbindelsen er tilfeller f, g og h. Tilfelle f. beskriver et tilfelle hvor treverkets hullkanttrykkapasitet er for lav og når platen utsettes for en kraft forskyves forbinderen og uthuler treverket. Tilfelle g. beskriver et tilfelle hvor treverket er så bredt (stor t 1) at når platen utsettes for en kraft vil forbinderen deformeres der den har kontakt med platen og treverket deformeres i ytterkant. Tilfelle h. beskriver et tilfelle hvor bredden på treverket (stor t 1) er så stor at det kun oppstår deformasjon i forbinderen der den har kontakt med platen når det utsettes for en kraft. I det dimensjonerende tilfellet er det bruddform g. som er aktuell. 7

30 Utregning av kapasitet. Kapasiteten er oppgitt pr. forbinder pr. skjærflate.. Knutepunkt Søyle- Randdrager (Toppen av søylen).1 Løsningsvalg 1 Step Joint Figur 13. Skjermdump fra Tekla Alternativ løsning for å få momentstiv forbindelse i toppen av søylen er skråstaver som festes til søylen og randrageren. Vinkelen som dannes mellom søyle og skråstav har blitt satt til 45 grader. Søylens kapasitet beregnes ut ifra skjærspennings- og bøyespenningskontroll da det er innsnitt og dens tverrsnitt som gir kapasitet. Løsningen har en ulempe da den reduserer fritt takhøyde med ca. 1m ved siden av søylen..1.1 Design Det er skjærspenning som ble dimensjonerende og man måtte finne riktig areal for innsnittet slik at kapasiteten ble tilstrekkelig. Det har blitt valgt innsnitt på 45mm og vinkel mellom søylen og skråstaven lik 45 grader. Tykkelsen på skråstaven ble satt til 100 mm. 8

31 .1. Beregninger Gruppen fant det utfordrende å finne nøyaktig verdi for aksial belastning i skråstaven. Det er programmet Autodesk Robot som kom med N ED=30kN, i tillegg til denne last har det blitt lagt til ekstra belastning N d=10kn som tilsvarer 1.5% av opptredende normalkraft i søylen. Opptredende kraft i forbindelsen blir da 48kN. Belastning inntreffer med en vinkel på.5 grader i forhold til fiberretning og kapasiteten må derfor beregnes etter formelverk fra kapittel 6.. i Eurokode 5. Formelverk tar hensyn til korrelasjon mellom opptredende kraft og fiberretningen. Den totale spenningskapasiteten ble beregnet til: Den opptredende skjærspenning og bøyespenning ble beregnet henholdsvis: Det var også naturlig å sjekke skråstavens kapasitet mot knekking. Lengden av skråstaven er satt til meter og med slik geometri fikk man relativ slankhet om svak akse λ z = Da forbindelsen mellom søyle og skråstav anses som ledd får man ikke skjærkraft i staven. Dette fører til at bøyespenning om både sterk og svak akse er 0 N/mm. Alt dette resulterer i at knekkingskontroll kan forenkles til kontroll med ren aksialbelastning. Som vist på figur er tverrsnittet utnyttet til 4% mtp knekking. Alle kontrollområder viser at forbindelsen har god kapasitet. Detaljerte beregninger har blitt utført i MathCAD og er vedlagt rapporten. Se vedlegg 7. 9

32 . Løsningsvalg -T-Forbindelse Figur 14. skjermdump fra Tekla. T- forbindelsen er en unik løsning gruppen ikke har sett noe annet sted og kombinerer kjente løsninger som innslissede plater og konsoll på en interessant måte. Dette knutepunktet er også det som gir størst takhøyde, noe som er et av kriteriene for gruppen. Knutepunktet ivaretar også det estetiske på en bedre måte enn Step joint eller skråstaver løsningen fordi det gir mer luft mellom øvre og nedre knutepunkt. Det har blitt valgt en løsning med innslissede stålplater. Platene skal være formet slik at de slisses inn i randragere og søyle uten at ståldeler synliggjøres unødvendig. Som festemiddel skal det brukes M30 bolter i sirkelgrupper. På innslissede stålplater skal det sveises en liggende stålplate med en oppsveist stående plate som skal slisses inn i gitterdrager. Som festemiddel her har det blitt valgt M30 bolter i sirkelgruppe...1 Design De største faktorene i designprosedyren var kapasiteter til de aktuelle materialene, det var søylen selv som ga størst utfordring. Det resulterte i at det var nødvendig med 4 plater med tykkelse 30mm. Hullkantrykk var dimensjonerende og på grunn av dette måtte søylen omprosjekteres fra en rett søyle til en søyle med konsoll. For å oppnå momentstiv forbindelse mellom søylen og gitterdrager samt randdrager måtte det velges M30 Bolter. Boltesirkelen skal ha radius r=180mm og avstand mellom boltesirklene skal være r b=400mm. Kantavstand horisontalt er 10mm og vertikalt 10mm. 30

33 T- forbindelsen startet som en ren T- plate innslisset i platen og randdragere med boltegrupper i sirkel som diskutert tidligere i rapporten. Dette viste seg å være umulig mtp. utførelse fordi det var ikke mulig å feste fagverket til søylen på en fornuftig måte, i tillegg viste det seg at én plate ikke ga nok kapasitet for forbindelsen. Dette førte til at T- forbindelsen gikk fra en ren T form til noe som ligner på en opp ned T fordi antallet plater måtte økes, og dermed også tverrsnittet på søylen i form av en konsoll. I tillegg måtte det festes plater på toppen av forbindelsen for å kunne feste fagverket på en fornuftig måte. Figur 15. plater og boltegrupper i endelige T - forbindelse. Skjermdump fra Tekla... Beregninger Alle beregninger har blitt utført etter Eurokode 5 som gir grunnlag for prosjektering av trekonstruksjoner. Det er kapittel 8 som gir krav til prosjektering av forbindelser. Opptredende aksialbelasting har blitt satt til Ned=1330kN, horisontal belastning H ed=30kn, moment i forbindelsen M ed=6.67knm og globale momentet M G.Ed=0kNm. Antall boltegrupper i T-forbindelsen er satt til 3 med 7 bolter i hver gruppe. Det mest kritiske var å finne opptredende lastvirkning per forbinder pr bolt. Her måtte man ta hensyn til aksiallast, horisontallast og selve momentet som opptrer i forbindelsen. Dimensjonerende kraft per forbinder har blitt beregnet etter boken Structural Timber Design to Eurocode 5 (forfatter Jack Porteous og Abdy Kermani). Anvisning til beregning av momentstiv forbindelse står beskrevet i kapitel 1.5. på side 489. Opptredende kraft per forbinder blir beregnet etter formel: 31

34 Den aktuelle bruddformen som kan inntreffe i dette tilfelle er tilfelle f, g eller h gitt i Eurokode 5, pkt lign 8.11 og figur 8.3. Figur 16. NS-EN :004+A1:008+NA: 009 fig. 8.3 s. 59 Ved de aktuelle bruddform får man dimensjonerende kapasitet per skjærflate per forbinder lik F v.rk=40.kn. I selve forbindelsen er antall plater satt til n p=4 som gir antall skjærflater n v=8. Med slik valg oppnår man dimensjonerende kapasitet per forbinder lik F v.rk.dim=n v* F v.rk=3.11kn. Forbindelsen skal være utnyttet til 93%. Nødvendig tykkelse på stålplatene og dimensjonerende aksiallast førte til at søyletoppen måtte prosjekteres med konsoll. Utfordringen var tykkelsen på limtre mellom stålplatene. Tykkelsen av overnevnt limtre mellom stålplater måtte settes til t 1=110mm. Dette resulterte i at bredden på toppen av søylen måtte gjøres om fra 400mm til 670mm. Selve konsollen måtte kontrolleres for skjærspenning langs fiberrettingen for å dimensjonere dens minste høyde som vist nedenfor (hvor F t1.ed er den delen av aksiallast som virker på den utstikkende delen av konsollen og F v.d er skjærspenningskapasitet til limtre). Etter å ha beregnet minimalhøyde kunne konsollen prosjekteres. Geometrien ble satt som vist på figur 17. 3

35 Figur 17. Skjermdump fra Tekla. Etter å ha kontrollert limtreets kapasitet måtte stålets kapasitet kontrolleres. Dette er gjort etter Eurokode tab. 3.4 s. 8. Det var nok en gang hullkanttrykk som ble dimensjonerende. Kapasiteten ble beregnet som vist på figur under, hvor k 1 og α b er reduksjonsfaktorer beregnet etter samme kapittel, f u er speningskapasitet per bolt, d - boltediameter og t pl er tykkelsen på plate. Den opptredende kraften per bolt er beregnet: Hvor F Ed er opptredende kraft per forbinder og n p er antall plater i forbindelsen. Utnyttelsen ligger på 17% og anses som tilstrekkelig. Boltediameter kunne da reduseres men det hadde gitt negativ utslag på kapasitet av tresøyle. Nøyaktig beregninger har blitt utført i MathCAD og er vedlagt denne rapporten. Se vedlegg 8. 33

36 .3 Løsningsvalg 3 - Skråstaver med innslisset trykk stålplate Figur 18 Skjermdump fra Tekla. Løsningen går ut på å avstive toppen av søylen. Avstivningen er delt i flere deler; to skråstaver med innslisset stålplate i knutepunktet søyle-skråstaver, knutepunktet randdrager-skråstav og innslisset T- plate i knutepunkt søyle-randdrager. Skråstavene er de som bidrar mest til å skape den momentstive forbindelsen, mens T-platen på toppen holder dragerne fast til søylen. Løsningen gir en tilstrekkelig stiv forbindelse på toppen av søylen, som videre vil resultere i en stiv søyle, og med det oppnås målet for løsningen. Den negative effekten som følge av løsningen er at takhøyden reduseres..3.1 Design Forbindelsen består av fire knutepunkter. Knutepunktet søyle-skråstaver består av en 18mm tykk stålplate som er innslisset i både søylen og skråstavene og innfestet med 5 M18 bolter til hver skråstav. Skråstaven er innslisset med en stålplate til randdrageren. Platen er boltet til både skråstavene og randdrageren med 5+5 bolter. Randdragerne er festet sammen og til søylen ved bruk av en 18mm innslisset T- formet stålplata, og M18 bolter..3. Beregninger Forbindelsen inneholder tre innslissede stålplater. Kapasiteten til en stål-mot-tre forbindelse avhenger av tykkelsen på stålplaten. Platen betraktes som en tynn plate hvis tykkelsen på platen er mindre enn eller lik 0.5d (boltediameter), mens plater med en tykkelse større enn eller lik d, betraktes som tykke plater. Figur 19. NS-EN :004+A1:008+NA: 009 fig. 8.3 s

37 Skråstavene vil overføre aksialkrefter til søylen gjennom knutepunktene, og det vi utsette boltene til aksialbelastning. Boltene er dimensjonert for å motstå den aksiale belastningen samt flytning i boltens som oppstår pga. overført moment. Boltekapasiteten er beregnet etter Eurokode 5 punkt 8.5.(), hvor dimensjonerende tilfelle var boltens kapasitet mot strekk. Eurokode 5 punkt 8..3(3) sier at forbindelsens karakteristiske kapasitet settes lik minste verdien for hver forbinder per snitt (skjærplan). Minste avstander mellom bolter og fra bolter til kant og ende er definert i Eurokode 5, under punkt 5.1.1(3). Eurokode 5 Punkt () stiller krav til underlagsskive under boltens hode, den krever at det må brukes underlagsskive med en diameter på minst 3d og tykkelse 0.3d under boltens hode. Fra dette ble det valgt en underlagsskive med en diameter på 54mm og tykkelse på 5mm. 35

38 Globalstabilitet Globalstabiliteten ble vurdert i flere situasjoner, hver situasjon består av en kombinasjon av to ulike løsninger som er beskrevet tidligere i rapporten. Påvirkningen av hver kombinasjon vil knytte seg direkte til søylens knekklengde, og derfor vil knekklengden være kritisk for dimensjonering av søylen. Søylen er en del av et bæresystem til et lager bygg hvor det er ønskelig med størst mulig takhøyde. Løsninger dreier seg derfor om å avstive søylen ved bruk av randdrager, men løsninger som vil begrense takhøyden betraktelig er uakseptable. Forskjellige kombinasjoner av foreslåtte løsninger kan best forklares ved bruk av rammer med forskjellige forbindelser. I dette kapitlet beskrives det 4 forskjellige ramme systemer med samme last situasjon. Figur 0. Oversikt over ulike typer rammer. Skjermdump fra Revit 015. Rammesystem 1 har kun leddforbindelser som ikke tillater momentoverføring i hjørnene eller ved føttene. Med dette rammesystemet er systemets global likevekt ikke oppfylt og det vil medføre at konstruksjonen velter. Ramme,3, og 4 kan oppnå global likevekt avhengig av likevektsegenskaper til hver av dem, derfor er rammesystemene vurdert hver for seg. Vurdering og beskrivelse av rammesystemer,3 og 4 er gjort ved å kombinere tidligere nevnte løsninger. Kombinering av løsninger varierer avhengig av valgt rammesystem. Løsningskombinasjonene vil påvirke søylens knekklengde betraktelig Knekklengde Knekklengden påvirkes direkte av hvordan søylen er fastet mot fundament og mot takoppbygning. Når man skal bestemme knekklengden av en søyle kan man bruke ferdige tilfeller eller gjøre en nærmere analyse. I prosjektet valgte gruppen å se nærmere på knekklengden av hvert tilfelle. Denne knekklengden regnes da ut ved at man beregner rotasjonsstivheter for topp og bunnen av søylen. Dette resulterer i at man kan ta ut en reduksjonsfaktor for knekklengde fra et sett med grafer, avhengig av hvilken situasjon man setter opp på forhånd. Denne måten gir en mer nøyaktig beskrivelse av stivheten til systemet enn om man bare bruker ferdige tilfeller, noe som var veldig interessant i dette prosjektet. 36

39 Vurdering av rammesystem Figur 1. Illustrasjon av ramme. Skjermdump fra Tekla. Dette systemet innebærer at man har ledd i knutepunkt mot fundamentet og momentstiv forbindelse mot takkonstruksjonen. Rammesystemet oppfyller global likevekt, derfor kan systemet være aktuelt som en løsning for å oppnå totalstabilitet. Systemet tillater full momentoverføring mellom randdrager og søyle, men ikke fra søyle til fundament. Følgende løsningskombinasjoner av knutepunkter oppnår det overnevnte statisksystemet: «Ledd» ved fundament og «Step joint» i toppen av søylen «Ledd» ved fundament og «skråstaver» i toppen av søylen «Ledd» ved fundament og «T- forbindelse» i toppen av søylen Løsningskombinasjon med «Step joint» eller «skråstaver» har samme reduksjonsfaktor for knekklengde som er 70% av søylens opprinnelig lengde, mens kombinasjonsløsning med T- forbindelse har knekklengde 93% av søylens lengde. Variasjonen i knekklengden skyldes variasjon i søylens lengde ved de forskjellige løsningene. I dette kapitlet har det blitt beskrevet den mest effektive løsningskombinasjon. Siden T- forbindelse gir verste tilfelle med 7.m og forårsaker at tverrsnittet må økes fra 40x400mm til 450x450mm, er løsningen ikke beskrevet under dette kapitlet, men beregningsarket er vedlagt. Se vedlegg 1. 37

40 Løsningskombinasjon «Ledd» ved fundament og «Step joint» i toppen utsetter søylen for en kombinasjon av aksialkrefter og bøyning. Søylen er ikke fastholdet mot knekking i z- retning, derfor vil knekking om den aksen være kritisk. Bestemmer knekklengde: Søylen er sentrisk- og horisontalt belastet, altså utsatt for trykk og bøyning. Belastingssituasjonene påvirker søylens knekkform betraktelig. I dette kapitlet er knekking vurdert i to forskjellige tilstander, ulykkestilstand og bruddtilstand, som samsvarer de overnevnte beslutningssituasjonene. 38

41 Trykk vinkelrett på fiberretningen Eurokode 5, kapittel Skråstaver og Step Joint stiver av søylen slik at dens lengde er begrenset til 6m. dette resulterer i at tverrsnittet må være 40x430mm. Med det oppnås totalstabilitet, som videre vil påvirke byggets global stabilitet positivt. Vurdering av rammesystem 3 Figur. Illustrasjon av ramme 3. Skjermdump fra Tekla. Systemet innebærer at søylen er fast innspent mot fundament og leddet mot takkonstruksjonen. Rammesystemet oppfyller global likevekt, derfor kan systemet være aktuelt som en løsning for å oppnå totalstabilitet. Systemet tillater full moment overføring fra søyle til fundament, men ikke mellom randrager og søylen. Følgende løsningskombinasjoner av knutepunkter oppnår det overnevnte statisksystemet: «Stålsokk» og «fritt opplagt» overgurt & randdrager. «Kryssplate» og «fritt opplagt» overgurt & randdrager. Disse kombinasjonene gir en reduksjonsfaktor for knekklengde på 74% av søylens opprinnelig lengde. Søylens lengde varier fra 6m til 6.3m. Bestemmer knekklengde: 39

42 Kombinasjonsløsningene som tilsvarer dette ramme systemet har samme påvirkning på søylen. Under dette kapittelet har begge kombinasjonene blitt beskrevet samtidig, de betraktes som en søyle hvor den er fast innspent i bunn og frittopplagt på topp. Søylen utsettes for en kombinasjon av aksialkrefter og bøyning. Knekking om z-aksen vil være kritisk. Søylen er både sentrisk- og horisontalt belastet. Denne lastvirkningen utsetter søylen for trykk og bøyning. Belastingssituasjonene påvirker søylens knekkform betraktelig. I dette kapitlet er knekking vurdert i to forskjellige tilstander, ulykkestilstand og bruddtilstand, som samsvarer de overnevnte beslutningssituasjonene. 40

43 Trykk vinkelrett på fiberretningen Eurokode 5, kapittel Det oppsveiste hulprofilet gir det beste tilfellet hvor søylens lengde utsatt for knekking reduseres med stålsokkens høyde som er 1.m. Dette fører til et tverrsnitt på 40x430mm. Kryssplate vil også redusere lengden av søylen som kan knekke med sin platehøyde og pga. konsoll til 6.3m. Konstruksjonsmessig vil begge kombinasjonene gi samme resultater når det gjelder dimensjonering av søylen, dvs. begge løsningskombinasjonene er aktuelle. 41

44 Vurdering av ramme system 4. Figur 3. Illustrasjon av ramme 4. Skjermdump fra Tekla. Systemet innebærer at søylen er fast innspent mot både fundament og takkonstruksjonen. Rammesystemet oppfyller global likevekt, derfor kan systemet være aktuelt som en løsning for å oppnå totalstabilitet. Systemet tillater full momentoverføring fra søyle til fundament og mellom randrager og søyle. Følgende løsningskombinasjoner av knutepunkter oppnår det overnevnte statisksystemet: «Stålsokk» ved fundament og «Step joint» på toppen av søylen. «Stålsokk» ved fundament og «skråstaver» på toppen av søylen. «Stålsokk» ved fundament og «T- forbindelse» på toppen av søylen. «Kryssplate» ved fundament og «Step joint» på toppen av søylen. «Kryssplate» ved fundament og «skråstaver» på toppen av søylen. «Kryssplate» ved fundament og «T- forbindelse» på toppen av søylen. Alle løsningskombinasjonene har samme reduksjonsfaktor for knekklengde som er 69% av søylens opprinnelig lengde. 4

45 Bestemmer knekklengden: Alle løsningskombinasjonene har samme påvirkning på søylen, men har to forskjellige tverrsnittskapasiteter. Kombinasjonene er delt i to tilfeller og videre ble det vurdert den som er mest aktuelt. Tilfelle 1 er enten «stålsokk» eller «kryssplate» i bunn og enten «skråstaver» eller «step joint» i topp. Tilfelle er enten «stålsokk» eller «kryssplate» i bunn og T-forbindelse i topp. Vurdering av tilfelle 1: Tilfelle 1 «stålsokk/kryssplate» ved fundament og «skråstaver/step joint» i topp. Søylen utsettes for en kombinasjon av aksialkrefter og bøyning. Knekking om z-aksen vil være kritisk. Søylen er både sentrisk- og horisontalt belastet, belastningene utsetter søylen for trykk og bøyning. Belastingssituasjonene påvirker søylens knekkform betraktelig. I dette kapitlet er knekking vurdert i to forskjellige tilstander, ulykkestilstand og bruddtilstand som vist i utklipp fra beregninger. 43

46 Trykk vinkelrett på fiberretningen Eurokode 5, kapittel Tilfelle 1 viser at 400x40mm søyle tilfredsstiller krav til tverrsnitts kapasitet, med utnyttelses grad 88%. Tilfelle «stålsokk/kryssplate» ved fundament & «T-forbindelse» i topp viser at 400x40mm har nok tverrsnitts kapasitet med utnyttelses grad omtrent 99% og stålsokk må være.0m høy. Utregningen er ikke beskrevet under dette kapitlet for å unngå gjentagelser, men vedlagt som beregningsark. Begge tilfellene vil oppnå totalstabilitet for søylen. Konstruksjonsmessig vil begge tilfellene gi samme resultater når det gjelder dimensjonering av søylen, dvs. begge tilfellene egner seg som en reell løsning, men med tanke på andre aspekter kan et tilfelle være bedre enn det andre. Vurdering av forskjellige aspekter og valg av den beste løsningen Alternativt materialvalg- stål I Norge finnes det utallige mange lagerhaller/ butikker osv. hvor man har brukt stålsøyler, fagverksbjelker, sandwichelementer på vegger og lettak. Dette er en rask og enkel måte å bygge på. De fleste slike bygninger har det bærende systemet montert iløpet av veldig kort tid. Stål er heller ikke utsatt for fuktproblematikk på samme måte som trevirke er, noe som er en fordel både i utførelses- og driftsfasen. Gruppen har vurdert et alternativt tilfelle hvor bæresystemet i treverk er byttet ut med et komplett bæresystem i stål. Det er beregnet stålsøyler og fagverk til akse 3 for å gi et bilde av forskjellene i dimensjoner og utførelse. Fundamentet kan i stor grad være det samme som for treverk siden lastene vil være tilnærmet de samme, egenvekt av søyle og fagverk endres noe. 44

47 Fagverket Figur 4.Fagverk i stål. Skjermdump fra Tekla. Grunnet lang spennvidde mellom aksene ble det valgt fagverksbjelker som takets bæresystem. Bjelkene betraktes som egen konstruksjon som består av overgurt, undergurt og diagonaler som forbinder overgurten med undergurten. Overgurten utsettes for en kombinasjon av bøyning og aksialkrefter. Undergurten utsettes kun for strekk, mens diagonalene utsettes for kun aksialkrefter. Fagverksbjelkene har 1.8 m spenn mellom aksene. Bjelken er bygd opp av overgurt HEA 60. Undergurt HEA 60 og diagonalstaver RHS 140*8. Diagonalstavene forbinder overgurten sammen med undergurten med 8mm kilsveis. Overgurten utsettes for en kombinasjon av bøyning og trykk, og det medfører at knekking med 90% av lengden som knekklengde blir dimensjonerende lasttilfelle. Beregninger viser at HEA60 har tilstrekkelig kapasitet. Utnyttelsen ligger som vist nedenfor. Overgurten er fastholdt mot vipping hver 3.56 meter. Kapasitet mot vipping er 34kNm og opptredende vippemoment er 56 knm. Utnyttelse mtp. vipping er beregnet til å være 4.5%. Kontrollen er utført etter Eurokode 3, kapitel 6, og Stålhåndboka 3 kapittel Kontroller viser at profilen har god nok kapasitet mtp. Bøyning (57.kNm) og aksialkraft (040kN). Undergurten er ikke dimensjonert i dette kapitlet, og blitt valgt til å være HEA 60 som overgurten. Valget er konservativt nok, siden den er kun utsatt for strekk, dvs. er utsatt for mindre lastvirkning enn overgurt. Kontroll av RHS140*10 som diagonalstav er utført etter Eurokode 3 kapittel viser tilstrekkelig kapasitet mot knekking. Diagonalstaven er belastet med aksialkraft lik Ned=83kN. Utnyttelse av kapasiteten ligger på 76.5%, dermed OK. Sveis som binder diagonalstaven med overgurten og undergurten er dimensjonert til å være 8mm kilsveis og minst 40mm sveislengde, med utnyttelseskapasitet 94.6%. 45

48 Knutepunkt Figur 5. Skjermdump fra Tekla. Det finnes mange muligheter å utforme knutepunkter ved bruk av stål. Det har blitt foreslått knutepunkt i form av gitterdrager som er fritt opplagt på RHS søylen, som mellomlegg brukes det stålplater sveiset til overgurten og søylen. Platene festes sammen med bolter. Det er foreslått 4stk M1 bolter som festemiddel. Se figur 5. Den dimensjonerende tilfelle var i ulykkesgrensetilstand. Det har blitt utført kontroll på følgende kapasiteter: 1. Sveiskapasitet; utnyttelsen ligger på 33%. Avskjæring av bolter; utnyttelse ligger på 41% 3. Hullkanttrykk; utnyttelse ligger på 0% 4. Blokkutrivning av skruegrupper; utnyttelse ligger på 47% Alle kapasitetet har blitt kontrollert etter Eurokode 3 og relevante kapitler. Utregning har blitt utført i MathCAD og ligger vedlagt denne rapporten. Søyle Det er tatt utgangspunkt i søylene i akse 3. Søylen utsettes for krefter fra snølast, nyttelast, egenlast, en horisontalkraft som følge av normalkraft og en ulykkes last. Belastningen utsetter søylen for knekking med knekklengde 0,9L av søylens opprinnelig lengde. Søylen utsatt for flere bruddtilstander blant annet knekking og vipping. Vipping er ivatetatt i henhold til punkt Eurokode 3, kapittel 6.3.() som sier at en RHS profil er ikke utsatt for vipping, mens knekking gjennstår som en utfordring for søylen. Dette medfører at knekking om søylens svake akse er dimensjonerende bruddtilfelle for søylen. Søylen kapasitet beregnet i henhold til Eurokode 3 kapittel likn.6.61, ut fra det har blitt valgt en RHS 50*10 stålprofil. Valgte profil tilfredsstiller søylen mot knekking med 97% kapasitet mot knekking. 46

49 Man ser at stål kunne har vært en god alternativ for trevirke da bruk av stål medfører mindre dimensjoner av alle konstruksjonsdeler. Imidlertid foreligger det et ønske fra utbyggeren om at bygget skal utformes med trevirke i konstruksjonsdeler. Beregninger og forslaget for stål bæresystem er utført for å belyse dimensjonsdifferansen ved forskjellig materialbruk. Utførelse/ Byggeteknikk Forskjellige løsninger er drøftet i rapporten. Noen av løsningene er mer fornuftig mtp utførelse enn de andre og det som var interessant for prosjektet var at forholdet mellom kostnad og utførelse skal være det beste. Det var ønske fra utbygger sin side for å få mest mulig av trevirke som kan ha både fordeler og ulemper mtp. utførelse. Figur 6. BAS Arkitekter, 014. Borg Havn IFC. Prosjekt Lagerhall 1- Norline. Skjermdump fra Tekla. Figur 7.Fall mot nedsenket renne,

50 Midt i bygget er det lange innerhjørner på taket som kommer til å samle opp snø og vann. Dette kan føre til komplikasjoner i driftsfasen, men ikke minst er det en utfordring for å få til tilstrekkelig fall mot evt sluk på taket. Byggforsk blad «Kompakte tak» beskriver utførelse som sier at taket bør ha minst 1:60 fall i rennene som betyr at hele taket blir delt opp i flere deler og det må monteres innvendig nedløpssystemer, samt overvannsledninger under fundamentplaten eller under himlingen. Se figur 8. Løsningen i seg selv er ikke en uheldig løsning, men det er noe som er tidkrevende og kan evt. skape problemer i framtiden når bygget blir eldre. Nedløpssystemer trenger kontroll og service for at de ikke skal tettes. Ved tetting av nedløpssystemer kan det i verste fall samles store mengder av vann som kan være uheldig mtp konstruksjonens kapasiteter. Figur 8. Oppbygning av tak med takrenne.007. Generelt sett har trevirke en stor ulempe mtp. sammensetting av de forskjellige konstruksjonsdelene på en byggeplass. På en vanlig byggeplass er materialer utsatt for været som gjør at det må tas ekstra hensyn til det mtp. trevirkes svekkede egenskaper og evt misfarging. En stålkonstruksjon hadde vært mer behagelig mtp. montering på byggeplass. Skulle man vurdere økonomiske aspekter så viser det seg at stål som basismaterial for konstruksjonsdeler er vesentlig billigere enn limtre. Dette er forårsaket at det kreves betydelig større mengder av limtre i forhold til stål for å oppnå samme kapasitet. I tillegg må det slisses inn plater i limtreet som tar mer tid på fabrikk og igjen fører til økte kostnader. Basert på erfaring må det også regnes med ca. 10% mer tid til montering av trevirke. Spesielt når konstruksjonen strekker seg til store dimensjoner. Med store dimensjoner menes det større forbindelser sammenkoplet av flere deler. Fotplaten og det sammensveisede hulprofilet anses å være en ganske standard løsning hvis vi ser bort i fra grove dimensjoner. Fotplaten som tar opp momentet i bunnen skal armeres godt inn i fundamentet og det er det som kommer til å skape en del arbeid på byggeplassen. Den såkalte sokken tar også opp skjærkrefter fra ulykkeslaster i form av truck påkjøring. Dette knutepunktet er det suverent beste av knutepunktene mot fundament gruppen har dimensjonert. For å tilfredsstille utbyggers ønske om å få mest mulig av materialer i trevirke og for å få størst mulig fri høyde i bygningen fører det til at løsningene kan bli kostbare. Ut av de kombinasjonene av forskjellige løsninger som det er sett på i rapporten kan det hovedsakelig to kombinasjoner; kombinasjon én er stegforbindelse mot takoppbygning og fotplate med oppsveist hulprofil mot fundament. 48

51 Figur 9. Skjermdump fra Tekla. Kombinasjonen anses å være en god løsning for aksekryssene 3G- 3K hvor konstruksjonen må avstives mot takoppbygning mot sideveis forskyvning, samtidig som det er ønske om å opprettholde størst mulig fri høyde. En stegforbindelse (Step joint) er en relativt enkel og realistisk løsning mtp. utførelsen. Delene kan lages ferdig i fabrikken og monteres på plass hvor den settes sammen med lange skrues som ikke må dimensjoneres pga. geometrien til forbindelsen. Den symmetriske geometrien til forbindelsen gjør at begge sidene med like laster holder hverandre på plass med trykkrefter. Figur 30. BAS Arkitekter, 014. Borg Havn IFC. Prosjekt Lagerhall 1- Norline. Skjermdump fra Tekla. 49

2.1 Løsningsvalg 1 Step Joint... 24 2.2 Løsningsvalg 2-T-Forbindelse... 25 2.3 Løsningsvalg 3 - Skråstaver med innslisset trykk stålplate...

2.1 Løsningsvalg 1 Step Joint... 24 2.2 Løsningsvalg 2-T-Forbindelse... 25 2.3 Løsningsvalg 3 - Skråstaver med innslisset trykk stålplate... Forord Det er en gruppe på fire personer som studerer på Høgskolen i Østfold og har valgt en hovedoppgave innen faget Konstruksjonsteknikk. Oppgaven går ut på å finne innovative, samt lønnsomme løsninger

Detaljer

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål)

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål) EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 23.05.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 13.06.2019 Antall oppgavesider (inkludert forside): 5 Antall vedleggsider: 4 Faglærer:

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM igur B 8.10. Kombinasjon av skiver og rammer. a) Utkraget skive b) Momentramme ) Kombinasjon igur B 8.11. Eksempel på ramme/ skivekombinasjon Hovedramme igur B 8.12. (Lengst t.h.) Kombinasjon av rammer.

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 02.01.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 23.01.2019 Antall oppgavesider: 4 Antall vedleggsider: 4 (inkl vedlegg for innlevering)

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator. l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):

Detaljer

Eksempel 3.3, Limtredrager, taksperrer og opplegg

Eksempel 3.3, Limtredrager, taksperrer og opplegg Eksempel 3.3, Limtredrager, taksperrer og opplegg I huset nedenfor skal du regne ut egenlast og snølast på Røa i Oslo 105 meter over havet. Regn med at takets helning er 35 o. Regn ut både B1 og B2. Huset

Detaljer

Eurokoder Dimensjonering av trekonstruksjoner

Eurokoder Dimensjonering av trekonstruksjoner Eurokoder Dimensjonering av trekonstruksjoner NS-EN 1995 NS-EN 1990 NS-EN 338 NS-EN 1194 NS-EN 1991 Ved Ingvar Skarvang og Arnold Sagen 1 Beregningseksempel 1 -vi skal beregne sperrene på dette huset laster

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

Barduneringskonsept system 20, 25 og 35

Barduneringskonsept system 20, 25 og 35 Introduksjon Barduneringskonsept system 20, 25 og 35 Det skal utarbeides en beregning som skal omhandle komponenter i forbindelse med bardunering av master. Dimensjonering av alle komponenter skal utføres

Detaljer

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel INNHOLD BWC 50-40 Side av GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... 4 BETONG OG ARMERING I BALKONG... 4 DEKKETYKKELSER... 4 STÅLSØYLE FOR INNFESTING BWC... 4 BEREGNINGER... 5

Detaljer

Hva er en sammensatt konstruksjon?

Hva er en sammensatt konstruksjon? Kapittel 3 Hva er en sammensatt konstruksjon? 3.1 Grunnlag og prinsipp Utgangspunktet for å fremstille sammensatte konstruksjoner er at vi ønsker en konstruksjon som kan spenne fra A til B, og som samtidig

Detaljer

Statiske Beregninger for BCC 250

Statiske Beregninger for BCC 250 Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

Seismisk dimensjonering av prefab. konstruksjoner

Seismisk dimensjonering av prefab. konstruksjoner Seismisk dimensjonering av prefab. konstruksjoner Geir Udahl Konstruksjonssjef Contiga Agenda DCL/DCM Modellering Resultater DCL vs DCM Vurdering mhp. prefab DCL Duktiltetsfaktoren q settes til 1,5 slik

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 74a Dato: 09.03.0 Sign.: sss BWC 80-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/3 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

BSF EN KORT INNFØRING

BSF EN KORT INNFØRING Dato: 11.09.2014 Sign.: sss BSF EN KORT INNFØRING Siste rev.: 16.11.2018 Sign.: sss Dok. nr.: K4-10/551 Kontr.: ps PROSJEKTERING BSF EN KORT INNFØRING Denne innføringen er ment å gi en liten oversikt over

Detaljer

Høgskolen 1Østfold 1 Avdeling for ingeniørfag

Høgskolen 1Østfold 1 Avdeling for ingeniørfag Høgskolen 1Østfold 1 EKSAMENSOPPGAVE Emne: IRB22013 Konstruksjonsteknikk 2 Lærer/telefon: Geir Flote Gru er: 2. B Dato: 04.01.2016 Tid: 09.00 13.00 Antall o avesider: 5 Antall vedle sider: 1 Sensurfrist:

Detaljer

MEMO 703a. Søyler i front - Innfesting i plasstøpt dekke Standard armering

MEMO 703a. Søyler i front - Innfesting i plasstøpt dekke Standard armering INNHOLD BWC 55-740 Dato: 15.05.2012 Side 1 av 19 FORUTSETNINGER...2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERRØR BRUKT I KOMBINASJON MED TSS... 2 TILLATT BRUDDLAST

Detaljer

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering INNHOLD BWC 50 240 Dato: 07.06.12 sss Side 1 av 6 FORUTSETNINGER... 2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERØR BRUKT I KOMBINASJON MED TSS... 2 STÅL, BETONG OG

Detaljer

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg:

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg: -~ ~ høgskolen i oslo IEmne I Gruppe(r): I Eksamensoppgav en består av: Dimensjonering 2BA 288! Antall sider (inkl. 'forsiden): 4 I I! Emne~ode: LO 222 B I Faglig veileder:! F E Nilsen / H P Hoel j Dato:

Detaljer

6. og 7. januar PRAKTISK BETONGDIMENSJONERING

6. og 7. januar PRAKTISK BETONGDIMENSJONERING 6. og 7. januar PRAKTISK BETONGDIMENSJONERING (9) Fundamentering- pelehoder www.betong.net Øystein Løset, Torgeir Steen, Dr. Techn Olav Olsen 2 KORT OM MEG SELV > 1974 NTH Bygg, betong og statikk > ->1988

Detaljer

Beskrivende del Verdal fengsel, Nytt Lagerbygg K201 Generalentreprise

Beskrivende del Verdal fengsel, Nytt Lagerbygg K201 Generalentreprise 2558 Verdal fengsel, 12352 Nytt Lagerbygg Beskrivende del Utarbeidet av COWI AS Okkenhaugveien 4, 7600 Levanger ENTREPRISE BYGG. 1 Innhold KAP 2B BYGNING - BYGGETEKNIKK... 3 20 Generelt... 3 21 Grunn og

Detaljer

5.1.2 Dimensjonering av knutepunkter

5.1.2 Dimensjonering av knutepunkter 80 H5 DIMENSJONERINGSEKSEMPLER V (kn) og M (knm) 500 0 500 1000 5 10 15 20 25 30 35 40 45 50 x (m) 1500 Snitt 4 (33,7 m < x < 50,8 m): F y = 0; det vil si: V f + h fy x H y2 H y5 H y4 = 0 V f = 10,1 x

Detaljer

Forankring av antennemast. Tore Valstad NGI

Forankring av antennemast. Tore Valstad NGI Forankring av antennemast Tore Valstad NGI 40 Antennemast på 3960 berggrunn 1400 1400 1400 2800 0 40 Antennemast på 3960 jordgrunn 1400 1400 1400 2800 0 BRUDD I KRAFTLINJEMAT BRUDD I KRAFTLINJEMAT FUNDAMENTERING

Detaljer

Trekonstruksjoner -dimensjonering etter Eurokoder

Trekonstruksjoner -dimensjonering etter Eurokoder Trekonstruksjoner -dimensjonering etter Eurokoder Beregningseksempler med ulike forbindelser. Erik Syversen PBM AS Beregningseksempler 1. Laskeskjøt med spiker og trelasker 2. Laskeskjøt med bolter og

Detaljer

Limtre Bjelkelags- og sperretabeller

Limtre Bjelkelags- og sperretabeller Pb 142 2391 Moelv www.limtre.no pr juni 2005 Forutsetninger for bjelkelags- og sperretabeller Tabellene bygger på følgende norske standarder og kvaliteter: NS 3470-1, 5.utg. 1999, Prosjektering av trekonstruksjoner

Detaljer

HRC T-Hodet armering Fordeler for brukerne

HRC T-Hodet armering Fordeler for brukerne HIGH PERFORMANCE REINFORCEMENT PRODUCTS HRC T-Hodet armering Fordeler for brukerne HRC T-hodet armering har spesielle egenskaper som skiller den fra konvensjonell armering. HRC T-hoder forankrer den fulle

Detaljer

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6.

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6. 248 C12 HULLDEKKER Det er som regel bare vridningsforbindelser som kan kreve så store strekk-krefter som N maks2, se figur C 12.9.a. Dersom forbindelsen skal overføre skjærkrefter mellom hulldekke og vegg

Detaljer

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 207 9.1 TO-SKIPS INDUSTRIHALL Dette beregningseksemplet viser praktisk beregning av knutepunk t - ene i en to-skips industrihall, ved hjelp av tabellene

Detaljer

Dimensjonering av fleretasjes trehus. Harald Landrø, Tresenteret

Dimensjonering av fleretasjes trehus. Harald Landrø, Tresenteret Dimensjonering av fleretasjes trehus Harald Landrø, Tresenteret Mange takk til Sigurd Eide, Treteknisk Rune Abrahamsen, Sweco Kristine Nore, Moelven Massivtre For bruk av bilder og tekst som underlag til

Detaljer

B10 ENKELT SØYLE BJELKE SYSTEM

B10 ENKELT SØYLE BJELKE SYSTEM 0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt

Detaljer

Prosjektkategori: Forprosjektrapport Fritt tilgjengelig X Omfang i studiepoeng: 20 Fritt tilgjengelig etter:

Prosjektkategori: Forprosjektrapport Fritt tilgjengelig X Omfang i studiepoeng: 20 Fritt tilgjengelig etter: Avdeling for ingeniørfag PROSJEKTRAPPORT Prosjektkategori: Forprosjektrapport Fritt tilgjengelig X Omfang i studiepoeng: 20 Fritt tilgjengelig etter: Fagområde: Konstruksjonsteknikk Rapporttittel: Kvalitetssikring

Detaljer

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Oppgave 1 Figuren viser en 3,5m lang bom som benyttes for å løfte en gjenstand med tyngden 100kN. Gjenstanden henger i et blokkarrangement

Detaljer

Prosjektering av trekonstruksjoner Trykk vinkelrett på fiberretning, en anbefaling

Prosjektering av trekonstruksjoner Trykk vinkelrett på fiberretning, en anbefaling 86 Prosjektering av trekonstruksjoner Trykk vinkelrett på fiberretning, en anbefaling Design of timber structures Compression perpendicular to the grain, a recommendation Sigurd Eide, Geir Glasø og Erik

Detaljer

RIB Rev Fork Anmerkning Navn. Sweco Norge

RIB Rev Fork Anmerkning Navn. Sweco Norge NOTAT om statiske forhold i høyblokk NHH rehabilitering 1963-byggene, skisseprosjekt Prosjektnr 24165001 Notat nr.: Dato RIB 01 22.11.2016 Rev. 23.11.2016 Firma Fork Anmerkning Navn Til: Prosjektleder

Detaljer

Prosjektering MEMO 551 EN KORT INNFØRING

Prosjektering MEMO 551 EN KORT INNFØRING Side 1 av 7 Denne innføringen er ment å gi en liten oversikt over bruk og design av forbindelsene, uten å gå inn i alle detaljene. er et alternativ til f.eks faste eller boltede søylekonsoller. enhetene

Detaljer

5.2.2 Dimensjonering av knutepunkter

5.2.2 Dimensjonering av knutepunkter 92 Det er derfor tilstrekkelig å kontrollere hver av lastene sine hovedretninger. Se også punkt 2.1.4 her. E Edx + 0 E Edy 0 E Edx + E Edy 5.2.1.8 Kraftfordeling til veggskivene Tar utgangspunkt i taket

Detaljer

Håndbok 185 Eurokodeutgave

Håndbok 185 Eurokodeutgave Håndbok 185 Eurokodeutgave Kapittel 5 Generelle konstruksjonskrav Kapittel 5.3 Betongkonstruksjoner Foredragsholder: Thomas Reed Thomas Reed Født i 1982 Utdannet sivilingeniør Begynte i Svv i 2007 Bruseksjonen

Detaljer

Klassifisering, modellering og beregning av knutepunkter

Klassifisering, modellering og beregning av knutepunkter Side 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter Del 1 - Konstruksjonsanalyse og klassifisering av knutepunkter

Detaljer

C14 FASADEFORBINDELSER 323

C14 FASADEFORBINDELSER 323 C14 FASADEFORBINDELSER 323 Elementet Når mellomlegget har tilnærmet samme bredde som bærende elementvange i et veggelement, blir spaltestrekk på tvers av elementet ubetydelig. Spaltestrekk i lengderetningen

Detaljer

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense.

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. C13 SKIER 275 Tabell C 13.12. Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. Rd (kn/m) Fuge- B25, γ c = 1,8 B30, γ c = 1,8 B35, γ c = 1,8 bredde f cd = 11,8 MPa f cd = 14,2

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

B18 TRYKKOVERFØRING I FORBINDELSER

B18 TRYKKOVERFØRING I FORBINDELSER B18 TRYKKOVERFØRIG I FORBIDELSER 201 18.1 VALG AV MELLOMLEGG Bjelker : t = 6 10 mm (enkelt) Stål: t = 6 10 mm (enkelt) Plast: t = 4 mm (dobbelt) Brutto oppleggslengde (betongmål): av stål: l 150 mm Andre:

Detaljer

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER 26 Innstøpningsgods av ubrennbart materiale kan benyttes i steget, forutsatt at avstanden mellom innstøpningsgods og armeringen ikke er mindre enn krav til armeringsdybde. Innstøpningsgods og sveiseplater

Detaljer

Byggherre: Trondheim Kommune Prosjekt: Ingeborg Ofstads veg Dokument: Bygningsteknisk beskrivelse RIB

Byggherre: Trondheim Kommune Prosjekt: Ingeborg Ofstads veg Dokument: Bygningsteknisk beskrivelse RIB 2.20 GENERELT GENERELT Det skal gis pris på komplette byggetekniske arbeider. Gjeldende lover, forskrifter og standarder skal overholdes. Det forutsettes at entreprenør orienterer seg om forholdene på

Detaljer

MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER

MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER Beregnet til MARIDALSVEIN 205 Dokument type Rapport Dato 10.juni 2014 MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER Revisjon 01 Dato 10.juni 2014 Jørgen Stene

Detaljer

BESLAGSKATALOG. Moelven Limtre AS

BESLAGSKATALOG. Moelven Limtre AS BESLAGSKATALOG Moelven Limtre AS 2 - Generell informasjon Moelven beslagsystem Anvendelse: Beslagene i denne katalogen er et utvalg av de mest brukte standard beslagene for sammenføyning / forankring av

Detaljer

MEMO 733. Søyler i front - Innfesting i stålsøyle i vegg Standard sveiser og armering

MEMO 733. Søyler i front - Innfesting i stålsøyle i vegg Standard sveiser og armering INNHOLD BWC 50-240 Side 1 av 9 FORUTSETNINGER... 2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERØR BRUKT I KOMBINASJON MED TSS... 2 TILLATT BRUDDLAST VED BRUK AV INNERRØR

Detaljer

HUNTON FINERBJELKEN. Teknisk håndbok for gulv og tak FINERBJELKEN

HUNTON FINERBJELKEN. Teknisk håndbok for gulv og tak FINERBJELKEN HUNTON FINERBJELKEN Teknisk håndbok for gulv og tak FINERBJELKEN Kvalitet og effektivitet HUNTON FINERBJELKEN Hunton Finerbjelken produseres av MLT Ltd i Torzhok i Russland. Produktet er et konstruksjonsprodukt

Detaljer

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll.

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll. 168 C7 SØYLER Figur C 7.42. Komplett fagverksmodell ved konsoller. a) Sentrisk last over konsoll b) Eksentrisk last over konsoll Typiske prefabrikkerte søyler vil vanligvis ikke være maksimalt utnyttet

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 734 Dato: 07.06.0 Sign.: sss BWC 50-40 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/34 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

Seismisk dimensjonering av grunne fundamenter

Seismisk dimensjonering av grunne fundamenter Seismisk dimensjonering av grunne fundamenter Farzin Shahrokhi EC7 - Fundamentsystemer EC7 1 krever følgende i bruddgrensetilstand (ULS) for grunne fundamenter: Totalstabilitet Sikkerhet mor bæreevne brudd

Detaljer

Bacheloroppgave, Tilbygg Syljuåsen Kallerudlia 15 Gruppe 1. 21.05.2009: Ferdistiller rapporten og skriver ut.. FERDIG!!!

Bacheloroppgave, Tilbygg Syljuåsen Kallerudlia 15 Gruppe 1. 21.05.2009: Ferdistiller rapporten og skriver ut.. FERDIG!!! Bacheloroppgave, Tilbygg Syljuåsen Kallerudlia 15 Gruppe 1 21.05.2009: Ferdistiller rapporten og skriver ut.. FERDIG!!! 20.05.2009: Sitter og skriver rapport. Har begynt med konklusjon. Dimensjonerer detalj

Detaljer

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle 118 5.5.5 Kombinasjon av ortogonale lastretninger Da bygget er regulært i planet samt at det kun er søylene som er avstivende, kan det forutsettes at den seismiske påvirkningen virker separat og ikke behøver

Detaljer

Pelefundamentering NGF Tekna kurs april 2014

Pelefundamentering NGF Tekna kurs april 2014 Pelefundamentering NGF Tekna kurs april 2014 Veiledning gjennom det greske alfabetet regelverket Astri Eggen, NGI 19 1 Agenda Regelverket peler Viktig standarder og viktige punkt i standardene Eksempler

Detaljer

Oppgave 1: Betong I oppgaven gjelder følgende forutsetninger: Betong: B35 Armering: B500NC Eksponeringsklasse XC1

Oppgave 1: Betong I oppgaven gjelder følgende forutsetninger: Betong: B35 Armering: B500NC Eksponeringsklasse XC1 Høgskolen i Østfold 1 av 5 6/17 Avdeling for ingeniør og realfag KONT DESEMBER 2013 - EKSAMENSOPPGAVE Fag: IRB22013 Konstruksjonsteknikk 2 Lærere: Edin Mahmutcehajic, Siri Fause, Joachim Helgesen, Kjetil

Detaljer

Høyprofil 128R.930 Teknisk datablad

Høyprofil 128R.930 Teknisk datablad Høyprofil 128R.930 Teknisk datablad 115 310 128 76 930 Tverrsnittdata og karakteristiske verdier Generelt Platetykkelse t mm 0,7 0,8 0,9 1,0 1,2 t ef mm dim 0,66 0,76 0,86 0,96 1,16 Flytegrense f yb N/mm

Detaljer

Norske Takstolprodusenters Forening Tilsluttet Takstolkontrollen

Norske Takstolprodusenters Forening Tilsluttet Takstolkontrollen Norske Takstolprodusenters Forening Tilsluttet Takstolkontrollen I DETTE HEFTET er vist anbefalte retningslinjer for ansvarlig prosjekterende og ansvarlig utførende for takkonstruksjonen i større bygg.

Detaljer

Prosjektering av trekonstruksjoner Trykk vinkelrett på fiberretning, en anbefaling

Prosjektering av trekonstruksjoner Trykk vinkelrett på fiberretning, en anbefaling 86 Prosjektering av trekonstruksjoner Trykk vinkelrett på fiberretning, en anbefaling Design of timber structures Compression perpendicular to the grain, a recommendation Sigurd Eide, Geir Glasø og Erik

Detaljer

Hvordan prosjektere for Jordskjelv?

Hvordan prosjektere for Jordskjelv? Hvordan prosjektere for Jordskjelv? Norsk Ståldag 2006 Øystein Løset Morten Rotheim, Contiga AS 1 Hvordan prosjektere for Jordskjelv? Jordskjelv generelt Presentasjon av prosjektet: Realistisk dimensjonering

Detaljer

Eurokode 5 en utfordring for treindustrien

Eurokode 5 en utfordring for treindustrien Eurokode 5 en utfordring for treindustrien Bruk av Eurokode 5- generell gjennomgang Treteknisk 2013.10.15 Sigurd Eide Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner

Detaljer

KONSTRUKSJONSBOKA INNFØRING I PROSJEKTERING AV STÅL- OG TREKONSTRUKSJONER. Christian Nordahl Rolfsen

KONSTRUKSJONSBOKA INNFØRING I PROSJEKTERING AV STÅL- OG TREKONSTRUKSJONER. Christian Nordahl Rolfsen KONSTRUKSJONSBOKA INNFØRING I PROSJEKTERING AV STÅL- OG TREKONSTRUKSJONER 2011 Christian Nordahl Rolfsen INFORMASJONSSIDER OM KONSTRUKSJONSBOKA Det er kun vist et lite utdrag her. Konstruksjonsboka har

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

recostal type RSH Skjøtejernskassetter med trapesprofil

recostal type RSH Skjøtejernskassetter med trapesprofil recostal type RSH Eurokode 2 Geometrisk utformet trapesskjøt recostal trapesprofil møter de høyeste kravene gjeldende fortanning/skjærkraft I.h.h.t Eurokode 2 direktivene. Skjøtejernskassetter med trapesprofil

Detaljer

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket C11 RIBBEPLATER 231 Lask a) Strekkbånd i bjelken b) Strekkbånd på opplegget c) Strekkbånd på dekket d) Armering og utstøping e) Innstøpt flattstål i plate res dette ofte med at den samme forbindelsen også

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

Bruk av HRC-produkter - eksempler

Bruk av HRC-produkter - eksempler Bruk av HRC-produkter - eksempler HRC-produkter: T-hodet armering (HRC 100 Serie) T-hoder er en metode for forankring av armeringsstenger. HRC T-hodet armering forankrer armeringens fulle reelle bruddstyrke

Detaljer

Norske Takstolprodusenters Forening

Norske Takstolprodusenters Forening Norske Takstolprodusenters Forening I DETTE HEFTET er vist anbefalte retningslinjer for ansvarlig prosjekterende og ansvarlig utførende for takkonstruksjonen i større bygg. Momenter som har avgjørende

Detaljer

N 0 Rd,c > > > >44

N 0 Rd,c > > > >44 2.2.3 Dimensjonering av stagboltene Aktuelle bolter er Hilti HSA Ekspansjonsanker (kvikkbolt, stikkanker. stud anchor) i M16 og M20 og HSL3 Sikkerhetsanker (heavy duty anchor) i M20. I tillegg er HCA fjæranker

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

Beregning etter Norsok N-004. Platekonstruksjoner etter NORSOK N-004 / DNV-RP-C201

Beregning etter Norsok N-004. Platekonstruksjoner etter NORSOK N-004 / DNV-RP-C201 Platekonstruksjoner etter ORSOK -004 / DV-RP-C201 orsk forening for stålkonstruksjoner Ingeniørenes Hus Oslo 19. mars 2009 Gunnar Solland, Det orske Veritas Beregning etter orsok -004 orsok -004 henviser

Detaljer

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING MEMO 732 Dato: 07.06.2012 Sign.: sss BWC 50-240 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG, BEREGNING AV SVEISEINNFESTNINGER Siste rev.: Dok. nr.: 18.05.2016 K5-10/32 Sign.: Kontr.: sss ps OG BALKONGARMERING

Detaljer

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER 21 4.1 HULLDEKKER Hulldekker er enveis dekkekonstruksjoner, normalt med fritt dreibare opplegg. Slakkarmeringen som legges i fugene bidrar til å sikre dekkekonstruksjonens

Detaljer

Manger kirke RAPPORT. Radøy sokneråd. Vurdering av forsterkningsløsning 615689-RIB-RAP-001 OPPDRAGSGIVER EMNE

Manger kirke RAPPORT. Radøy sokneråd. Vurdering av forsterkningsløsning 615689-RIB-RAP-001 OPPDRAGSGIVER EMNE RAPPORT Manger kirke OPPDRAGSGIVER Radøy sokneråd EMNE DATO / REVISJON: 18. desember 2014 / 0 DOKUMENTKODE: 615689-RIB-RAP-001 Denne rapporten er utarbeidet av Multiconsult i egen regi eller på oppdrag

Detaljer

Historiske kollapser siste 10 år

Historiske kollapser siste 10 år Historiske kollapser siste 10 år Av: Andreas Solberg Norsk ståldag 2011 1 Innledning Først litt om meg selv: 10 års erfaring med bærende konstruksjoner i prefab. betong og stål (Contiga) Nylig etablert

Detaljer

Brandangersundbrua utfordrende design og montering

Brandangersundbrua utfordrende design og montering Brandangersundbrua utfordrende design og montering av dr. ing. Rolf Magne Larssen fra Dr. Ing. A. Aas-Jakobsen AS Presentasjon på Norsk Ståldag 2010 28. oktober 2010 Hva? Brukryssing med nettverksbue Hovedspenn

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 744 Dato: 1.01.016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.: 3.05.016 K5-10-744 Sign.: Kontr.: sss nb EKSEMPEL INNHOLD EKSEMPEL... 1 GRUNNLEGGENDE

Detaljer

Monteringsveiledning for. i store bygg. www.jatak.no

Monteringsveiledning for. i store bygg. www.jatak.no Norges største leverandør av kvalitetskonstruksjoner i tre for JATAK Takstoler i store bygg www.jatak.no 1 Mottakskontroll Løfting, håndtering og lagring på byggeplassen Opplysningene på takstolens stempel

Detaljer

DIMENSJONER OG TVERRSNITTSVERDIER

DIMENSJONER OG TVERRSNITTSVERDIER MEMO 811 Dato: 16.08.2012 Sign.: sss TEKNISKE SPESIFIKASJONER Siste rev.: 13.05.2016 Sign.: sss DTF150/DTS150 Dok. nr.: K6-10/11 Kontr.: ps DIMENSJONERING TEKNISKE SPESIFIKASJONER DTF150/DTS150 DIMENSJONER

Detaljer

Klassifisering, modellering og beregning av knutepunkter

Klassifisering, modellering og beregning av knutepunkter Side 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter dr.ing. Bjørn Aasen 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter Del 1 - Konstruksjonsanalyse og klassifisering

Detaljer

4.3. Statikk. Dimensjonerende kapasitet mot tverrlast og aksialkraft. 436 Gyproc Håndbok Gyproc Teknikk. Kapasiteten for Gyproc Duronomic

4.3. Statikk. Dimensjonerende kapasitet mot tverrlast og aksialkraft. 436 Gyproc Håndbok Gyproc Teknikk. Kapasiteten for Gyproc Duronomic Kapasiteten for Gyproc Duronomic Dimensjonerende kapasitet mot tverrlast og aksialkraft Forsterkningsstendere kan ta opp både tverrlaster og aksialkrefter. Dimensjoneringen er basert på partialkoeffisientmetoden.

Detaljer

Prosjektert i henhold til EC 3: Prosjektering av stålkonstruksjoner Del 1:8: Knutepunkter og forbindelser NS-EN 1993-1-8:2005+NA:2009.

Prosjektert i henhold til EC 3: Prosjektering av stålkonstruksjoner Del 1:8: Knutepunkter og forbindelser NS-EN 1993-1-8:2005+NA:2009. Følgende beregninger skal utføres: Strekkapasiteten til knuteplatene EC3 Del 1-1 pkt 6.2.3 Bolteforbindr EC3 Del 1-8 pkt 3.4 kategorier av skrueforbindr Brudd i søylens flens: EC 3: del 1-8: tabell 7.13

Detaljer

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen.

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen. I DIMENSJONERING I -~ ~ høgskolen i oslo Emne: Il ~Gruppe(r) 3BK Eksamensoppgaven Antall sider (inkl. består av: forsiden): _L Tillatte hjelpemidler Alle skriftlige kilder. Enkel ikkeprogrammerbar Emnekode:

Detaljer

Forprosjektrapport side 1 av 11

Forprosjektrapport side 1 av 11 Forprosjektrapport side 1 av 11 Forprosjektrapport side 2 av 11 INNHOLD 1 INNLEDNING... 3 1.1 OPPDRAGET... 3 1.2 BESKRIVELSE AV BRUSTEDET... 3 1.3 ESTETISK UTTRYKK... 4 2 BESKRIVELSE AV BRULØSNINGEN...

Detaljer

ultralam Taleon Terra Furnierschichtholz

ultralam Taleon Terra Furnierschichtholz ultralam Taleon Terra Furnierschichtholz LVL Finérbjelker ULTRALAM MLT Ltd. Werk Torzhok Z-9.1-811 MLT Ltd. Werk Torzhok Z-9.1-811 Kvalitet og effektivitet HUNTON ultralam HUNTON ultralam produseres av

Detaljer

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING MEMO 711 Dato: 11.0.015 Sign.: sss SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING Siste rev.: Dok. nr.: 18.05.016 K5-10/711 Sign.: Kontr.: sss ps SØYLER I FRONT INNFESTING

Detaljer

MEMO 812. Beregning av armering DTF/DTS150

MEMO 812. Beregning av armering DTF/DTS150 Side 1 av 7 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 2 LAST... 3 ARMERINGSBEREGNING... 3 YTRE LIKEVEKT... 3 NØDVENDIG FORANKRINGSARMERING...3

Detaljer

Refstad Skole RAPPORT. Undervisningsbygg Oslo KF. Gransking av prosjektering og utførelse OPPDRAGSGIVER EMNE

Refstad Skole RAPPORT. Undervisningsbygg Oslo KF. Gransking av prosjektering og utførelse OPPDRAGSGIVER EMNE RAPPORT Refstad Skole OPPDRAGSGIVER Undervisningsbygg Oslo KF EMNE DATO / REVISJON: 30. november 2018 / A DOKUMENTKODE: 10207119 Denne rapporten er utarbeidet av Multiconsult i egen regi eller på oppdrag

Detaljer

TEKNISKE SPESIFIKASJONER

TEKNISKE SPESIFIKASJONER MEMO 741 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNFESTING I PLASSTØPT DEKKE TEKNISKE SPESIFIKASJONER Siste rev.: Dok. nr.: 23.05.2016 K5-10-741 Sign.: Kontr.: sss nb TEKNISKE SPESIFIKASJONER

Detaljer

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt C7 SØYLER 159 Evt. shims Utstikkende søylejern Sentrisk gjengestang Utsparing (rør) gyses ved søylemontasje Figur C 7.28. Vanlig limeløsning. Illustrasjon til tabell C 7.6. u u a s Bjelke Korrugert rør

Detaljer

Steni 2. b eff. Øvre flens Steg h H Nedre flens

Steni 2. b eff. Øvre flens Steg h H Nedre flens FiReCo AS Dimensjonerings-diagram for BEET vegg Lastberegninger basert på NBI tester. Jørn Lilleborge Testdokument 1998 FiReCo AS 714-N-1 Side: 2 av 17 Innhold 1. DIMENSJONERINGSDIAGRAM FOR BEET VEGG...

Detaljer

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109 A7 ELEMENTTYPER OG TEKNISKE DATA 19 7.2 RIBBEPLATER Generelt DT-elementer har lav egenlast og stor bæreevne, med spennvidder inntil 24 m. Elementene brukes til tak, dekker, bruer, kaier og enkelte fasadeløsninger.

Detaljer

STANDARD SVEISER OG ARMERING

STANDARD SVEISER OG ARMERING MEMO 733 Dato: 07.06.2012 Sign.: sss BWC 50-240 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG STANDARD SVEISER OG ARMERING Siste rev.: Dok. nr.: 18.05.2016 K5-10/33 Sign.: Kontr.: sss jb STANDARD SVEISER

Detaljer

KRITISK LAST FOR STAVER (EULERLAST) For enkle stavsystemer kan knekklengden L L finnes ved. hjelp av hvilket som helst egnet hjelpemiddel.

KRITISK LAST FOR STAVER (EULERLAST) For enkle stavsystemer kan knekklengden L L finnes ved. hjelp av hvilket som helst egnet hjelpemiddel. KEKKIG AV STAVER KRITISK LAST FOR STAVER (EULERLAST) Knekklengde. Stavens knekklengde L k (L ) er gitt ved 2 EI L 2 k hvor er stavens kritiske last (Eulerlast). For enkle stavsystemer kan knekklengden

Detaljer

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS (8) Geometriske toleranser Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS Kursdagene 2011 Ny norsk standard NS-EN 13670: Utførelse av betongkonstruksjoner - konsekvenser og bruk av nytt regelverk

Detaljer