Beregning av konstruksjon med G-PROG Ramme

Størrelse: px
Begynne med side:

Download "Beregning av konstruksjon med G-PROG Ramme"

Transkript

1 Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir linje-geometrien for rammen / fagverket / bjelken. 2) Man gjør dette ved å opprette elementer (et bjelkestykke eller en aksialstav). Et element starter og slutter i noder. Elementer og noder har nummer. 3) Når to elementer deler en node, er de i utgangspunktet stivt koblet 1. Skal det være ledd, må det legges inn ledd 4) Knytter til et tverrsnitt for hvert element (rektangulært, I- eller T-tverrsnitt osv.) 5) Knytter til et material (E-modul) for hvert element 6) Fester rammestrukturen til omgivelsene med opplagre (bolt, forskyvelig bolt, fjær osv.) 7) Oppretter et eller flere Lasttilfeller 8) Legger på laster for lasttilfellene. Dette kan være fordelte laster på et element eller en punktlast på en node, og med varianter av dette. 9) Oppretter en lastkombinasjon (sum eller lineærkombinasjon av lasttilfeller, i det enkleste tilfellet velges selve lasttilfellet). Man kan i G-Prog ikke komme utenom denne litt omstendelige måten å opprette laster på. 10) Beregner resultatet. Dette kan kun gjøres dersom det er tilstrekkelig opplagring og konstruksjonen er tilstrekkelig stiv (har kraftige nok elementer). Er ikke dette oppfylt, blir matematikken ubestemt (singulær) eller ustabil, og det vil ikke bli noe resultat. 11) Betrakter resultatene i form av momentdiagrammer, eller andre diagrammer og /eller tabeller for maksimalverdier og karakteristiske verdier for belastning og deformasjon osv. 12) Kontroller at svarene virker rimelige. Det korrigeres ikke for store vinkelforskyvninger (det antas at opprinnelig elementretning ikke endres!). Matematikken baserer seg på ligninger for forskyvninger (bøyninger, forlengelser og sammentrykninger) som følge av laster og at elementene virker på hverandre. Konstruksjonen utgjør et system av elastiske elementer, der tverrsnitt og E-modul definerer den elastiske fjæringen. Det betyr at ingenting kan beregnes uten at stivheten er fastlagt (tverrsnitt og material) i motsetning til mekanikken for statisk bestemte konstruksjoner, som nøyer seg med statiske likevekter (kraft og moment). Til gjengjeld kan alle typer, (fastholdte og tilstrekkelig stive) konstruksjoner beregnes, både statisk bestemte og statisk ubestemte. Beregning av stavkrefter Start programmet "G-PROG Ramme" fra GBS-Data Programmets brukergrensesnitt vises under. Vi ser en situasjonsbestemt hoved-menylinje, arbeidsprosess-stadier, som kan velges avhengig av hvor langt man er kommet. Videre er det valgbare ( klikk-bare ) verktøy for å opprette geometri (linjer) og opplagre (geometriske 1 dette gjelder i G-Prog og er vanlig i såkalte ramme-statikkprogrammer, men ikke i generelle finite element programmer, FEM-programmer.

2 Side 2 av 11 node-bindinger). Det er en tegneflate med snapp-funksjon 2 (som kan slås av og som kan endres). Origo er der de to gule koordinataksene møtes. x- og y-verdiene vises øverst mens man trekker ut / plasserer geometrien. Situasjonsbestemt Hoved-menylinje Konstruksjonsverktøy Arbeidsprosess stadium Tegneflate 2 faste hopp, forhåndsinnstilt på 0,5 meter

3 Side 3 av 11 Geometri Tegn opp geometrien med "elementer" (verktøy pr stav og to elementer til sammen for bjelken. "klikk og dra ut linjene"). Ett element Benytt helst en fornuftig rekkefølge, så er det letter å lese resultattabeller til slutt.

4 Side 4 av 11 Alle hjørner blir i utgangspunktet stive. Legg derfor inn ledd med "pek og klikk" slik at aksialstaver får ledd i endene og at bjelken får ledd i endene (men ikke på midten!). Legg så inn opplagre. Her er det også satt ledd på opplagrene. (Det er egentlig ikke nødvendig dersom man velger boltelagre, som vist her). Man kan egentlig kutte noen av leddene, men det blir ikke noe feil om det er for mange. Pass dog på at leddene sitter på de rette elementene. Se figuren. Element 1 og 2 må være stivt koblet. Leddet i noden der de møtes sitter på element 5 og ikke på elementene 1 eller 2..

5 Side 5 av 11 Tverrsnitt G-PROG Ramme regner som nevnt vha. av elastiske forskyvninger. Alle elementer MÅ derfor ha dimensjoner. Velg de tverrsnitt som du vil bruke Husk å trykke "Legg til"

6 Side 6 av 11 Ignorer feilmeldingen med Ja : Denne kommer fordi vi valgte ut noen tverrsnitt uten å knytte material til elementene. Et alternativ er å dobbelklikke på ett og ett element og så velge både tverrsnitt og element. I dette tilfellet har vi relativt mange elementer (5 stk). Det er da naturlig å velge ut noen tverrsnitt til en liten utvalgsliste (med to tverrsnittstyper). Så skal tverrsnitt legges på elementene, sammen med materialet. Dobbelklikk på det elementet som du vil legge tverrsnitt på. Nå må du også velge materiale:

7 Side 7 av 11 C14 er en fasthetsklasse for trevirke og S235 gjelder stål (tidligere st37). Egentlig er det materialstivheten (E-modulen) som skal brukes i selve regnestykket. Denne kan vi ikke velge fritt i G-Prog 3. Vi må akseptere den verdien som Norsk Standard sier vi skal regne med (NS 3470 og NS-EN 3472 m.fl.). Tverrsnitt og material kan også legges inn i annen rekkefølge enn den som er vist. Material og tverrsnitt utgjør til sammen elementenes stivhet (dvs. den elastiske responsen når det påføres kraft). Hvis vi har statisk bestemte konstruksjoner eller konstruksjoner der alle elementene er like, vil ikke elementstivheten påvirke sluttresultatet. Men siden den matematiske metoden baserer seg på forskyvningsligninger, må vi altså velge oss data for elementstivhetene (tverrsnitt og material). Dessuten må vi sikre oss at konstruksjonen ikke kan forsøkes flyttes i noen retning uten at det oppstår en opplagerreaksjon. For eksempel kan vi her ikke velge glidelagre her. Vi kan aldri velge kun glidelagre, da vil det oppstå feil ved forsøk på beregning. 3 i generelle FEM-programmer velger man E-modul selv

8 Side 8 av 11 Belastning. Vi må først definere et last-tilfelle. Så må vi definere en lastkombinasjon. Vi kunne ønsket oss en enkelt påføring av last(er), men det går dessverre ikke i G-Prog 4. Vi skal kun ha ett lasttilfelle = de laster som er i oppgaven Husk å trykke "Legg til" 4 I generelle FEM-programmer kan man også legge på en enkel last. Dette med lasttilfeller og kombinasjoner kommer fra de standardiserte prosedyrene for å beregne konstruksjoner, f.eks lasttilfelle vind, lasttilfellet snø og lastkombinasjonen av begge. G-Prog tilbyr ingen mulighet for å hoppe over dette.

9 Side 9 av 11 Vi skal kun bruke én lastkombinasjon, nemlig den lastplasseringen som står i oppgaven. Så må vi angi type og størrelse på lasten(e). Vi bruker "Nodelast" (ellers må vi angi avstander på elementene 5 ) og angir størrelsen. En node er det punktet der et element begynner/slutter. Bruk geometri-figuren for å velge riktig node. Husk å trykke "Legg til". Vi bruker dog 3 kn i stedet for lærebokas 30 kn. 5 Vi kunne ha benyttet punktlast. Ved bruk av punktlast (og noen av de andre lasttypene) kan vi angi offset - dvs. avstander fra nodene (den er null uansett i denne oppgaven). Disse lasttypene finner vi i rammestatikkprogrammene, og gir færre ligninger å regne på enn den generelle FEM-metoden for strukturelle beregninger, der bjelkene deles videre opp i finite elementer. De andre lasttypene får vi ikke bruk for i denne oppgaven, men Fordelt last og Punktmoment kan får du fort bruk for dersom du prøver deg på egen hånd på andre oppgaver.

10 Side 10 av 11 Beregning Nå er alt klart til beregning. Trykk på hovedmeny - "Beregne " Annen ordens teori gjelder bøye- og skjærkorreksjoner og har kun betydning når det er betydelige bøyninger. Vi skal ikke bruke denne til noe i våre eksempler. Du kan ta vekk denne haken om du vil. Da går beregningene i teorien litt hurtigere, men med raske Pc-er vil man ikke merke forskjellen på små konstruksjoner. Grafisk resultat (vi bruker ikke dette nå, mer om det senere) Tabell-resultat. I denne omgang skal vi kun studere kreftene i aksialstavene Vi ser at stavkrekene, merket N er: stav 3: +80 kn stav 4: +100 kn stav 5: -60 kn (trykk) (I elementene 1 og 2, dvs. i bjelken, er det også N-krefter, normalkrefter samt M (nøyemoment) og T (skjærkraft), men det drøfter vi ikke videre nå). Orden betyr 1. og 2. ordens teori, det lar vi som nevnt ligge i denne gjennomgangen.

11 Side 11 av 11 Opplagerreaksjoner: Vi ser at opplagerreaksjonene befinner seg i nodene 1 og 4. Opplagerreaksjoner oppstår der konstruksjonen settes fast. Bjelken holdes fast i node 1, både i x- og i y- retningen. Det er derfor både en Rx og en Ry kraft. Aksialstaven (element 3) kan dreie i node 4 og er kun fastholdt i x-retningen. Den git derfor kun Rx-verdi. Kraften Rx i node 4 peker mot venstre, og angis negativt i (det globale) koordinatsystemet. Vi har nå regnet en enkel oppgave, som lett kan kontrolleres med manuell regning. Det er viktig å teste ut dataprogrammer slik. Ikke fordi det er grunn til å tvile på at G-prog regner rett, men fordi man må sikre seg at man bruker programmet rett! Oppgaver: 1) Lag en tegning og skriv på alle stavkrefter (elementene 3, 4 og 5). Tegn også piler for opplagerreaksjoner, angi korrekt pilretning for disse. 2) Studer tabellen med Nodeforskyvninger (nedbøyninger) forsøk å forstå denne. 3) Øk lasten til 30 kn som i læreboka. Studer nå nodeforskyvningene -!! Jevnfør innledning og forutsetning for G-prog beregninger 4) Bruk G-prog til å beregne fagverket, oppgave 5.12 (stålprofiler i alle elementer!) 5) Bytt ut ABC i oppgave 5.12 med en bjelke (altså ikke ledd mellom AB og BC). Forklar at denne konstruksjonen er statisk ubestemt. Studer avvikene med det egentlige (statisk bestemte) fagverket og forklar ut fra tallene at den statisk ubestemte konstruksjonen kan idealiseres med fagverket!

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis Arne Aalberg 73 59 46 24 Førsteamanuensis Aase Gavina Reyes 73 59 45 24

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGS TKNISK- NTURVITNSKPLIG UNIVRSITT Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: rne alberg 976 42 898 / 73 59 46 24 Jan jarte arseth 73 59 35 68 KSMN I MN TKT4116 MKNIKK 1 Onsdag

Detaljer

Likevekt STATISK LIKEVEKT. Når et legeme er i ro, sier vi at det er i statisk likevekt.

Likevekt STATISK LIKEVEKT. Når et legeme er i ro, sier vi at det er i statisk likevekt. Likevekt STATISK LIKEVEKT Når et legeme er i ro, sier vi at det er i statisk likevekt. Et legeme beveger seg i den retningen resultanten virker. Vi kan sette opp den første betingelsen for at et legeme

Detaljer

MEK likevektslære (statikk)

MEK likevektslære (statikk) MEK2500 - likevektslære (statikk) Tormod Landet Høst 2015 Mange konstruksjoner kan analyseres med tre enkle prinsipper 1. Saint-Venants prinsipp 2. Balanse i krefter 3. Balanse i momenter Denne forelesningen

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Faglig kontakt under eksamen: Jan Bjarte Aarseth 73 59 35 68 Aase Reyes 915 75 625 EKSAMEN I EMNE TKT4116 MEKANIKK 1 Fredag 3. juni 2011 Kl 09.00 13.00 Hjelpemidler (kode C): Irgens: Formelsamling mekanikk.

Detaljer

Ekstra formler som ikke finnes i Haugan

Ekstra formler som ikke finnes i Haugan Oppgavetekstene kan inneholde unødvendige opplysninger. Ekstra formler som ikke finnes i Haugan σ n = B n = sikkerhetsfaktor, σ B = bruddspenning (fasthet), σ till = tillatt spenning σ till Kombinert normalkraft

Detaljer

7 Rayleigh-Ritz metode

7 Rayleigh-Ritz metode 7 Rayleigh-Ritz metode Innhold: Diskretisering Rayleigh-Ritz metode Essensielle og naturlige randbetingelser Nøyaktighet Hermittiske polynomer Litteratur: Cook & Young, Advanced Mechanics of Materials,

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 Førsteamanuensis Jan. arseth 73 59 35 68 EKSMEN I EMNE TKT4116 MEKNIKK 1 Onsdag 23. mai 2007 Kl 09.00 13.00 Hjelpemidler (kode ): Irgens:

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: BOKMÅL Førsteamanuensis Arild H. Clausen, 482 66 568 Førsteamanuensis Erling Nardo Dahl, 917 01 854 Førsteamanuensis Aase Reyes,

Detaljer

E K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng

E K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng HiN TE 73 8. juni 0 Side av 8 HØGSKOLEN NRVK Teknologisk avdeling Studieretning: ndustriteknikk Studieretning: llmenn ygg Studieretning: Prosessteknologi E K S M E N MEKNKK Fagkode: TE 73 5 studiepoeng

Detaljer

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen.

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen. I DIMENSJONERING I -~ ~ høgskolen i oslo Emne: Il ~Gruppe(r) 3BK Eksamensoppgaven Antall sider (inkl. består av: forsiden): _L Tillatte hjelpemidler Alle skriftlige kilder. Enkel ikkeprogrammerbar Emnekode:

Detaljer

Løsningsforslag til test nr. 1 Mekanikk våren 2011

Løsningsforslag til test nr. 1 Mekanikk våren 2011 Løsningsforslag til test nr. 1 Mekanikk våren 2011 Spørsmål 1. V11-Resultant (i kn) - 3 laster på rektangel Legemet på figuren er utsatt for 3 krefter. Kraften på 4 kn er skrå, med retning nedover t.h.

Detaljer

Resultanten til krefter

Resultanten til krefter KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet

Detaljer

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Oppgave 1 Figuren viser en 3,5m lang bom som benyttes for å løfte en gjenstand med tyngden 100kN. Gjenstanden henger i et blokkarrangement

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NTURVITENSKPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 EKSMEN I EMNE TKT4116 MEKNIKK 1 Mandag 2. juni 2008

Detaljer

Kapittel 1:Introduksjon - Statikk

Kapittel 1:Introduksjon - Statikk 1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

Krefter Stikkord (Se kompendium for fullstendig tekst)

Krefter Stikkord (Se kompendium for fullstendig tekst) Side 1 av 11 Krefter Stikkord (Se kompendium for fullstendig tekst) Innledning, krefter og akselerasjon Oppgave: Nevn eksempler på kontaktkrefter og fjernkrefter. Newtons. lov: = ma, der a er akselerasjonen

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

EKSAMEN TKT 4122 MEKANIKK 2 Onsdag 4. desember 2013 Tid: kl

EKSAMEN TKT 4122 MEKANIKK 2 Onsdag 4. desember 2013 Tid: kl L BD = 3 m side 1 av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Kontakt under eksamen Arne Aalberg (735) 94624, 976 42898 Tekst: Norsk EKSAMEN TKT 4122 MEKANIKK

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

Seismisk dimensjonering av prefab. konstruksjoner

Seismisk dimensjonering av prefab. konstruksjoner Seismisk dimensjonering av prefab. konstruksjoner Geir Udahl Konstruksjonssjef Contiga Agenda DCL/DCM Modellering Resultater DCL vs DCM Vurdering mhp. prefab DCL Duktiltetsfaktoren q settes til 1,5 slik

Detaljer

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner GeoGebra arbeidsark 1 Judith og Marcus Hohenwarter www.geogebra.org Oversatt av Anders Sanne og Jostein Våge Tilpasset

Detaljer

Limtre Bjelkelags- og sperretabeller

Limtre Bjelkelags- og sperretabeller Pb 142 2391 Moelv www.limtre.no pr juni 2005 Forutsetninger for bjelkelags- og sperretabeller Tabellene bygger på følgende norske standarder og kvaliteter: NS 3470-1, 5.utg. 1999, Prosjektering av trekonstruksjoner

Detaljer

Focus 2D Konstruksjon

Focus 2D Konstruksjon Prosjekt: betongtal Beregning utført 01.04.2009 14:49:48 Focus 2D Konstruksjon BEREGNING AV PLANE KONSTRUKSJONER NTNU Student 3. Klasse 2008 14:49:48-01.04.2009 Side:1 1. KONSTRUKSJONSMODELL OG LASTER

Detaljer

Eksamensoppgave i TKT4124 Mekanikk 3

Eksamensoppgave i TKT4124 Mekanikk 3 Institutt for konstruksjonsteknikk Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 14. desember 2015 Eksamenstid (fra-til): 09.00 13.00 Hjelpemiddelkode/

Detaljer

Hulldekke i tre hvor står vi?

Hulldekke i tre hvor står vi? Stivhet gitterdrager: Gitterdrageren vil få øke stivhet dersom platen limes til plankedekket - det oppnås flensvirkning. Det samme kàn gjøres på undergurt, men krever himling av plater med en viss fasthet,

Detaljer

Oppgavehefte i MEK2500 - Faststoffmekanikk

Oppgavehefte i MEK2500 - Faststoffmekanikk Oppgavehefte i MEK2500 - Faststoffmekanikk av Henrik Mathias Eiding og Harald Osnes ugust 20 2 Oppgave 1 En kraft har - og y-komponentene F og F y. vstanden fra et gitt punkt til et punkt på kraftens angrepslinje

Detaljer

Hovedpunkter fra pensum Versjon 12/1-11

Hovedpunkter fra pensum Versjon 12/1-11 Hovedpunkter fra pensum Versjon 1/1-11 Kapittel 1 1 N = 1 kg m / s F = m a G = m g Haugan: s. 6 (Kap. 1.3, pkt. ) 1 kn = Tyngden (dvs. tyngdekraften G) fra en mann som veier 100 kg. Kapittel En kraft er

Detaljer

HiN Eksamen IST 1484 18.12.03 Side 4

HiN Eksamen IST 1484 18.12.03 Side 4 HiN Eksamen IST 1484 18.1.3 Side 4 Materialer og mekanikk. Teller 5% av eksamen Poengangivelsen viser kun vektingen mellom de fire oppgavene. Innenfor hver oppgave er det læringsmålene som avgjør vektingen.

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

1 Workbench (utdrag av faget Strukturell analyse)

1 Workbench (utdrag av faget Strukturell analyse) Side 1 av 9 1 Workbench (utdrag av faget Strukturell analyse) 1.1 Ny Workbench Trykk på knappen ANSYS 12.0 (ANSYS 12.1) på hovedmenyen, øverst, ca midt på, velg Workbench. Arbeidsfelt Objekt(er) med felter

Detaljer

Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013

Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013 Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013 Blakkstadelvbrua E39 Astad-Knutset Gjemnes kommune 3 spenn: 28 34 28 Samvirke Kasselandkar Frittstående søyler Fjell og løsmasser Beregnet med

Detaljer

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 10.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Sensuren faller senest 10. januar (så

Detaljer

2 Resultanten. til krefter

2 Resultanten. til krefter 2 Resultanten til krefter Mål Når du har lest dette kapitlet skal du kunne gjøre greie for angrepslinja og angrepspunktet til en kraft forklare hva vi mener med statisk moment sette sammen krefter grafisk

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

Eksamensoppgave i TKT4124 Mekanikk 3

Eksamensoppgave i TKT4124 Mekanikk 3 Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 5. desember 2014 Eksamenstid (fra-til): 9.00 13.00 Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

Statiske Beregninger for BCC 250

Statiske Beregninger for BCC 250 Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Frey Publishing 21.01.2014 1 Prøvemetoder for mekaniske egenskaper Strekkprøving Hardhetsmåling Slagseighetsprøving Sigeforsøket 21.01.2014

Detaljer

Schöck Isokorb type Q, QP, Q+Q, QP+QP

Schöck Isokorb type Q, QP, Q+Q, QP+QP Schöck Isokorb type, P, +, P+P Schöck Isokorb type 10 Innhold Side Eksempler på elementoppsett/tverrsnitt 60 Produktbeskrivelse/Kapasitetstabeller og tverrsnitt type 61 Planvisninger type 62 63 Beregningseksempel

Detaljer

I Faglig veileder: MEKANIKK. Finn-Erik Nilsen IGruppe(r): i Dato: Eksamenstid: 2 BA, 2 BB, 2 BC og 3BK 30. mai

I Faglig veileder: MEKANIKK. Finn-Erik Nilsen IGruppe(r): i Dato: Eksamenstid: 2 BA, 2 BB, 2 BC og 3BK 30. mai G høgskolen i oslo remne : Emnekode: Faglig veileder: MEKANKK LO 58 B.~, - - Finn-Erik Nilsen Gruppe(r): i Dato: Eksamenstid: 2 BA, 2 BB, 2 BC og 3BK. mai -05 0900-400 - Eksamensoppgaven Antall sider (ink-:-

Detaljer

Schöck Isokorb type K

Schöck Isokorb type K Schöck Isokorb type Schöck Isokorb type Innhold Side Eksempler på elementoppsett/tverrsnitt 36 Produktbeskrivelse 37 Planvisninger 38 41 apasitetstabeller 42 47 Beregningseksempel 48 49 Ytterligere armering

Detaljer

MEK2500. Faststoffmekanikk 1. forelesning

MEK2500. Faststoffmekanikk 1. forelesning MEK2500 Faststoffmekanikk 1. forelesning MEK2500 Undervisning Foreleser: Frode Grytten Øvingslærer: NN Forelesninger: Tirsdag 10:15-12:00 B62 Torsdag 12:15-14:00 B91 Øvinger: Torsdag 14:15-16:00 B70 Øvinger

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Eksamensoppgave i TKT 4124 Mekanikk 3

Eksamensoppgave i TKT 4124 Mekanikk 3 Institutt for konstruksjonsteknikk Eksamensoppgave i TKT 44 Mekanikk Faglig kontakt under eksamen: Aase Rees Tlf.: 7 5(9 45 4) / 95 75 65 Eksamensdato: 6. desember Eksamenstid (fra-til): 9 - Hjelpemiddelkode/Tillatte

Detaljer

B10 ENKELT SØYLE BJELKE SYSTEM

B10 ENKELT SØYLE BJELKE SYSTEM 0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt

Detaljer

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet Skolelaboratoriet for matematikk, naturfag og teknologi Kurshefte i GeoGebra Ungdomstrinnet Astrid Johansen - NTNU Skolelaboratoriet - 29.10.2013 GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk

Detaljer

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

Fagdag for lærere i matematikk Matematikk i bruprosjektering. 03.05.2013 Matematikk i bruprosjektering - Trondeim

Fagdag for lærere i matematikk Matematikk i bruprosjektering. 03.05.2013 Matematikk i bruprosjektering - Trondeim Fagdag for lærere i matematikk Matematikk i bruprosjektering Om oss Foredragsholder Kristian Berntsen Kvaløya videregående skole i Tromsø, ferdig 2002 Tok 2. klasse som utvekslingsstudent i USA Høgskolen

Detaljer

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 13.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Arild H. Clausen, 73 59 76 32 Sensuren

Detaljer

Schöck Isokorb type D 70

Schöck Isokorb type D 70 Schöck Isokorb type Schöck Isokorb type 70 Innhold Side Eksempler på elementoppsett og tverrsnitt/produktbeskrivelse 80 81 Planvisninger 82 Kapasitetstabeller 83 88 Beregningseksempel 89 Ytterligere armering

Detaljer

Hva er en sammensatt konstruksjon?

Hva er en sammensatt konstruksjon? Kapittel 3 Hva er en sammensatt konstruksjon? 3.1 Grunnlag og prinsipp Utgangspunktet for å fremstille sammensatte konstruksjoner er at vi ønsker en konstruksjon som kan spenne fra A til B, og som samtidig

Detaljer

KRITISK LAST FOR STAVER (EULERLAST) For enkle stavsystemer kan knekklengden L L finnes ved. hjelp av hvilket som helst egnet hjelpemiddel.

KRITISK LAST FOR STAVER (EULERLAST) For enkle stavsystemer kan knekklengden L L finnes ved. hjelp av hvilket som helst egnet hjelpemiddel. KEKKIG AV STAVER KRITISK LAST FOR STAVER (EULERLAST) Knekklengde. Stavens knekklengde L k (L ) er gitt ved 2 EI L 2 k hvor er stavens kritiske last (Eulerlast). For enkle stavsystemer kan knekklengden

Detaljer

Fagdag 1 - R1. Torsdag Geometri og vektorregning Johansen og Ulven

Fagdag 1 - R1. Torsdag Geometri og vektorregning Johansen og Ulven Innledning Fagdag 1 - R1 Torsdag 26.08.09 Geometri og vektorregning Johansen og Ulven Den første fagdagen skal fokusere på vektorregning (kapittel 1), geometri (kapittel 6) og bruk av GeoGebra Jeg starter

Detaljer

3 Tøyningsenergi. TKT4124 Mekanikk 3, høst Tøyningsenergi

3 Tøyningsenergi. TKT4124 Mekanikk 3, høst Tøyningsenergi 3 Tøningsenergi Innhold: Arbeid ved gradvis pålastning Tøningsenergitetthet og tøningsenergi Tøningsenergi som funksjon av lastvirkning,, T og V Skjærdeformasjoner Tøningsenergi som funksjon av aksialforskvning

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

RIB Rev Fork Anmerkning Navn. Sweco Norge

RIB Rev Fork Anmerkning Navn. Sweco Norge NOTAT om statiske forhold i høyblokk NHH rehabilitering 1963-byggene, skisseprosjekt Prosjektnr 24165001 Notat nr.: Dato RIB 01 22.11.2016 Rev. 23.11.2016 Firma Fork Anmerkning Navn Til: Prosjektleder

Detaljer

Forelesning 8.2.06 Klasse M3A g A3A Side 1 av 5

Forelesning 8.2.06 Klasse M3A g A3A Side 1 av 5 Forelesning 8.2.06 Klasse M3A g A3A Side 1 av 5 OPPGAVE / RESULTAT Godkjenning og innlevering: Godkjenningen skjer ved at resultatene vises til Egil Berg. Innleveringen skjer ved at filene S5.std, (Input-filen)

Detaljer

Elastisitetens betydning for skader på skinner og hjul.ca.

Elastisitetens betydning for skader på skinner og hjul.ca. 2. ARENA Narvik, 26. -27. november 2013 Elastisitetens betydning for skader på skinner og hjul.ca. Foreleser: Kjell Arne Skoglund Seniorforsker, dr.ing. jernbaneteknikk, Infrastruktur Kontakt: Kjell.Arne.Skoglund@sintef.no,

Detaljer

Hvor i All Verden? Del 2 Erfaren Scratch PDF

Hvor i All Verden? Del 2 Erfaren Scratch PDF Hvor i All Verden? Del 2 Erfaren Scratch PDF Introduksjon Hvor i All Verden? er et reise- og geografispill hvor man raskest mulig skal fly innom reisemål spredt rundt i Europa. Dette er den andre leksjonen

Detaljer

Oppgave for Haram Videregående Skole

Oppgave for Haram Videregående Skole Oppgave for Haram Videregående Skole I denne oppgaven er det gitt noen problemstillinger knyttet til et skip benyttet til ankerhåndtering og noen av verktøyene, hekkrull og tauepinne, som benyttes om bord

Detaljer

Spenninger i bjelker

Spenninger i bjelker N Teknologisk avd. R 1.0.1 Side 1 av 6 Rev Spenninger i bjelker rgens kap 18.1. ibbeler Sec. 1.1-1. En bjelke er et avlangt stkke materiale som utsettes for bøebelastning. Ren bøning bjelke b N 0 0 0 0

Detaljer

KONSTRUKSJONSSTÅL MATERIAL- EGENSKAPER

KONSTRUKSJONSSTÅL MATERIAL- EGENSKAPER KONSTRUKSJONSSTÅL MATERIAL- EGENSKAPER FASTHETER For dimensjoneringen benyttes nominelle fasthetsverdier for f y og f u - f y =R eh og f u =R m iht produkstandardene - verdier gitt i følgende tabeller

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Barduneringskonsept system 20, 25 og 35

Barduneringskonsept system 20, 25 og 35 Introduksjon Barduneringskonsept system 20, 25 og 35 Det skal utarbeides en beregning som skal omhandle komponenter i forbindelse med bardunering av master. Dimensjonering av alle komponenter skal utføres

Detaljer

MASTEROPPGAVE 2011 DATO: 09.06.2011

MASTEROPPGAVE 2011 DATO: 09.06.2011 Institutt for konstruksjonsteknikk Fakultet for ingeniørvitenskap og teknologi NTNU- Norges teknisk- naturvitenskapelige universitet TILGJENGELIGHET Åpen MASTEROPPGAVE 2011 FAGOMRÅDE: Stålkonstruksjoner

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet e......................................

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Fagnr:LO 580M. Fag: Mekanikk. Per Kr. Paulsen. Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, inkl. forside. Tillatte hjelpemidler

Fagnr:LO 580M. Fag: Mekanikk. Per Kr. Paulsen. Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, inkl. forside. Tillatte hjelpemidler Fag: Mekanikk Fagnr:LO 580M Faglig veileder: Per Kr. Paulsen Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, fra - til: 0900-1400 2001 Eksamensoppgaven består av Antall sider: 5 inkl. forside

Detaljer

Hvordan prosjektere for Jordskjelv?

Hvordan prosjektere for Jordskjelv? Hvordan prosjektere for Jordskjelv? Norsk Ståldag 2006 Øystein Løset Morten Rotheim, Contiga AS 1 Hvordan prosjektere for Jordskjelv? Jordskjelv generelt Presentasjon av prosjektet: Realistisk dimensjonering

Detaljer

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter 3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter MKH Innholdsfortegnelse 1. Graftegner - GeoGebra... 2 1.1 Introduksjon GeoGebra... 2 1.2 Endre innstillinger på aksene...

Detaljer

Forelesning Klasse T1A Side 1 av 11

Forelesning Klasse T1A Side 1 av 11 Forelesning 21.2.05 Klasse T1A Side 1 av 11 Innhold Side MÅL. 1 OPPGAVE / RESULTAT. 1 ØVING 1A. Brukergrensesnittet 2 ØVING 1B. Lage objekter. 5 ØVING 1C. Lage animering... 7 ØVING 1D. Rendere bilde og

Detaljer

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper Side 1av7 Mekanisk spenning i materialer Tema i materiallære En kraft er et skyv eller drag som virker på et legeme og har sin årsak i et annet legeme. Eksempel: Et tungt legeme utgjør en last som skal

Detaljer

Kurshefte GeoGebra. Ungdomstrinnet

Kurshefte GeoGebra. Ungdomstrinnet Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes

Detaljer

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning. 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed

Detaljer

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7 Innhold Forord Symboler og forkortelser v og vi xv 1. INNLEDNING 1 1.1 Hva er fasthetslære? 1 1.2 Motivasjon 5 1.3 Konvensjoner - koordinater og fortegn 7 1.4 Små forskyvninger og lineær teori 11 1.5 Omfang

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

H5 DIMENSJONERINGSEKSEMPLER

H5 DIMENSJONERINGSEKSEMPLER H5 DIMENSJONERINGSEKSEMPLER 69 I dette kapittelet tar en praktisk i bruk de regler og anbefalinger som er omtalt i kapitlene H1 til H4. Eksemplene tar kun for seg dimensjonering for seismiske laster. Det

Detaljer

Teknologi og forskningslære Lag ditt eget testlaboratorium for materialer og konstruksjoner

Teknologi og forskningslære Lag ditt eget testlaboratorium for materialer og konstruksjoner ConTre Teknologi og forskningslære Lag ditt eget testlaboratorium for materialer og konstruksjoner Tekst og foto: JJJ Consult As ConTre prøverigg ConTre Innledning Denne presentasjonen viser vi hvordan

Detaljer

Prosjektering. Kapittel 6

Prosjektering. Kapittel 6 Kapittel 6 Prosjektering 6.1 Vurderinger og rutiner forut for prosjekteringen Helt fra 1960-årene da spikerplatene ble introdusert på det norske markedet, har takstolprodusenter og spikerplateleverandører

Detaljer

Effektive riggemetoder og montering av taubaner med fast bærekabel.

Effektive riggemetoder og montering av taubaner med fast bærekabel. Effektive riggemetoder og montering av taubaner med fast bærekabel. Innledning For å feste enden av bærekabelen på Mounty 400 kabelkran brukes det en fordelingsblokk. Baner med fast bærekabel har 2-3 ganger

Detaljer

3.2 Misbruk i media KAPITTEL 3 31

3.2 Misbruk i media KAPITTEL 3 31 La oss nå anta at Marie benytter noe av ukelønnen til å betale inngangspenger i ungdoms-klubben. Anta at vi kan benytte en bratt framstillingsmåte som den til venstre i figur 3.1 til å vise hvor mye inngangspengene

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

Matematisk visualisering

Matematisk visualisering 02/01/17 1/5 Matematisk visualisering Matematisk visualisering GLU 1.-7. trinn: Matematisk visualisering og konstruksjon - GeoGebra Innføring i GeoGebra (2 uv-timer) Denne delen er direkte knyttet til

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: John Morten Tårnes

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: John Morten Tårnes DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Institutt for konstruksjonsteknikk og materialteknologi. Forfatter: John Morten Tårnes Fagansvarlig: Jonas Odland Vårsemesteret,

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

Kapittel 3. The fun starts

Kapittel 3. The fun starts Kapittel 3 The fun starts Introduksjon I dette kapittelet vil jeg prøve å gjøre ting på en annen måte. Siden vi nå skal begynne å faktisk lage noe, tenkte jeg at jeg vil gjøre det slik at kapittelet blir

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

Eksempel 3.3, Limtredrager, taksperrer og opplegg

Eksempel 3.3, Limtredrager, taksperrer og opplegg Eksempel 3.3, Limtredrager, taksperrer og opplegg I huset nedenfor skal du regne ut egenlast og snølast på Røa i Oslo 105 meter over havet. Regn med at takets helning er 35 o. Regn ut både B1 og B2. Huset

Detaljer

Slik tar du i bruk nettbanken

Slik tar du i bruk nettbanken NETTBANK Slik tar du i bruk nettbanken For nybegynnere 1 Enklere hverdag med nettbank Innledning I nettbanken kan du selv utføre en rekke banktjenester når som helst i døgnet. Fordeler med nettbank Full

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Seismisk dimensjonering av pelefundamenter

Seismisk dimensjonering av pelefundamenter Seismisk dimensjonering av pelefundamenter Amir M. Kaynia Oversikt Jordskjelvpåvirkning i peler og EC8s krav Jord konsktruksjon samvirke (SSI) Beregning av stivheter Ikke lineære stivheter lateral kapasitet

Detaljer

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID:

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID: Høgskolen i Gjøvik Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder LO 164A EKSAMENSDATO: 11. august 1995 TID: 09.00-14.00 FAGLÆRER:

Detaljer