5.1.2 Dimensjonering av knutepunkter

Størrelse: px
Begynne med side:

Download "5.1.2 Dimensjonering av knutepunkter"

Transkript

1 80 H5 DIMENSJONERINGSEKSEMPLER V (kn) og M (knm) x (m) 1500 Snitt 4 (33,7 m < x < 50,8 m): F y = 0; det vil si: V f + h fy x H y2 H y5 H y4 = 0 V f = 10,1 x + 512,3 (kn) Figur H 5.7. Skjær- og momentdiagram. Last i y-retningen. DCL. M p = 0; det vil si.: M f H y2 (x 0,1) H y5 (x 30,3) H y4 (x 33,7) + h fy x 2 /2 m fx x = 0 M f = 5,1 x 2 513,0 x (knm) Fra moment- og skjærkraftdiagrammene ser man at to snitt er kritiske. Dette er snittet for x = 30,3 m, hvor skjærkraften er størst, og snittet for x = 33,7 m, hvor momentet er størst. Snittkrefter for x = 30,3 m: Skjærkraft: V f = 10,1 30, ,0 = 199 kn Moment: M f = 5,1 30, ,7 30,3 11 = 1430 knm Snittkrefter for x = 33,7 m: Skjærkraft: V f = 10,1 33, ,3 = 172 kn Moment: M f = 5,1 33, ,0 33, = 1497 knm Dimensjonering av knutepunkter Materialparametere for DCL Materialparametere for DCL er vist i punktene og her. Betong B35: f cd = 0,85 35 / 1,2 = 24,8 N/mm 2 f ctd = 0,85 2,2 / 1,2 = 1,6 N/mm 2 B500C: f yd = 500 / 1,0 = 500 N/mm 2 Gjengestenger er antatt å være av kvalitet K4.6. Strekkapasitet av gjengehylse i bjelke/ vegg med M20 gjengestang i åpnet kanal i enden av et hulldekke (endesliss):

2 H5 DIMENSJONERINGSEKSEMPLER 81 Gjengehylse M20: N sd = 82 1,0 = 82 kn N cdo = 105 1,25 = 131 kn (B35) N cdo = 121 1,25 = 151 kn (B45) [Tabell B 19.10] Gjengestang M20: N sd = 71 1,0 = 71 kn N cd = 70 1,25 = 88 kn Forankringslengde for gjengestang: l b = 700 mm [Tabell C 12.2] 71 kn er dimensjonerende. Kommentar: Multiplikatorene 1,0 og 1,25 er forholdet mellom γ ordinær og γ DCL. Dette er en justering for forskjellen i materialfaktorer brukt i bindene B og C og de som gjelder for seismiske laster. Se punkt her. Strekkapasitet av gjengehylse i bjelke/vegg med gjengestang M24 i endesliss: Gjengehylse M24: N sd = 101 1,0 = 101 kn N cdo = 129 1,25 = 161 kn (B35) N cdo = 148 1,25 = 185 kn (B45) [Tabell B 19.10] Gjengestang M24: N sd = 102 1,0 = 102 kn N cd = 70 1,25 = 88 kn Forankringslengde for gjengestang: l b = 830 mm [Tabell C 12.2] 88 kn er dimensjonerende. Strekkapasitet av gjengehylse i vegg med gjengestang M16 i sidesliss: (Forutsatt forankring til annen kanal med minimum senteravstand s = 0,96 m.) Gjengehylse M16: N sd = 50 1,0 = 50 kn N cdo = 63 1,25 = 79 kn (B35) N cdo = 72 1,25 = 90 kn (B45) [Tabell B 19.10] Gjengestang M16: N sd = 45 1,0 = 45 kn N cd = 31 1,25 = 39 kn [Tabell C 12.4] 39 kn er dimensjonerende. Forankringslengder for kamstål: Benytter samme forankringslengder som oppgitt i tabeller i bindene B og C Dimensjonering av dekkeskive med last i y-retningen I DCL benyttes det ingen overstyrkefaktorer for dekkeskiven. Ettersom lastkombinasjonen for ulykke ikke inkluderer vindlast, tas det ikke hensyn til lokalt vindsug ved beregning av forbindelser i dekkeskiven. Lengdearmering i fuger langs LB A sl =A SM +A SV = M f z f yd + Det er fire fuger ved enden av hulldekkene (endefuger): n = 4 B500C: f yd = 500 N/mm 2 V f 0,6 n f yd Skiven er en blanding av kontinuerlig og fritt opplagt bjelke. Bruker derfor en z-verdi midt i mellom kontinuerlig og fritt opplagt. z = 0,5 (0,85 + 0,6) d = 0,725 d (l/d >> 1) [Bind B, figur B 12.37] Effektiv høyde: d = = mm Momentarm: z = 0, = mm Kontrollerer de to kritiske snittene med maksimalt moment og maksimal skjærkraft.

3 82 H5 DIMENSJONERINGSEKSEMPLER Snitt 1, maksimalt moment: A sl = = 377 mm ,6 500 Snitt 2, maksimal skjærkraft: A sl = = 389 mm ,6 500 Minimumskrefter i henhold til bind B, punkt 8.4: 20 12,0 / 2 = 120 kn 70 kn Det vil si at strekkraften 120 kn (ordinære materialfaktorer) A sl = / 435 = 276 mm 2 Snitt 2 er dimensjonerende. Nødvendig lengdearmering A sl 389 mm 2. Velger 2-Ø20 (A s = 628 mm 2 ) på grunn av kravet til opphengningskraft til skive 1. Lengdearmering i fuger langs DLB Kontrollerer snittet med maksimal skjærkraft da denne lengdearmeringen ikke tar moment. Snitt 2, maksimal skjærkraft: A sl? = Minimumskrefter pr. fuge i henhold til bind B, kapittel B8: 20 (6,0/2 + 12,0/2) / 2 = 90 kn 70/2 kn Det vil si at strekkraften 90 kn (ordinære materialfaktorer) A sl = / 435 = 207 mm 2 Minimumskrefter er dimensjonerende. Nødvendig lengdearmering A sl 207 mm 2 Velger 2-Ø12 (A s = 226 mm 2 ) Tverrarmering mot LB i akse C Strekkraft V f b 1 0,6 z + N f e h' Jevnt fordelt vertikallast av dekket med lastkombinasjon i ulykkessituasjon: q f = 1,0 G + 0,2 S = 1,0 (3,8 + 0,5) + 0,2 2,8 = 4,9 kn/m 2 Oppleggslast på LB pr. hulldekke = N f = 4,9 (11,5/2) 1,2 = 33,8 kn Eksentrisitet: e = = 270 mm [Bind C, figur C 8.26] Momentarm: h = = 165 mm ,6 500 = 166 mm2 (pr. fuge) , =86,4kN 0, Tverrarmering mot LB i akse A Oppleggslast på LB pr. hulldekke = N f = 4,9 (5,5/2) 1,2 = 16,2 kn 199, , , = 57,6 kn

4 H5 DIMENSJONERINGSEKSEMPLER 83 Tverrarmering mot DLB i akse B Ubalansert oppleggslast på DLB fra hulldekker: N f = 4,9 (11,5/2 5,5/2) 1,2 = 17,6 kn Strekkraft mellom DLB og hulldekker felt A B: , =31,1kN Strekkraft mellom DLB og hulldekker felt B C: , =59,9kN 0, Kontroll av øvre grense for skjærspenninger: Største skjærspenning mellom hulldekker: τ f = V f = V f A c z t = 0,06 N/mm Største skjærspenning τ f er mindre enn 0,19 N/mm 2, som er største tillatte skjærspenning. Resultatet av kontrollen er derfor OK Dimensjonering av dekkeskive med last i x-retningen Effektiv høyde: d = mm Spennvidde: l = mm Forhold: l / d = 9,8 / 50,4 = 0,194 Antar fritt opplagt skive: z = 0,7 l (l << d) [Bind B, figur B 12.37] Momentarm: z = 0,7 l = 0, = mm Tverrarmering mot LB i akse A Strekkraft: , = 123,6 kn 0, Minimumskrefter: [Bind B, punkt 8.4] S d 20 1,2 = 24 kn (ordinære materialfaktorer) << 123,6 kn Strekkraften beregnet her er større enn den beregnet for last i y- retningen (57,6 kn), den er således dimensjonerende. Benytter to gjengehylser M20 i hver LB med gjengestenger M20 i endesliss. Kapasitet til forbindelsen er S d = 2 71 = 142 kn > S f Tverrarmering mot LB i akse C Da det ikke er noen skjærkraft i denne fugen for last i x-retningen, blir strekkraften funnet for last i y-retning dimensjonerende. Dimensjonerende strekkraft på tvers ved akse C er 86,4 kn. Benytter en gjengehylse M24 i hver LB med gjengestang M24 i endesliss. Kapasitet til forbindelsen er S d = 88 kn > S f Tverrarmering mot DLB i akse B Tverrarmeringen skal også ta opp strekk grunnet moment. Antar at fire hulldekker bidrar til å ta opp momentet. Kontrollerer begge fuger. Strekkraft: V f b 1 0,6 z + N f e + M f h' 4 z

5 84 H5 DIMENSJONERINGSEKSEMPLER Strekkraft mellom DLB og hulldekker i felt A B: , =78,9kN Strekkraften beregnet her er større enn den beregnet for last i y- retningen (31,1 kn), den er således dimensjonerende. Benytter en gjengehylse M24 i DLB med gjengestang M24 i endesliss. Kapasitet til forbindelsen er S d = 88 kn > S f Strekkraft mellom DLB og hulldekker felt B C: , = 105,2 kn 0, Strekkraften beregnet her er større enn den beregnet for last i y- retningen (31,1 kn), den er således dimensjonerende. Benytter to gjengehylser M20 i DLB med gjengestang M20 i endesliss. Kapasitet til forbindelsen er S d = 2 71 kn = 142 kn > S f Kontroll av øvre grense for skjærspenninger: Største skjærspenning mellom hulldekker: τ f = V f = V f A c z t = 0,10 N/mm Største skjærspenning τ f er mindre enn 0,19 N/mm 2, som er største tillatte skjærspenning. Kontrollen er derfor OK Kraftinnføring i vertikalskiver Skive 1 V f = 340,2 kn [Tabell H 5.8] Tar opp skjærkraften som skjærfriksjon. Nødvendig strekkraft over fugen: 340,2 / 0,6 = 567,0 kn [0,6 er en friksjonskoeffisient, se punkt her] Strekkraften fordeles på fem hulldekker. Strekkraft pr. hulldekke: 567,0 / 5 = 113,4 kn Benytter to gjengehylser M20 i LB med gjengestenger M20 i endesliss i hvert hulldekke. Minste kapasitet i forbindelsen er N d = 2 71 = 142 kn > 113,4 OK Det er nødvendig å forankre opphengskraften til veggskiven til resten av fugen langs akse A. Opphengskraft som skal forankres til fugen mellom LB og hulldekkene langs akse A: 340,2 44,8 / 50,8 = 300,0 kn Dette tilsvarer 2-Ø20 (S d = 314 kn), som er lengdearmeringen i fugen. (Forbindelsen til skive 1 er ikke dimensjonert for å skape en vridningsforhindret forbindelse.) Skive 2 V f = 107,0 kn [Tabell H 5.9] Skjærkraften blir overført til hulldekkene mellom akse A og B som friksjon. Skjærkreftene må videre forankres til hulldekkene mellom akse B og C.

6 H5 DIMENSJONERINGSEKSEMPLER 85 Nødvendig strekkraft over fugen: 107,0 / 0,6 = 178,3 kn Skjærspenning i fugen: τ = / ( ) = 0,07 N/mm 2 < 0,19 N/mm 2 OK Benytter gjengehylser M16 i vegg med gjengestenger i sidesliss. Kapasitet pr. forbindelse er S d = 39 kn Nødvendig antall forbindelser = 178,3 / 39 = 4,6 Velger å benytte fem forbindelser med senteravstand 1,1 m. Forankringskraft til veggen som skal føres inn til hulldekkene mellom akse B og C: V f = 107,0 12,0 / 18,0 = 71,3 kn Forankringskraften må føres forbi DLB og videre til hulldekker i felt B C. Totalt strekk i forbindelsen mellom DLB og hulldekker i felt A B er dimensjonerende kraft ved beregning av tverrarmering, og strekket på grunn av forankringskraften: 78,9 + 71,3 = 150,2 kn Strekkapasitet av to M24: S d = 2 88 = 176 kn > 150,2 kn OK Totalt strekk i forbindelsen mellom DLB og hulldekker i felt B C: 105,2 + 71,3 = 176,5 kn Strekkapasitet av to M24: S d = 2 88 = 176 kn 176,5 kn OK Skive 3 V f = 91,1 kn [Tabell H 5.8] Tar opp skjærkraften som skjærfriksjon. Nødvendig skjærkraft: 91,1 / 0,6 = 151,8 kn Skjærspenning i fugen: τ = / ( ) = 0,10 N/mm 2 < 0,19 N/mm 2 Strekkraften fordeles på tre hulldekker: Strekkraft pr. hulldekke: 151,8 / 3 = 50,6 kn OK Benytter en gjengehylse M20 i vegg med gjengestang M20 i endesliss i hvert hulldekke. Minste kapasitet i forbindelsen er N d = 71 kn > 50,6 OK (Forbindelsen til skive 3 er ikke dimensjonert for å skape en vridningsforhindret forbindelse.) Skive 4 og 5 Benytter samme forbindelser for begge veggskivene. V f = 206,3 kn [Tabell H 5.9] Forankringskraften tas opp som skjærfriksjon og som kanttrykk/ strekk. Skjærkraften som tas opp som skjærfriksjon (lengden på veggen, samt lengden til enden av hulldekket i akse C): V f = 206,3 (6,0 + 2,0) / 18,0 = 91,7 kn Nødvendig strekkraft: 91,7 / 0,6 = 152,8 kn Skjærspenning i fugen: τ = / ( ) = 0,06 N/mm 2 < 0,19 N/mm 2 OK Benytter gjengehylser M16 i vegg med gjengestenger i sidesliss.

7 86 H5 DIMENSJONERINGSEKSEMPLER Kapasitet pr. forbindelse er S d = 39 kn Nødvendig antall forbindelser: n = 152,8 / 39 = 3,9 Velger å benytte fire forbindelser med senteravstand 1,5 m. Skjærkraft som tas opp som kantrykk/strekk (lengden på veggen, samt lengden til enden av hulldekket i akse B): = 206,3 (6,0 + 4,0) / 18,0 = 114,6 kn V f Benytter en Ø20 som kobles til veggskiven og legges i hulldekkefugen mot bjelken akse B. 1-Ø20 forankres også forbi bjelken i akse B og videre mot akse A. S d = 157 kn > 114,6 OK Figur H 5.8. Dekkeskive DCL. 2-Ø12 vinkler i alle hjørner 2-M20 gjengestenger i endesliss i hvert hulldekke 1 2 Detalj A Detalj 4 2-M24 gjengestenger i endesliss i ytterste hulldekke 1-M24 gjengestang i endesliss i hvert hulldekke Detalj 2 1-Ø20 i fugen og gjennom bjelke B 5-M16 gjengestenger i sidesliss 2-M20 gjengestenger i endesliss i hvert hulldekke 2-M24 gjengestenger i endesliss i ytterste hulldekke Detalj 5 Detalj 4 Detalj 3 1-M24 gjengestang i endesliss i hvert hulldekke 3-M20 gjengestenger 4-M16 gjengestenger i sidesliss Detalj 6 C 2-Ø20 i endefuger i akse A og C. 2-Ø12 i begge endefuger i akse B. Gjengehylse M20 Gjengehylse M20 Gjengehylse M24 Gjengehylse M24 2-Ø20 2-Ø12 2-Ø12 2-Ø20 Gjengestang M20 Gjengestang M20 Gjengestang M24 Gjengestang M24 Detalj 1 Snitt Detalj 2 Snitt Detalj 3 snitt Gjengehylse M Ø10 Utsparing i bjelke 1-Ø20 fugearmering 1-Ø20 fugearmering Gjengehylse M20 Gjengestang M16 Innstøpt stålplate med pigger Gjengestang M20 Detalj 4 Plan Detalj 5 Snitt Detalj 6 Snitt Horisontalfuge mellom fundament og vegg i første etasje i skive 1 Fra beregningen av kraftfordelingen til veggskivene ser en at last i x- retning gav største horisontale last på veggskiven. Ved beregning av horisontallastene fra dekket på veggskiven fra hver etasje benyttes samme fordelingsforhold som i beregningen for taket.

8 H5 DIMENSJONERINGSEKSEMPLER 87 Dimensjonerende skjærkraft mot fundamentet: V f = (sum av etasjelaster) (resultat takskive) / (last takskive) V f = ( ) (340,2 / 431) = 969 kn Dimensjonerende moment mot fundament på grunn av jordskjelvlaster: M f = (145 4, , , ,9) (340,2 / 431) M f = knm Vertikallast på veggen: Egenlast: Lastareal av dekker = A d = 6 5,5/2 = 16,5 m 2 Dekkelaster (se punkt her): G d = 0,5 (tak) + 3 0,8 (gulv) + 4 3,8 (hulldekker) = 18,1 kn/m 2 Dekker: G = G d A d = 18,1 16,5 = 299 kn Vegg: G = 25 0,2 6,0 13,9 = 417 kn G = 716 kn Nyttelast: P = (3 3,0) 16,5 = 149 kn Snølast: S = 2,8 16,5 = 46 kn Dimensjonerende vertikallast i ulykkessituasjon: N f = 1,0 G + 0,3 P + 0,2 S N f = 1, , ,2 46 = 770 kn Utilsiktet tverrsnittseksentrisitet: e i = l 0 / 400 = 13,9 / 400 = 0,035 m Moment på grunn av utilsiktet tverrsnittseksentrisitet: M i = e i N f = 0, = 27 knm [NS-EN , punkt 5.2(9)] Sum av momenter på skiven: M f = = knm Strekk- og trykkforbindelser Oppgaven er å finne en tøyningstilstand som er i likevekt med de ytre lastene. Dette gjøres ved å anta strekkraft og trykkspenninger. Deretter benyttes iterasjon for å finne kreftene. Antar initial strekkraft: 0,5 N f = 0,5 770 = 385 kn Trykkresultant: N c = N f = 1155 kn Antar σ c = 0,75 f cd som er en tilstand omtrent midt mellom tilfelle b) og c) i figur B Benytter lineær interpolasjon mellom disse tilfellene for å finne trykksonens kapasitet og beliggenhet av trykkresultanten. σ c = 0,75 f cd = 0,75 24,8 = 18,6 N/mm 2 Beliggenhet av trykkresultanten: (0,333 x + 0,375 x) / 2 = 0,354 x Betongens trykkapasitet: N c = (0,5 σ c t x + 0,667 σ c t x) / 2 = 0,584 σ c t x Antar fugebredde t = 180 mm: Trykksonens utstrekning: x= N c 0,584 σ c t = = 591 mm 0,584 18,6 180

9 88 H5 DIMENSJONERINGSEKSEMPLER Beliggenhet av trykkresultanten: c 2 = 0,354 x = 0, = 209 mm Antar c 1 = 500 mm Momentarm: z = = mm Beregnet strekkraft: M f z N f (0,5 b c 2 ) z (0,5 6,00 0,21) 5,29 5,29 Initial strekkraft er antatt for lavt. Gjennomfører beregningen på nytt med ny antatt strekkraft kn. Trykkresultant: N c = N f = kn Trykksonens utstrekning: N x= c 0,584 σ c t = = 1197 mm 0,584 18,6 180 Beliggenhet av trykkresultanten: c 2 = 0,354 x = 0, = 424 mm Antar c 1 = 500 mm Momentarm: z = = mm Beregnet strekkraft: M f z N f (0,5 b c 2 ) z (0,5 6,00 0,42) 5,08 5,08 Med tilnærmet lik antatt strekkraft og beregnet strekkraft er det likevekt i beregningen, og den beregnede strekkraften er derfor korrekt. Det er nødvendig å kontrollere at armeringen oppnår tilstrekkelig tøyning slik at den kan utvikle full fasthet. Maksimal tøyning i betongtrykksonen: σ c =f cd 1 1 ε c ε c2 n = 1479 kn = 1572 kn [EC2, punkt 3.1.7(1)] Med ε c ε c2 = 2,0, n = 2 og ε c = 0,75 f cd i henhold til tabell 3.1 i EC2, samt litt omskriving, får en uttrykket ε c = ε c2 1 1 σ c f cd = 2, ,75 = 1,0 Tøyning i strekkarmeringen: ε s = ε c (b c 1 x) / x ε s = 1,0 ( ) / = 3,6 Ståltøyning er større enn ε sy = 2,5 og mindre enn ε ud = 30,0. Tøyningen generer derfor full fasthet i strekkarmeringen. Benytter 4-Ø32 som strekkarmering: S d = kn Skjærarmering Glatt urisset fuge: V Rdi = 0,03 f ctd A i + 0,5 f yd A s + 0,5 N Ed 0,5 v f cd A i

10 H5 DIMENSJONERINGSEKSEMPLER 89 Nødvendig skjærarmeringsareal: Fugeareal = A i = = mm 2 Heftkapasitet = V c = 0,03 f ctd A i = 0,03 1, = N Aksiallastkapasitet = V N = 0,5 N f = 0,5 770 = 385 kn Armeringen må ta V s = V f V c V N = = 532 kn A s = V s / (0,5 f yd ) = 532 / (0,5 500) = mm 2 Øvre grense for skjærkraften: V d 0,5 v f cd A i = 0,5 0,516 24, = kn > V f [v = 0,6 (1 f ck /250) = 0,6 (1 35/250) = 0,516] [EC2, punkt 6.2.2(6)] Benytter tre Ø32 som skjærarmering (A s = 2413 mm). Anbefalte minimumskrefter: 40 6,0 = 240 kn Dette er vesentlig mindre enn strekkapasiteten til = 11-Ø32. Forankring av skjøtarmering Nødvendig forankringslengde til kamstål Ø32 i Ø60 rør: l b = 964 mm [Bind C, tabell C13.3] Velger l b = 1000 mm 16-Ø16 omfaringsarmering 16-Ø16 omfaringsarmering 4-Ø32 skjøtarmering 4-Ø60 korrugerte rør 1. etg. 3-Ø32 skjøtarmering 3-Ø60 korrugerte rør 4-Ø32 skjøtarmering 4-Ø60 korrugerte rør Fundament Figur H 5.9 Horisontalfuge DCL. 5.2 SKIVEBYGG I DCM Dette kapittelet tar for seg samme bygg som i kapitel 5.1, men nå i duktilitetsklasse medium Laster Konstruksjonsfaktor Klassifiserer bygget som et veggekvivalent dobbeltsystem da en kan anta at skjærveggene står for over 50 % av den totale skjærkapasiteten til hele bæresystemet. Det er ingen koblede vegger. q = k p q o k w 1,5 k p = 1,0 forutsatt at punktene til i EC8 er tilfredsstillet, se også punkt her.

5.2.2 Dimensjonering av knutepunkter

5.2.2 Dimensjonering av knutepunkter 92 Det er derfor tilstrekkelig å kontrollere hver av lastene sine hovedretninger. Se også punkt 2.1.4 her. E Edx + 0 E Edy 0 E Edx + E Edy 5.2.1.8 Kraftfordeling til veggskivene Tar utgangspunkt i taket

Detaljer

H5 DIMENSJONERINGSEKSEMPLER

H5 DIMENSJONERINGSEKSEMPLER H5 DIMENSJONERINGSEKSEMPLER 69 I dette kapittelet tar en praktisk i bruk de regler og anbefalinger som er omtalt i kapitlene H1 til H4. Eksemplene tar kun for seg dimensjonering for seismiske laster. Det

Detaljer

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer.

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer. 12 KIEYTEM 125 Figur 12.53 viser plan av et stort dekke med tre felt (vindsug på gavl er ikke vist). Kreftene og spenningene som virker på elementene, og C er vist under planen av dekket. Trykkgurten er

Detaljer

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning. 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed

Detaljer

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle 118 5.5.5 Kombinasjon av ortogonale lastretninger Da bygget er regulært i planet samt at det kun er søylene som er avstivende, kan det forutsettes at den seismiske påvirkningen virker separat og ikke behøver

Detaljer

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4.

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4. 254 C13 SKIER I det følgende behandles typiske knutepunkter for skiver. All generell informasjon finnes i bind B. Beregning av minimumskrefter på forbindelser er spesielt viktig for skiver, og grunnlaget

Detaljer

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense.

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. C13 SKIER 275 Tabell C 13.12. Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. Rd (kn/m) Fuge- B25, γ c = 1,8 B30, γ c = 1,8 B35, γ c = 1,8 bredde f cd = 11,8 MPa f cd = 14,2

Detaljer

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING

Detaljer

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM igur B 8.10. Kombinasjon av skiver og rammer. a) Utkraget skive b) Momentramme ) Kombinasjon igur B 8.11. Eksempel på ramme/ skivekombinasjon Hovedramme igur B 8.12. (Lengst t.h.) Kombinasjon av rammer.

Detaljer

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket C11 RIBBEPLATER 231 Lask a) Strekkbånd i bjelken b) Strekkbånd på opplegget c) Strekkbånd på dekket d) Armering og utstøping e) Innstøpt flattstål i plate res dette ofte med at den samme forbindelsen også

Detaljer

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 207 9.1 TO-SKIPS INDUSTRIHALL Dette beregningseksemplet viser praktisk beregning av knutepunk t - ene i en to-skips industrihall, ved hjelp av tabellene

Detaljer

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6.

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6. 248 C12 HULLDEKKER Det er som regel bare vridningsforbindelser som kan kreve så store strekk-krefter som N maks2, se figur C 12.9.a. Dersom forbindelsen skal overføre skjærkrefter mellom hulldekke og vegg

Detaljer

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering 180 I det følgende behandles typiske opplegg for bjelker. Dessuten gjennomgås dimensjonering av hylle for opplegg av dekker, mens dimensjonering av forbindelsen er vist i kapittel C11 for ribbeplater og

Detaljer

9 Spesielle påkjenninger Gjennomgås ikke her. Normalt vil kontroll av brannmotstand og varmeisolasjonsevne

9 Spesielle påkjenninger Gjennomgås ikke her. Normalt vil kontroll av brannmotstand og varmeisolasjonsevne C13 SKIVER 293 V Rd,N = 0,5 N Ed = 0,5 77 = 38,5 kn > H Ed = 23,37 kn, det vil si at ak siallasten kan ta hele skjærkraften alene. Minste anbefalt tverrarmering: S min = 0,25 V Ed / 0,5 = 0,5 V Ed = 0,5

Detaljer

122 C6 DIMENSJONERING AV FORBINDELSER

122 C6 DIMENSJONERING AV FORBINDELSER 122 C6 DIMENSJONERING AV FORBINDELSER Tabell C 6.1. Senteravstand på festemidler som gir kapasitet 20 kn/m. Kamstål (bind B, tabell B 19.11.2) B500NC Ø (mm): 8 10 12 16 20 25 N Rd,s = f yd A s (kn): 22

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 74a Dato: 09.03.0 Sign.: sss BWC 80-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/3 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1.

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1. H V v g 1 g 2 En-etasjes skive som deles i to (stadium 2). Hvordan finne vertikal skjærkraft i delingsfugen? Beregningen viser at horisontalfugen i underkant får strekkraften S og trykkresultanten N c.

Detaljer

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt C7 SØYLER 159 Evt. shims Utstikkende søylejern Sentrisk gjengestang Utsparing (rør) gyses ved søylemontasje Figur C 7.28. Vanlig limeløsning. Illustrasjon til tabell C 7.6. u u a s Bjelke Korrugert rør

Detaljer

Statiske Beregninger for BCC 250

Statiske Beregninger for BCC 250 Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

7.1.4 Hylsefundament C7 SØYLER

7.1.4 Hylsefundament C7 SØYLER 148 C7 SØYLER Tabell C 7.5. Forankring av limte stenger uten forankringsfot. Forutsetninger: Kamstål B500NC: f yd = 500 / 1,15 = 435 MPa l bd = nødvendig forankringslengde for oppgitt strekkapasitet l

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet C11 RIBBEPLATER 225 I det følgende behandles typiske opplegg for ribbeplater, samt noen typiske sveiseforbindelser. Beregning av ribbeplater som horisontalskiver er behandlet i kapittel C13. Generell beregning

Detaljer

19.3.3 Strekkforankring av kamstål

19.3.3 Strekkforankring av kamstål 242 19.3.2.6 Armert betong Svært ofte vil senteravstander og kantavstander være så små at bruddkjeglene ikke gir nok utrivingskapasitet. Formlene her gir ingen addisjonseffekt av tilleggsarmering, så løsningen

Detaljer

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71 32 C2 BJELKER 2.1.3 Dimensjonering for skjærkraft For å sikre bestandigheten bør spenningen f yd i armeringen ved ut - sparinger begrenses i henhold til tabell C 6.5. Små utsparinger Når utsparingen Ø

Detaljer

Dimensjonering Memo 37. Standard armering av bjelke ender BCC

Dimensjonering Memo 37. Standard armering av bjelke ender BCC Side 1 av 7 Standard armering for BCC 250 (NB! Dette er den totale armeringen i bjelke enden) For oversiktens skyld er bjelkens hovedarmering ikke tegnet inn på opprisset. Mellom de angitte bøyler i hver

Detaljer

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET 9.2.5 Slankhet og slankhetsgrenser Den geometriske slankheten defineres som λ = l 0 / i = l 0 / (I /A), det vil si l 0 = λ (I /A) der i er treghetsradien for urisset betongtverrsnitt (lineært elastisk).

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER C13 SKIVER

13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER C13 SKIVER 282 C13 SKIVER 13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER beregningseksempel med SKIVEfORbINdELSER 1 Generelt I dette eksemplet gjøres en praktisk gjennomføring av beregning med bruk av anbefalinger,

Detaljer

C14 FASADEFORBINDELSER 323

C14 FASADEFORBINDELSER 323 C14 FASADEFORBINDELSER 323 Elementet Når mellomlegget har tilnærmet samme bredde som bærende elementvange i et veggelement, blir spaltestrekk på tvers av elementet ubetydelig. Spaltestrekk i lengderetningen

Detaljer

B10 ENKELT SØYLE BJELKE SYSTEM

B10 ENKELT SØYLE BJELKE SYSTEM 0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt

Detaljer

MEMO 812. Beregning av armering DTF/DTS150

MEMO 812. Beregning av armering DTF/DTS150 Side 1 av 7 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 2 LAST... 3 ARMERINGSBEREGNING... 3 YTRE LIKEVEKT... 3 NØDVENDIG FORANKRINGSARMERING...3

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll.

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll. 168 C7 SØYLER Figur C 7.42. Komplett fagverksmodell ved konsoller. a) Sentrisk last over konsoll b) Eksentrisk last over konsoll Typiske prefabrikkerte søyler vil vanligvis ikke være maksimalt utnyttet

Detaljer

Seismisk dimensjonering av prefab. konstruksjoner

Seismisk dimensjonering av prefab. konstruksjoner Seismisk dimensjonering av prefab. konstruksjoner Geir Udahl Konstruksjonssjef Contiga Agenda DCL/DCM Modellering Resultater DCL vs DCM Vurdering mhp. prefab DCL Duktiltetsfaktoren q settes til 1,5 slik

Detaljer

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter.

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter. 57 600 50 Figur C.1. Skjæroverføring mellom ribbeplater. punktlaster og linjelaster som overføres til naboelementene avhenger av konstruksjonens stivhet i tverretningen. Dette må beregnes basert på påstøpens

Detaljer

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste 328 14.4 FASADEOPPLEGG PÅ SØYLER OG DEKKER I figurene C 14.14 og C 14.15 er vist noen vanlige løsninger. Disse dimensjoneres som plant opplegg på grunnmur. Elementene settes vanligvis på innstøpte ankerplater

Detaljer

Strekkforankring av stenger med fot

Strekkforankring av stenger med fot 236 B19 FORAKRIG AV STÅL 19.3.2 Strekkforankring av stenger med fot 19.3.2.1 Generelt kjeglebrudd Anvisningene her baserer seg delvis på J. Hisdal, Masteroppgave \10\. Masteroppgaven analyserer hovedsakelig

Detaljer

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes.

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes. 133 Konklusjon Man ser at det er en rekke variable faktorer som inngår. Dette kompliserer beregningene og gjør dem noe usikre. Etter en samlet vurdering av regler, praksis og erfaring anbefales det å regne

Detaljer

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER 21 4.1 HULLDEKKER Hulldekker er enveis dekkekonstruksjoner, normalt med fritt dreibare opplegg. Slakkarmeringen som legges i fugene bidrar til å sikre dekkekonstruksjonens

Detaljer

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19.

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19. B19 FORAKRIG AV STÅL 231 uttrykk i en lav verdi på sikkerhetsfaktoren. Er SF oppgitt til 3 eller mindre (for betongbrudd), kan det tyde på at det er denne modellen som er brukt. Det innebærer at: x d =

Detaljer

Focus 2D Konstruksjon

Focus 2D Konstruksjon Prosjekt: betongtal Beregning utført 01.04.2009 14:49:48 Focus 2D Konstruksjon BEREGNING AV PLANE KONSTRUKSJONER NTNU Student 3. Klasse 2008 14:49:48-01.04.2009 Side:1 1. KONSTRUKSJONSMODELL OG LASTER

Detaljer

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg:

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg: -~ ~ høgskolen i oslo IEmne I Gruppe(r): I Eksamensoppgav en består av: Dimensjonering 2BA 288! Antall sider (inkl. 'forsiden): 4 I I! Emne~ode: LO 222 B I Faglig veileder:! F E Nilsen / H P Hoel j Dato:

Detaljer

1 v.li. cl54- ecc,vec-3

1 v.li. cl54- ecc,vec-3 2 tect,ves-5, (4 280 HEA L = 6,00 meter TRE-DIM Versjon 9.0 BJELKE Bjelkens : 0,0 111,7 kn 17 mm L/350 6000 111,7 kn t EINAR BREKSTAD AS AU1 ENTREPRENØR 7130 BREKSTAD NYTTELAST : EGENLAST 15,140 kn/m 37,239

Detaljer

B19 FORANKRING AV STÅL 297

B19 FORANKRING AV STÅL 297 B19 FORANKRING AV STÅL 297 19.11 FORANKRING AV ARMERING I denne sammenhengen betyr «armering» kamstål B500NC som støpes inn i elementer eller støpes inn i fuger på byggeplass. Sveising eller liming av

Detaljer

Forankring av antennemast. Tore Valstad NGI

Forankring av antennemast. Tore Valstad NGI Forankring av antennemast Tore Valstad NGI 40 Antennemast på 3960 berggrunn 1400 1400 1400 2800 0 40 Antennemast på 3960 jordgrunn 1400 1400 1400 2800 0 BRUDD I KRAFTLINJEMAT BRUDD I KRAFTLINJEMAT FUNDAMENTERING

Detaljer

Ekstra formler som ikke finnes i Haugan

Ekstra formler som ikke finnes i Haugan Oppgavetekstene kan inneholde unødvendige opplysninger. Ekstra formler som ikke finnes i Haugan σ n = B n = sikkerhetsfaktor, σ B = bruddspenning (fasthet), σ till = tillatt spenning σ till Kombinert normalkraft

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 744 Dato: 1.01.016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.: 3.05.016 K5-10-744 Sign.: Kontr.: sss nb EKSEMPEL INNHOLD EKSEMPEL... 1 GRUNNLEGGENDE

Detaljer

Eksempel 3.3, Limtredrager, taksperrer og opplegg

Eksempel 3.3, Limtredrager, taksperrer og opplegg Eksempel 3.3, Limtredrager, taksperrer og opplegg I huset nedenfor skal du regne ut egenlast og snølast på Røa i Oslo 105 meter over havet. Regn med at takets helning er 35 o. Regn ut både B1 og B2. Huset

Detaljer

BEREGNING AV SVEISINNFESTNINGER OG BALKONGARMERING

BEREGNING AV SVEISINNFESTNINGER OG BALKONGARMERING MEMO 722b Dato: 09.03.2011 Sign.: sss BWC 40-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG BEREGNING AV SVEISINNFESTNINGER Siste rev.: Dok. nr.: 18.05.2016 K5-10/10 Sign.: Kontr.: sss ps OG BALKONGARMERING

Detaljer

Dimensjonering av avstivende dekkeskiver

Dimensjonering av avstivende dekkeskiver Dimensjonering av avstivende dekkeskiver Vidar Danielsen Aunan Bygg- og miljøteknikk Innlevert: Juni 2012 Hovedveileder: Leidulv Vinje, KT Norges teknisk-naturvitenskapelige universitet Institutt for konstruksjonsteknikk

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 704 Dato: 8.0.0 Sign.: sss BWC 55-740 / BWC 55 LIGHT SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.:.09.06 K5-4/5 Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD GRUNNLEGGENDE

Detaljer

Dato: ps DIMENSJONERING

Dato: ps DIMENSJONERING MEMO 812 Dato: 16.08.2012 Sign.: sss BEREGNING AV ARMERING Siste rev.: 13.05.2016 Sign.: sss DTF150/DTS150 Dok. nr.: K6-10/12 Kontr.: ps DIMENSJONERING BEREGNING AV ARMERING DTF150/DTS150 INNHOLD GRUNNLEGGENDE

Detaljer

Prinsipper bak seismisk dimensjonering av betongkonstruksjoner

Prinsipper bak seismisk dimensjonering av betongkonstruksjoner Prinsipper bak seismisk dimensjonering av betongkonstruksjoner Max Milan Loo Innhold Generelle dimensjoneringsprinsipper Duktile/jordskjelvsikre betongkonstruksjoner Betongoppførsel under jordskjelvspåvirkning

Detaljer

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator. l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):

Detaljer

Dimensjonering MEMO 54c Armering av TSS 41

Dimensjonering MEMO 54c Armering av TSS 41 Side av 9 INNHOLD GUNNLEGGENDE FOUTSETNINGE OG ANTAGELSE... GENEELT... STANDADE... KVALITETE... 3 DIMENSJONE OG TVESNITTSVEDIE... 3 LASTE... 3 AMEINGSBEEGNING... 4 LIKEVEKT... 4 Side av 9 GUNNLEGGENDE

Detaljer

ARMERING AV TSS 20 FA

ARMERING AV TSS 20 FA MEMO 65 Dato: 04.10.2011 Sign.: sss TSS 20 FA Siste rev.: 20.05.2016 Sign.: sss ARMERING Dok. nr.: K3-10/60 Kontr.: ps DIMENSJONERING ARMERING AV TSS 20 FA INNHOLD DEL 1 GRUNNLEGGENDE FORUTSETNINGER OG

Detaljer

POK utvekslingsjern for hulldekker

POK utvekslingsjern for hulldekker norge as POK utvekslingsjern for hulldekker SFS127 www.bb-artikler.no www..com POK Innholdsfortegnelse 1. FUNKSJONSMÅTE... 3 2. MÅL OG KAPASITETER... 3 3. PRODUKSJON 3.1 PRODUKSJONSANVISNINGER... 4 3.2

Detaljer

6. og 7. januar PRAKTISK BETONGDIMENSJONERING

6. og 7. januar PRAKTISK BETONGDIMENSJONERING 6. og 7. januar PRAKTISK BETONGDIMENSJONERING (9) Fundamentering- pelehoder www.betong.net Øystein Løset, Torgeir Steen, Dr. Techn Olav Olsen 2 KORT OM MEG SELV > 1974 NTH Bygg, betong og statikk > ->1988

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING MEMO 732 Dato: 07.06.2012 Sign.: sss BWC 50-240 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG, BEREGNING AV SVEISEINNFESTNINGER Siste rev.: Dok. nr.: 18.05.2016 K5-10/32 Sign.: Kontr.: sss ps OG BALKONGARMERING

Detaljer

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning 66 C3 DEKKER 3.2 DImENSjONERING Den generelle effekten av spennarmering i ribbeplater, forskalings - plater og hulldekker er beskrevet i innledningen til kapittel C3. 3.2.1 Ribbeplater Dimensjonering for

Detaljer

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel INNHOLD BWC 50-40 Side av GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... 4 BETONG OG ARMERING I BALKONG... 4 DEKKETYKKELSER... 4 STÅLSØYLE FOR INNFESTING BWC... 4 BEREGNINGER... 5

Detaljer

Prosjekt/Project: Detaljhåndboka Beregningseksempel PF2 Prosjektnr: 513 00 75

Prosjekt/Project: Detaljhåndboka Beregningseksempel PF2 Prosjektnr: 513 00 75 BA 013-05-7 Beregningseksempel PF Side 1 av 9 t.p HEA 00 S355 PL 0x30x380 S355J FUNDAMENTBOLTER 4x M4x600 8.8 BETONG B30 t.fc h.c Ø d.0 c.1 b.c t.wc c. c.1 b.1 e.1 m.0 e. d.1 Input Stålsort : "S355" f

Detaljer

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109 A7 ELEMENTTYPER OG TEKNISKE DATA 19 7.2 RIBBEPLATER Generelt DT-elementer har lav egenlast og stor bæreevne, med spennvidder inntil 24 m. Elementene brukes til tak, dekker, bruer, kaier og enkelte fasadeløsninger.

Detaljer

Oppgavehefte i MEK2500 - Faststoffmekanikk

Oppgavehefte i MEK2500 - Faststoffmekanikk Oppgavehefte i MEK2500 - Faststoffmekanikk av Henrik Mathias Eiding og Harald Osnes ugust 20 2 Oppgave 1 En kraft har - og y-komponentene F og F y. vstanden fra et gitt punkt til et punkt på kraftens angrepslinje

Detaljer

N 0 Rd,c > > > >44

N 0 Rd,c > > > >44 2.2.3 Dimensjonering av stagboltene Aktuelle bolter er Hilti HSA Ekspansjonsanker (kvikkbolt, stikkanker. stud anchor) i M16 og M20 og HSL3 Sikkerhetsanker (heavy duty anchor) i M20. I tillegg er HCA fjæranker

Detaljer

Prosjektering MEMO 502 BSF HOVEDDIMENSJONER OG MATERIALPARAMETRE FOR BJELKE OG SØYLEENHETER 1)

Prosjektering MEMO 502 BSF HOVEDDIMENSJONER OG MATERIALPARAMETRE FOR BJELKE OG SØYLEENHETER 1) Side 1 av 7 BJELKE OG SØYLEENHETER 1.1 KVALITETER Armering 500C (EN 1992-1-1, Appendiks C): f yd = f yk/γ s = 500/1,15 = 435 MPa Stål Sxxx (EN 10025-2): Stål S355: Strekk/trykk: f yd = f y/ γ M0 = 355/1,1

Detaljer

Vedlegg 1.5 SPENNBETONG SPENNBETONG 1

Vedlegg 1.5 SPENNBETONG SPENNBETONG 1 Vedlegg 1.5 1 HVA ER FORSPENNING? SPENNARMERT BETONG/ Armert betong hvor all eller deler av armeringen av armeringen er forspent og dermed er gitt en strekktøyning i forhold til betongen. Kreftene som

Detaljer

Barduneringskonsept system 20, 25 og 35

Barduneringskonsept system 20, 25 og 35 Introduksjon Barduneringskonsept system 20, 25 og 35 Det skal utarbeides en beregning som skal omhandle komponenter i forbindelse med bardunering av master. Dimensjonering av alle komponenter skal utføres

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

Dimensjonering MEMO 65 Armering av TSS 20 FA

Dimensjonering MEMO 65 Armering av TSS 20 FA Dato: 10.04.2015 sss Side 1 av 9 INNHOLD DEL 1 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 3 DIMENSJONER OG TVERRSNITTSVERDIER... 3 Rør: CFRHS 40x40x4, L=215mm.

Detaljer

3T-MR - H over E1-32,8 kn 1. SiV - 5. btr - E2 Christiansen og Roberg AS BER

3T-MR - H over E1-32,8 kn 1. SiV - 5. btr - E2 Christiansen og Roberg AS BER 3T-MR - H40-1-2 over E1-32,8 kn 1 Dataprogram: E-BJELKE versjon 6.5 Laget av Sletten Byggdata Beregningene er basert på NS-EN 1992-1-1 og NS-EN 1990:2002 + NA:2008 Data er lagret på fil: G:\SiV 5 - E2

Detaljer

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING MEMO 711 Dato: 11.0.015 Sign.: sss SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING Siste rev.: Dok. nr.: 18.05.016 K5-10/711 Sign.: Kontr.: sss ps SØYLER I FRONT INNFESTING

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET

Detaljer

Kapittel 1:Introduksjon - Statikk

Kapittel 1:Introduksjon - Statikk 1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende

Detaljer

12.4 HORISONTALE SKIVER Virkemåte Generelt Vindlastene i skivebygg overføres fra ytterveggene til dekkekonstruksjonene,

12.4 HORISONTALE SKIVER Virkemåte Generelt Vindlastene i skivebygg overføres fra ytterveggene til dekkekonstruksjonene, 112 B12 SKIVESYSTEM Oppsummering av punkt 12.3 Enke, reguære bygg kan håndregnes etter former som er utedet. Føgende betingeser må være oppfyt. - Ae vertikae avstivende deer må ha hovedaksene i - og y-retning

Detaljer

B19 FORANKRING AV STÅL

B19 FORANKRING AV STÅL 292 B19 FORAKRIG AV STÅL tabeller. Tabellene er basert på relevante forsøk som bør gå foran teoretiske beregninger. Husk at reglene for sikkerhetsvurdering angitt i punkt 19.2 skal følges! Tillatte brukslaster

Detaljer

Skjærdimensjonering av betong Hva venter i revidert utgave av Eurokode 2?

Skjærdimensjonering av betong Hva venter i revidert utgave av Eurokode 2? Skjærdimensjonering av betong Hva venter i revidert utgave av Eurokode 2? Jan Arve Øverli Institutt for konstruksjonsteknikk NTNU 1 The never ending story of shear design Ritter, W., 1899, Die Bauweise

Detaljer

Vedlegg 1 - Prosjektdirektiv

Vedlegg 1 - Prosjektdirektiv Vedlegg 1 - Prosjektdirektiv Prosjektnavn: Prosjekttittel: Samvirke hulldekker på stålbjelker Samvirke mellom hulldekker og stålbjelker i bruksgrensetilstand Planlagt startdato: 28.03.2011 Varighet: 50

Detaljer

Nye Molde sjukehus. NOTAT Bærestruktur og avstivningssystem 1 INNLEDNING...2

Nye Molde sjukehus. NOTAT Bærestruktur og avstivningssystem 1 INNLEDNING...2 Nye Molde sjukehus NOTAT Bærestruktur og avstivningssystem 1 INNLEDNING...2 2 GRUNNLEGGENDE FORUTSETNINGER...2 2.1 BESKRIVELSE AV BYGNINGEN...2 2.2 PÅLITELIGHETSKLASSE OG KONTROLLKLASSE...2 2.3 BESTANDIGHET

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 734 Dato: 07.06.0 Sign.: sss BWC 50-40 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/34 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

Eurokoder Dimensjonering av trekonstruksjoner

Eurokoder Dimensjonering av trekonstruksjoner Eurokoder Dimensjonering av trekonstruksjoner NS-EN 1995 NS-EN 1990 NS-EN 338 NS-EN 1194 NS-EN 1991 Ved Ingvar Skarvang og Arnold Sagen 1 Beregningseksempel 1 -vi skal beregne sperrene på dette huset laster

Detaljer

BETONGELEMENTBOKEN BIND I

BETONGELEMENTBOKEN BIND I BETONGELEMENTBOKEN BIND I A V S T I V I N G I M O N T A S J E F A S E N BETONGELEMENTBOKEN BIND I A V S T I V I N G I M O N T A S J E F A S E N FORORD Bruken av betongelementer i industriell bygging har

Detaljer

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft - eksempler betongbjelker INNHOLDSFORTEGNELSE 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft 1.1. Dimensjonering for bøyning i bruddgrensetilstand 1.2. Dimensjonering mot skjærbrudd 2.

Detaljer

Dato: sss BSF BEREGNING AV ARMERING, Siste rev.: sss T-FORBINDELSE BJELKE-BJELKE. ps DIMENSJONERING. Dok. nr.:

Dato: sss BSF BEREGNING AV ARMERING, Siste rev.: sss T-FORBINDELSE BJELKE-BJELKE. ps DIMENSJONERING. Dok. nr.: MEMO 56 Dato: 1.10.013 Sign.: sss BSF BEREGNING AV ARMERING, Siste rev.: 11.05.16 Sign.: sss T-FORBINDELSE BJELKE-BJELKE Dok. nr.: K4-10/56 Kontr.: ps DIMENSJONERING BSF BEREGNING AV ARMERING, T-FORBINDELSE

Detaljer

Eurokode 5 en utfordring for treindustrien

Eurokode 5 en utfordring for treindustrien Eurokode 5 en utfordring for treindustrien Bruk av Eurokode 5- generell gjennomgang Treteknisk 2013.10.15 Sigurd Eide Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner

Detaljer

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering INNHOLD BWC 50 240 Dato: 07.06.12 sss Side 1 av 6 FORUTSETNINGER... 2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERØR BRUKT I KOMBINASJON MED TSS... 2 STÅL, BETONG OG

Detaljer

BSF ENHETER BEREGNING AV ARMERING

BSF ENHETER BEREGNING AV ARMERING Side 1 av 61 INNHOLD DEL 1 GUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 4 1.1 GENERELT... 4 1. STANDARDER... 4 1.3 KVALITETER... 5 1.4 DIMENSJONER OG TVERRSNITTSVERDIER... 6 1.5 LAST... 8 1.6 TOLERANSER...

Detaljer

MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER

MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER Beregnet til MARIDALSVEIN 205 Dokument type Rapport Dato 10.juni 2014 MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER Revisjon 01 Dato 10.juni 2014 Jørgen Stene

Detaljer

A7 ELEMENTTYPER OG TEKNISKE DATA

A7 ELEMENTTYPER OG TEKNISKE DATA A7 ELEMENTTYPER OG TEKNISKE DATA 103 I tabell A 2.1 er vist en oversikt over betongelementer til tak og dekker. I tillegg finnes på markedet betongelementer med lett tilslag som har modulbredde 0 mm og

Detaljer

Prosjektering MEMO 551 EN KORT INNFØRING

Prosjektering MEMO 551 EN KORT INNFØRING Side 1 av 7 Denne innføringen er ment å gi en liten oversikt over bruk og design av forbindelsene, uten å gå inn i alle detaljene. er et alternativ til f.eks faste eller boltede søylekonsoller. enhetene

Detaljer

TSS 41 ANBEFALT ARMERINGSMØNSTER

TSS 41 ANBEFALT ARMERINGSMØNSTER MEMO 55c Dato: 26.04.2011 Sign.: sss TSS 41 Siste rev.: 20.05.2016 Sign.: sss ANBEFALT ARMERINGSMØNSTER Dok. nr.: K3-10/55c Kontr.: ps DIMENSJONERING TSS 41 ANBEFALT ARMERINGSMØNSTER Figur 1: Anbefalt

Detaljer

B18 TRYKKOVERFØRING I FORBINDELSER

B18 TRYKKOVERFØRING I FORBINDELSER B18 TRYKKOVERFØRIG I FORBIDELSER 201 18.1 VALG AV MELLOMLEGG Bjelker : t = 6 10 mm (enkelt) Stål: t = 6 10 mm (enkelt) Plast: t = 4 mm (dobbelt) Brutto oppleggslengde (betongmål): av stål: l 150 mm Andre:

Detaljer

Steni 2. b eff. Øvre flens Steg h H Nedre flens

Steni 2. b eff. Øvre flens Steg h H Nedre flens FiReCo AS Dimensjonerings-diagram for BEET vegg Lastberegninger basert på NBI tester. Jørn Lilleborge Testdokument 1998 FiReCo AS 714-N-1 Side: 2 av 17 Innhold 1. DIMENSJONERINGSDIAGRAM FOR BEET VEGG...

Detaljer

Emnekode: LO oato august -03 I --- 'Antall oppgaver: I 5 i Ancill-vedl;&i. I ta~eller. Norske sta~darder (NS)-

Emnekode: LO oato august -03 I --- 'Antall oppgaver: I 5 i Ancill-vedl;&i. I ta~eller. Norske sta~darder (NS)- 6 høgskolen i oslo Emne: Dimensjonerin I Gruppe(r): I 2 BA I 2 BB I Eksamensoppgaven I, Antall sider (inkl! består av: I forsiden): 3 Emnekode: LO 222 8 --oato august -03 I --- rfaglig veileder: ilsen

Detaljer

Prosjektering av et kontorbygg i stål og betong Structural design of a steel and concrete office building

Prosjektering av et kontorbygg i stål og betong Structural design of a steel and concrete office building Bacheloroppgave 12-2013 Espen Renaa Vandbakk Lars Olaisen Prosjektering av et kontorbygg i stål og betong Structural design of a steel and concrete office building Høgskolen i Sør-Trøndelag Avdeling for

Detaljer