Rike oppgaver. Tana, May-08

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Rike oppgaver. Tana, May-08"

Transkript

1 Rike oppgaver Tana, May-08

2 Rike oppgaver? Hva er det? Hvorfor er det noe som elevene bør få arbeide med? Hvordan kan vi finne og lage rike oppgaver? 5-May-08 2

3 Problem Et problem er en spesiell type oppgaver som 1) En person ønsker eller har bruk for å løse 2) Personen på forhånd ikke har en gitt oppskrift eller metode for å løse 3) Det kreves arbeid og anstrengelser fra han eller henne for å finne en løsning Merk at en oppgave kan være et problem for én person, men en rutineoppgave for en annen 5-May-08 3

4 Problemløsning Faser i en problemløsningsprosess (Polya, 1957): Å forstå problemet (Hva er den ukjente, hvilke opplysn. er gitt, tegn figur med mer.) Å legge en plan ( Sett noe lignende tidligere? Omformulering av probl., kan du løse et lign problem/et mer generelt/mer spesielt?) Å utføre planen (Kontrollere hvert steg, begrunnelse for at det er korrekt?) Å se tilbake (Sjekke resultatet, kontroller argumentasjonen, annen måte å finne løsn.?) 5-May-08 4

5 Rike oppgaver (Hedrén m. flere) En rik oppgave er et problem som byr på muligheter til diskusjoner med andre når det gjelder ideer til løsninger og forståelse av matematiske begreper. I tillegg skal en rik oppgave tilfredsstille følgende kriterier: 1. Det skal introdusere viktige matematiske ideer eller løsningsstrategier 2. Det skal være lett å forstå og alle skal kunne komme i gang og ha muligheter til å jobbe med det (lav inngangsterskel) 3. Det skal oppleves som en utfordring, kreve anstrengelse og tillates å ta tid 5-May-08 5

6 Rike oppgaver (Hedrén m. flere) 4. Det skal kunne løses på flere ulike måter, med ulike strategier og representasjoner 5. Det skal kunne initiere en matematisk diskusjon som viser ulike strategier, representasjoner og matematiske ideer 6. Det skal kunne fungere som brobygger mellom ulike matematiske områder 7. Det skal kunne lede til at elever og lærere formulerer nye interessante problemer (Hva hvis..? Hvorfor?) 5-May-08 6

7 Mynter i lomma Jeg har åtte mynter i lomma. Til sammen har jeg 50 kroner. Hvilke mynter har jeg i lomma mi? 5-May-08 7

8 fortsettelse myntoppgaven - Har du/dere funnet alle løsningene eller ikke? - Hvordan forklarer/begrunner du/dere det? - Hvordan forklarer elever dette? - Konkretiseringsmateriell og skriftliggjøring 5-May-08 8

9 fortsettelse myntoppgaven Hvis vi nå vet at det finnes to løsninger, så kan du få stille meg et spørsmål for å finne ut hvilke mynter jeg har i lomma. Jeg kan bare svare ja eller nei på det spørsmålet du stiller. Hva vi du spørre meg om? Hvordan stiller elever spørsmål i denne sammenhengen? 5-May-08 9

10 Mynter i lomma - 2.trinn Jeg har 4 mynter i lomma. Hvor mye penger har jeg i lomma? Jeg har 4 mynter i lomma. To av dem er like. Hvor mye penger har jeg i lomma mi? Jeg har 40 kroner i lomma. Hvilke mynter har jeg i lomma mi? Jeg har 40 kroner i lomma. To av myntene er like. Hvilke mynter har jeg i lomma mi? Jeg har 5 mynter i lomma. Til sammen har jeg 40 kroner. Hvilke mynter har jeg i lomma mi? 5-May-08 10

11 fortsettelse myntoppgaven Rike matematiske problemer har mange kriterier. En av disse er at problemet skal kunne lede elever og lærere til å formulere nye og interessante problem, dvs. stille nye spørsmål. Lag et rikt problem inspirert av myntproblemet og løs det. Oppgaven du/dere lager skal ha minst to løsninger. Hvilke nye problemer formulerer elevene? Hvordan følge opp elevenes oppgaveformuleringer. Eksempel på dette. 5-May-08 11

12 Myntoppgave 2 Jeg har nå fem mynter og har til sammen 20 kroner. Hvilke mynter kan det være? - Har vi funnet alle løsningene eller ikke? - Hvordan forklarer/begrunner du/dere det? - Hvordan forklarer elever dette? - Konkretiseringsmateriell og skriftliggjøring 5-May-08 12

13 Matematisk resonnement Å resonnere er synonymt med det å tenke, følge en logisk tankerekke eller bedømme noe ut fra fornuftgrunner. I et matematisk resonnement forklarer man og trekker fornuftslutninger med og ved hjelp av matematikk Lithner (2006) hevder at dersom en lærer får elever til å resonnere over noe utradisjonelt, noe nytt, vil det være lettere å få tak i og få fram hvordan elevene tenker 5-May-08 13

14 Hvorfor skal elevene arbeide med rike oppgaver? Målet med matematikk i skolen: Helhetlig matematisk kompetanse Det innebærer blant annet å - kunne kjenne igjen matematikken i ulike kontekster - kunne bruke basiskunnskapene sine på nye problemstillinger - kunne se sammenhenger - tenke matematisk og opparbeide et sett av løsningsstrategier 5-May-08 14

15 Rike oppgaver er et middel til å nå disse målene Dessuten - er slike oppgaver selvdifferensierende - oppmuntrer til samarbeid og finne hverandres sterke og svake sider - gir utfordringer til alle uavhengig av nivå - gir mestringsfølelese - utvikler og oppøver utholdenhet - er GØY å jobbe med!!! Både for elever og lærere ja til og med foreldre! 5-May-08 15

16 Hva kreves av læreren? Å kunne arbeide med en oppgave over tid, kanskje i flere omganger Åpen på innspill fra elevene Ikke bare være opptatt av svaret Faglig innsikt 5-May-08 16

17 Hvordan finne og lage rike oppgaver? De er rundt dere overalt! Dere må bare lære å se verden med matematiske øyne. De finnes i lærebøkene også, hvis vi bare ser godt nok etter! 5-May-08 17

18 Fra konkurranser: Kenguruoppgave Daniel har ni mynter hver verd 2 cent. Anne har åtte mynter hver verd 5. Hvordan kan de fordele pengene slik at begge får like mye? 5-May-08 18

19 Fra ei lærebok: Sirkel, 8. trinn (Torkildsen/Maugesten) Kim, Ove og Einar hadde 21 brusflasker: 7 var tomme, 7 var halvfulle og 7 var fulle. De delte slik at alle tre hadde like mange flasker og like mye brus. Hvordan klarte de det? Er det mer enn én måte å gjøre det på? 5-May-08 19

20 Fra kiosken.. K U L E I S 5-May-08 20

21 Kuleis Hanne skal kjøpe kuleis og kan velge mellom fire ulike smaker. Hun vil ha to iskuler. På hvor mange ulike måter kan hun velge isen sin? Plassering Smak Hver smak kan kun velges en gang per is Hver smak kan velges flere ganger per is Plasseringen av kulene er betyr ingenting Plasseringen av kulene betyr noe A C B D 5-May-08 21

22 fortsettelse kuleisoppgaven - Har du/dere funnet alle løsningene eller ikke? - Hvordan forklarer/begrunner du/dere det? - Hvordan forklarer elever dette? - Konkretiseringsmateriell og skriftliggjøring 5-May-08 22

23 Løsningsmetoder. Usystematisk leting: jv sv vb jb sj bs 5-May-08 23

24 Løsningsmetoder. Systematisk leting: To smaker Tre smaker, en ny smak, som kombineres med de andre to Fire smaker, en ny smak, som kan kombineres med de andre tre. 1 kombinasjon (1 + 2) kombinasjoner= 3 kombinasjoner (3 + 3) kombinasjoner = 6 kombinasjoner vanilje jordbær blåbær sitron vanilje - vj vb vs jordbær jv - jb js blåbær bv bj - bs sitron sv sj sb - 5-May-08 24

25 Løsningsmetoder. Retorisk: Jeg tar så mange smaker som finnes og multipliserer det med en smak mindre. Deretter tar jeg halvparten av det svaret jeg fikk. Symbolsk: Rekursjonsformel S S n = + n+ 1 n Sn = Sn 1 + ( n 1) Aritmetrisk tallfølge Sn S n = ( n 1) = nn ( 1) 2 5-May-08 25

26 Antall kuler (k) valgt ut blant antall smaker (n) Plassering Smak Plasseringen av kulene er betyr ingenting Hver smak kan kun velges en gang per is A n k Hver smak kan velges flere ganger per is B n+ k 1 k Plasseringen av kulene betyr noe n! C D k ( n k)! n 5-May-08 26

27 Åpne oppgaver Oppgaver hvor utgangspunktet og/eller målet for oppgaven ikke er eksakt gitt 5-May-08 27

28 Tallpyramiden May-08 28

29 Forts. tallpyramiden Hva hvis det er multiplikasjon? Hva hvis tallpyramiden har fire etasjer? Hva hvis tallpyramiden har enda flere etasjer? 5-May-08 29

30 Tallpyramider eller 10 på topp Tangenten 4/2006, artikkel av Kurt Klungland Hvor mange mulige bunnlinjer kan det være i en tallpyramide med et gitt antall etasjer etter gitte regler? ? ? 9 6? ? 5??? 5-May-08 30

31 Pascals tallpyramide (talltrekant) 5-May-08 31

32 Selvgående oppgaver Noen oppgaver er så spennende og motiverende at elevene arbeider og regner, mer eller mindre av seg selv, fordi de bare MÅ undersøke og finne svar på nye spørsmål. 5-May-08 32

33 Tallmønster 1 1 = = = Hva skjer? Finnes det et mønster? Er det uendelig? Hvorfor/hvorfor ikke? = osv. 5-May-08 33

34 1x1= 1 11x11= x111= x1111= x11111= x111111= x = x = x = (10) x = (11) x = (19) x = May-08 34

35 Hva med 2 2? Se etter et mønster/system. Beskriv det. Lag hypotese. Hva tror du skjer? Sjekk om det stemmer. Hva med 3 3? Hva med 4 4? Hva med 5 5 eller 9 9? 5-May-08 35

36 2x2=4 22x22= x222= x2222= x22222= x222222= May-08 36

37 3x3= 9 33x33= x333= x3333= x9= 81 99x99= x999= x9999= x5= 25 55x55= x555= x5555= May-08 37

38 Til neste samling. Gjennomfør en aktivitet i klassen/gruppen din. Lag et kort notat om: aktivitet, konkretiseringsmateriell begreper kompetansemål i LK06 ferdigheter, forståelse, anvendelse Erfaringer rundt gjennomføringen Erfaringsutveksling på neste samling, ta gjerne med kopieringsorginaler og elevarbeid 5-May-08 38

Rike oppgaver. Kirkenes, May-08

Rike oppgaver. Kirkenes, May-08 Rike oppgaver Kirkenes, 15.04.08 5-May-08 Rike oppgaver? Hva er det? Hvorfor er det noe som elevene bør få arbeide med? Hvordan kan vi finne og lage rike oppgaver? 5-May-08 2 Problem Et problem er en spesiell

Detaljer

Statistikk, sannsynlighet og kombinatorikk

Statistikk, sannsynlighet og kombinatorikk Statistikk, sannsynlighet og kombinatorikk NY GIV - 1. Samling 2011/2012 Astrid Bondø 11-Oct-11 Statistikk Eksamensoppgaver Eksempler på oppgaver Statistikkspill Sannsynlighet Eksamensoppgaver Baller i

Detaljer

Statistikk, sannsynlighet og kombinatorikk

Statistikk, sannsynlighet og kombinatorikk NY GIV, januar/februar 2011 Oslo, Trondheim og Stavanger Statistikk, sannsynlighet og kombinatorikk Astrid Bondø NSMO 17-Feb-11 Sentralmål Eksempler fra eksamen Statistikkspill Eksempler på oppgaver Sannsynlighet

Detaljer

Statistikk, sannsynlighet og kombinatorikk. NY GIV - 1. Samling 2012/2013 Astrid Bondø

Statistikk, sannsynlighet og kombinatorikk. NY GIV - 1. Samling 2012/2013 Astrid Bondø Statistikk, sannsynlighet og kombinatorikk NY GIV - 1. Samling 2012/2013 Astrid Bondø Statistikk Eksamensoppgaver Eksempler på oppgaver Statistikkspill Sannsynlighet Eksamensoppgaver Baller i boksen Kombinatorikk

Detaljer

Hvordan blir det og hvordan gikk det? Skolering Nordland og Troms Oktober/november 2014 Astrid Bondø

Hvordan blir det og hvordan gikk det? Skolering Nordland og Troms Oktober/november 2014 Astrid Bondø Hvordan blir det og hvordan gikk det? Skolering Nordland og Troms Oktober/november 2014 Astrid Bondø Statistikk og sannsynlighet planlegge og samle inn data representere data i tabeller og diagram lese,

Detaljer

Problemløsing. Fra rike oppgaver til kenguruoppgaver 1. 4. trinn. Otta, 2. april 2013 Anne-Gunn Svorkmo

Problemløsing. Fra rike oppgaver til kenguruoppgaver 1. 4. trinn. Otta, 2. april 2013 Anne-Gunn Svorkmo Problemløsing Fra rike oppgaver til kenguruoppgaver 1. 4. trinn Otta, 2. april 2013 Anne-Gunn Svorkmo Problem (en definisjon) 1) Et problem er en spesiell oppgave som en person ønsker eller har bruk for

Detaljer

Undervisningsprinsipper

Undervisningsprinsipper Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles karakteristiske trekk Svein H. Torkildsen, NSMO Fra TIMMS Advanced 2008 Figur 2.8 Lærernes syn på hvor ofte ulike arbeidsmåter

Detaljer

Matematisk kompetanse en aktivitet

Matematisk kompetanse en aktivitet Matematisk kompetanse en aktivitet Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Prinsipper for god regneopplæring 1. Sett klare

Detaljer

Undervisningsprinsipper

Undervisningsprinsipper Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles karakteristiske trekk Svein H. Torkildsen, NSMO Fra læreplanen Opplæringa vekslar mellom utforskande, leikande, kreative og

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Undervisningsprinsipper

Undervisningsprinsipper Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles milepæler Svein H. Torkildsen, NSMO Lærere kan ikke gjøre hva de vil Vi er forpliktet på en læreplan som blant annet sier

Detaljer

Problemløsing trinn. Astrid Bondø Lesja, 24. september Sep-14

Problemløsing trinn. Astrid Bondø Lesja, 24. september Sep-14 Problemløsing 8. 10.trinn Astrid Bondø Lesja, 24. september 2014 25-Sep-14 Drøft Hva er en problemløsingsoppgave? 1. Skriv et par stikkord individuelt 2. Diskuter med to-tre andre 3. Finn ut hva dere har

Detaljer

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven.

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven. Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

Prinsipper for god regneopplæring. - Med utgangspunkt i en ak5vitet

Prinsipper for god regneopplæring. - Med utgangspunkt i en ak5vitet - Med utgangspunkt i en ak5vitet 1. Se% klare mål, og form undervisningen dere%er 2. Vær bevisst i valg av oppgaver Ulike oppgavetyper Diagnos5ske oppgaver Rike oppgaver Realis5ske oppgaver Rike oppgaver

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Figurtall en kilde til kreativitet

Figurtall en kilde til kreativitet Vigdis Brevik Petersen Figurtall en kilde til kreativitet I læreplanen er det lagt vekt på at elevene skal bruke initiativ, kreativitet og utforskning for å etablere kjennskaper og innsikt i matematikkfaget.

Detaljer

Hva måler nasjonal prøve i regning?

Hva måler nasjonal prøve i regning? Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

Problemløsing trinn. Astrid Bondø Skjåk, 22. september Sep-14

Problemløsing trinn. Astrid Bondø Skjåk, 22. september Sep-14 Problemløsing 1. 4.trinn Astrid Bondø Skjåk, 22. september 2014 25-Sep-14 Drøft Hva er en problemløsingsoppgave? 1. Skriv et par stikkord individuelt 2. Diskuter med to-tre andre 3. Finn ut hva dere har

Detaljer

Utforsking og undring med kenguruoppgaver

Utforsking og undring med kenguruoppgaver Utforsking og undring med kenguruoppgaver Småtrinnet Anne-Gunn Svorkmo Litt fakta om Kengurukonkurransen En internasjonal matematikkonkurranse for elever fra 6 til 19 år Første gang arrangert i 1994 Norge

Detaljer

Kommunikasjon og muntlig aktivitet

Kommunikasjon og muntlig aktivitet Kommunikasjon og muntlig aktivitet 1. 4. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk.

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hvem skal ut? pen pil ku penn Hvem skal ut? Hva kan være felles for denne

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015 MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument

Detaljer

Sannsynlighet for alle.

Sannsynlighet for alle. Sannsynlighet for alle. Signe Holm Knudtzon Høgskolen i Buskerud og Vestfold Novemberkonferansen 2015 Novemberkonferansen 2015 Signe Holm Knudtzon. HBV. Sannsynlighet for alle 1 Sannsynlighet for alle.

Detaljer

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende

Detaljer

Oppgavestreng Halvering/dobling i multiplikasjon

Oppgavestreng Halvering/dobling i multiplikasjon Oppgavestreng Halvering/dobling i multiplikasjon Mål Generelt: Resonnere omkring egenskaper ved tall regneoperasjoner. Bruke ulike representasjoner i utforskning begrunnelse av egenskaper strategier. Spesielt:

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Sammen blir vi sterke! Prosjekt X. Matematikksatsingen i Nord-Gudbrandsdalen Svein H. Torkildsen Anne-Gunn Svorkmo 2.April 2013

Sammen blir vi sterke! Prosjekt X. Matematikksatsingen i Nord-Gudbrandsdalen Svein H. Torkildsen Anne-Gunn Svorkmo 2.April 2013 Sammen blir vi sterke! Prosjekt X Matematikksatsingen i Nord-Gudbrandsdalen Svein H. Torkildsen Anne-Gunn Svorkmo 2.April 2013 Hvorfor kompetanseheving? Elevene synes matematikk er kjedelig Elevene tror

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Hvorfor blir det tull med tall? - grunnleggende tallforståelse

Hvorfor blir det tull med tall? - grunnleggende tallforståelse Hvorfor blir det tull med tall? - grunnleggende tallforståelse Ny GIV videregående skole Astrid Bondø Svein Hallvard Torkildsen 16-Oct-13 Grunnleggende tallforståelse Mange elever sliter med å klare matematikken

Detaljer

Utforsking og undring med kenguruoppgaver

Utforsking og undring med kenguruoppgaver Utforsking og undring med kenguruoppgaver Mellomtrinn/ungdomstrinn Anne-Gunn Svorkmo Litt fakta om Kengurukonkurransen En internasjonal matematikkonkurranse for elever fra 6 til 19 år Første gang arrangert

Detaljer

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016 Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet

Detaljer

Definisjon av god regning

Definisjon av god regning Definisjon av god regning Å kunne regne er en viktig forutsetning for egen utvikling, og for å ta hensiktsmessige avgjørelser på en rekke områder i eget daglig- og arbeidsliv. Videre er det nødvendig for

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Matematikk 1 1-7, LGU11004/ 4MX1 1-7E1 A,B,C

Matematikk 1 1-7, LGU11004/ 4MX1 1-7E1 A,B,C Skriftlig eksamen i Matematikk -7, LGU004/ 4MX -7E A,B,C 5 studiepoeng ORDINÆR/UTSATT EKSAMEN 9. mai 204. Sensurfrist: 09.06.204 BOKMÅL Resultatet blir gjort tilgjengelig fortløpende på studentweb., senest

Detaljer

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø Forfatter Astrid Bondø Publisert dato: April 2016 Matematikksenteret Kvikkbilde Aktiviteten Kvikkbilde er designet for å engasjere elever i å visualisere tall og å forme mentale representasjoner av en

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

Matematikkeksamen i grunnskolen. Norsk matematikkråd Svein Anders Heggem

Matematikkeksamen i grunnskolen. Norsk matematikkråd Svein Anders Heggem Matematikkeksamen i grunnskolen Norsk matematikkråd 15.09.2016 Svein Anders Heggem Hva er målet for matematikkundervisningen i skolen? Hva fremmer en helhetlig matematikkompetanse? I hvor stor grad skal

Detaljer

Matematisk julekalender for trinn, 2012

Matematisk julekalender for trinn, 2012 Matematisk julekalender for 1.-4. trinn, 2012 Årets julekalender for 1. 4. trinn består av ni oppgaver. Alle oppgavene er laget i tre utgaver; lett, middels og vanskelig (merket med hhv. L, M og V). Alle

Detaljer

2.3 Delelighetsregler

2.3 Delelighetsregler 2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne

Detaljer

Undersøkende matematikk i barnehage og skole. Barnehagekonferanser Bodø og Oslo, november 2016

Undersøkende matematikk i barnehage og skole. Barnehagekonferanser Bodø og Oslo, november 2016 Undersøkende matematikk i barnehage og skole Barnehagekonferanser Bodø og Oslo, november 2016 Camilla.justnes@matematikksenteret.no Undersøkende matematikk hva er det? Ett av flere kjennetegn på god læring

Detaljer

I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive.

I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive. Geometri og måling I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive. ARTIKKEL SIST ENDRET: 27.10.2015 Hovedområde

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI Inspirasjon og motivasjon for matematikk God matematikkundervisning... hva er det? for hvem? 15-Oct-06 15-Oct-06 Matte er bare

Detaljer

Kommunikasjon og muntlig aktivitet

Kommunikasjon og muntlig aktivitet Kommunikasjon og muntlig aktivitet 5. 7. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk.

Detaljer

Vurderingsveiledning

Vurderingsveiledning Lokalt gitt skriftlig eksamen i MAT1001 Matematikk 1P-Y vår 017 Eksamensmodell Eksamen varer i 4 timer og består av to deler. Eksamensordning Eksamen har ingen forberedelsesdel. Del 1 og Del av eksamen

Detaljer

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. Prinsipper og strategier ved Olsvik skole. FORORD Olsvik skole har utarbeidet en helhetlig plan i regning som viser hvilke mål og arbeidsmåter som er forventet

Detaljer

Vurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene

Vurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene Utdanningsavdelingen Vurderingsveiledning Muntlige eksamener Lokalt gitt eksamen Matematikk Felles for utdanningsområdene Karakterer i fag 4-4. Karakterer i fag Det skal nyttes tallkarakterer på en skala

Detaljer

Nye læreplaner, nye utfordringer i matematikk!

Nye læreplaner, nye utfordringer i matematikk! Oversikt Nye læreplaner, nye utfordringer i matematikk! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen

Detaljer

Vurdering. Anne-Gunn Svorkmo og Svein H. Torkildsen

Vurdering. Anne-Gunn Svorkmo og Svein H. Torkildsen Vurdering Anne-Gunn Svorkmo og Svein H. Torkildsen Vurdering av undervisning Film 8 x 6. Fram til ca 5:30. I deler av diskusjonen er elevene nokså stille. Drøft mulige årsaker til det og se spesielt på

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver?

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver? DiVeLOpp - DEL 1 Didaktisk Verktøy for å Lage Oppgaver Vi vil snakke om kunnskaper og læringsaktiviteter i fire ganger. Vi begynner med å identifisere kunnskaper. Deretter ser vi på læringsaktiviteter.

Detaljer

Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn

Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn Lillehammer 5. og 6. september 2017 Revidert versjon pga. offentlighet Grethe Ravlo Leder for prøveutviklingsgruppa ved Nasjonalt

Detaljer

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse Fagdag 5-3MX Innhold: 1. Tilbakemelding på første termin 2. Om å lære matematikk og vurdering 3. Sannsynlighetsfordelinger (7.2), forventning og varians (7.3, 7.4): Gjennomgåelse 4. Oppgaver 1 Tilbakemelding

Detaljer

Magisk Matematikk. 75 minutter. Passer for: Varighet:

Magisk Matematikk. 75 minutter. Passer for: Varighet: Lærerveiledning Passer for: Varighet: Magisk Matematikk 9. - 10. trinn 75 minutter Magisk Matematikk er et skoleprogram som tar utgangspunkt i «magiske» talltriks i plenum som enkelt avsløres med algebra,

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

Motivasjon og engasjement i matematikk

Motivasjon og engasjement i matematikk Motivasjon og engasjement i matematikk Verksted på matematikkens dag 28.04.2015 Geir Botten Høgskolen i Sør-Trøndelag, Trondheim Mynter i lomma Jeg har fem mynter i lomma. Til sammen er det 32 kroner.

Detaljer

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Gje meg eit tresifra tal 17-Apr-06 17-Apr-06 2 Intensjoner

Detaljer

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Prinsipper for god undervisning Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Lærere kan ikke gjøre hva de vil Vi er forpliktet på en læreplan som blant annet sier Opplæringa vekslar mellom utforskande,

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder Aspekter ved regning som skal vektlegges i ulike fag Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder ARTIKKEL SIST

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk oversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere

Detaljer

Ti år med nasjonale prøver i regning

Ti år med nasjonale prøver i regning Ti år med nasjonale prøver i regning Resultater knyttet til symbolbruk og forståelse.. og en del annet Trondheim 28. november 2017 Grethe Ravlo Leder for prøveutviklingsgruppa ved Nasjonalt senter for

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:

Detaljer

Matematikk i lys av Kunnskapsløftet

Matematikk i lys av Kunnskapsløftet Matematikk i lys av Kunnskapsløftet Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Intensjoner med den nye læreplanen 1. Større handlingsrom for lærerne: Organisering, metoder, arbeidsmåter

Detaljer

Vi har snakket om ulike kunnskaper og dere har identifisert kunnskaper i en oppgave. I dag ser vi på læringsaktiviteter som foregår.

Vi har snakket om ulike kunnskaper og dere har identifisert kunnskaper i en oppgave. I dag ser vi på læringsaktiviteter som foregår. DiVeLOpp DEL 2 Vi har snakket om ulike er og dere har identifisert er i en oppgave. I dag ser vi på læringsaktiviteter som foregår. Målet er at dere vil være in stand til å lage utfordrende oppgaver slik

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Matematisk kompetanse

Matematisk kompetanse Matematisk kompetanse Svein H. Torkildsen, NSMO Hent presentasjoner mv på: www.matematikksenteret.no/nygivvg Oppdrag Matematikkundervisning i videregående skole spenner over vidt spekter fra 1PY til R2

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

Matematisk kompetanse God regning. Svein H. Torkildsen, NSMO

Matematisk kompetanse God regning. Svein H. Torkildsen, NSMO Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Hent presentasjoner mv www.matematikksenteret.no/nygivvg Dette har vi fokus på Robust matematikkunnskap God undervisning Teoretisk grunnlag Sentrale

Detaljer

Resonnering. Eksempelundervisning Nord-Gudbrandsdalen, oktober Anne-Gunn Svorkmo Astrid Bondø

Resonnering. Eksempelundervisning Nord-Gudbrandsdalen, oktober Anne-Gunn Svorkmo Astrid Bondø Resonnering Eksempelundervisning Nord-Gudbrandsdalen, oktober 2015 Anne-Gunn Svorkmo Astrid Bondø MIRRORS Eksempler på puslespillet Mirrors med tilhørende løsninger. Bruk eksemplene til å bestemme mål

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: MATEMATIKK Trinn: 9 KLASSE Skole: LINDESNES UNGDOMSSKOLE År: 2015-2016 Lærestoff: MEGA 9A OG 9B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og

Detaljer

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

MATEMATIKK 1, 4MX15-10E1 A

MATEMATIKK 1, 4MX15-10E1 A Skriftlig eksamen i MATEMATIKK 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 20. desember 2010. Sensur faller innen 11. januar 2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter

Detaljer

Hvilke faktorer påvirker elevers læring?

Hvilke faktorer påvirker elevers læring? Hvilke faktorer påvirker elevers læring? Mona Røsseland Doktorstipendiat Universitetet i Agder Internasjonale sammenligninger TIMSS: Trends in Mathematics and Science Study - (hvert fjerde år med elever

Detaljer

Foreldrene betyr all verden! Brynhild Farbrot

Foreldrene betyr all verden! Brynhild Farbrot Foreldrene betyr all verden! Brynhild Farbrot Foosnæs brynhild.foosnas@ude.oslo.kommune.no @BrynhildFF Plan for kvelden Hva kan dere foreldre bidra med? Matematikkfaget i skolen i dag Spill og aktiviteter

Detaljer

Matematisk kompetanse God regning

Matematisk kompetanse God regning Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Hent presentasjoner mv på: www.matematikksenteret.no/nygivvg Oppdrag Matematikkundervisning i videregående skole Vidt spekter fra 1P-Y til R2

Detaljer

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og

Detaljer

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen 1-May-06 1-May-06

Detaljer

Språk og kommunikasjon i matematikk-klasserommet

Språk og kommunikasjon i matematikk-klasserommet Språk og kommunikasjon i matematikk-klasserommet Geir Botten og Hermund Torkildsen Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning 1 Læring av geometriske begreper gjennom aktiv kommunikasjon

Detaljer

SKRIFTLIG VURDERING PÅ BARNETRINNET

SKRIFTLIG VURDERING PÅ BARNETRINNET Skolens navn: Adresse: Telefon/faks: SKRIFTLIG VURDERING PÅ BARNETRINNET Elevens navn Gruppe og skoleår _ Vurderingen er gjennomgått i samtale: (dato) Underskrift elev Underskrift foresatt Underskrift

Detaljer

Lese og snakke og skrive og regne er bra - og digitale verktøy skal FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen

Lese og snakke og skrive og regne er bra - og digitale verktøy skal FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen Lese og snakke og skrive og regne er bra - og digitale verktøy skal vi ha FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen Hvilke nye utfordringer gir Kunnskapsløftet?

Detaljer

Language descriptors in Norwegian Norwegian listening Beskrivelser for lytting i historie/samfunnsfag og matematikk

Language descriptors in Norwegian Norwegian listening Beskrivelser for lytting i historie/samfunnsfag og matematikk Language descriptors in Norwegian Norwegian listening Beskrivelser for lytting i historie/samfunnsfag og matematikk Forstå faktainformasjon og forklaringer Forstå instruksjoner og veiledning Forstå meninger

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Kursinnhald Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI Hva er matematisk kompetanse

Detaljer

Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober 2013. Ditt navn og årstall

Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober 2013. Ditt navn og årstall Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse Tone Skori 3. oktober 2013 Ditt navn og årstall Agenda for dagen Læringspartner Grunnleggende ferdigheter i matematikk matematisk

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Eksempelundervisning utforsking Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Matematikfaget skal lære eleverne at formulere faglige spørgsmål, fastlægge manglende opplysninger, vende tingene

Detaljer

Takk for fine framføringer

Takk for fine framføringer Takk for fine framføringer Etter oppfordring Kan skolene sende meg det dere har brukt i dag og som foreligger elektronisk? Presentasjoner små hefter - annet? Det blir lagt på Mattelyst-siden til gjensidig

Detaljer

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett D

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett D Matematikk 2 1-7 Hjemmeeksamen i gruppe, Høst 2012 Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl. 9.00 Sett D Oppgaven tar utgangspunkt i den vedlagte casen. Eksamensbesvarelsen skal være en analyse

Detaljer

Lese og skrive i matematikkfaget

Lese og skrive i matematikkfaget Lese og skrive i matematikkfaget Noles-samling, Oslo, oktober 2011 Elin Reikerås Fokus på Hvordan inngår lesing og skriving i matematikkfaget? Ulike tekster og elevens læring Gjennom dette gi ideer til

Detaljer

Familiematematikk. Mattelyst, Nord-Gudbrandsdalen mars 2015. Anne-Gunn Svorkmo

Familiematematikk. Mattelyst, Nord-Gudbrandsdalen mars 2015. Anne-Gunn Svorkmo Familiematematikk Mattelyst, Nord-Gudbrandsdalen mars 2015 Anne-Gunn Svorkmo Plan for dagene Hvorfor Familiematematikk Hvordan Hva 2 Lærere og foreldre Lærerkurs i foreldrematematikk som handler om foreldrekurs

Detaljer

Takk for fine framføringer

Takk for fine framføringer Takk for fine framføringer Etter oppfordring Kan skolene sende meg det dere har brukt i dag og som foreligger elektronisk? Presentasjoner små hefter - annet? Det blir lagt på Mattelyst-siden til gjensidig

Detaljer