Obligatorisk oppgave 1

Størrelse: px
Begynne med side:

Download "Obligatorisk oppgave 1"

Transkript

1 Obligatorisk oppgave 1 a) Oppgaveteksten oppgir et vektorfelt f(x, y) F x, y = g x, y der f og g er oppgitt ved f x, y = x 3 3xy 1 og g x, y = y 3 + 3x y. Vi kan med dette regne ut Jacobimatrisen F x, y for vektorfeltet F x, y på følgende måte: F x, y = δf (x,y) δx δg (x,y) δx δf (x,y) δy δg (x,y) δy = δ(x 3 3xy 1) δx δ( y 3 +3x y ) δx δ(x 3 3xy 1) δy δ( y 3 +3x y ) δy F x, y = 3x 3y 6xy 6xy 3y + 3x b) Videre ønsker vi å tegne grafene f(x, y) og g(x, y) hver for seg og sammen. Dersom vi bruker Matlab til å gjøre dette skriver vi en kode: % create vectors of 100 points and transform into arrays a = linspace(-1.4, 1.4); b = linspace(-1.4, 1.4); [x, y] = meshgrid(a, b); f = x.^3-3*x.*y.^; g = -y.^3 + 3.*(x.^).*y; % plot f and g respectively figure(1); mesh(x,y,f); colorbar; title('f(x,y)') figure(); mesh(x,y,g); colorbar; title('g(x,y)') % plot f and g together figure(3); mesh(x,y,f); hold on; mesh(x,y,g); colorbar; title('f(x,y) and g(x,y)'); hold off Dersom vi kjører dette programmet i matlab vil vi få følgende visualiseringer. 1

2 Vi kan også vri bildene slik at vi ser grafene ovenfra. Vi kan begynne med å se på grafen f(x, y): Dersom vi vrir på grafen ser vi hvordan de forskjellige verdiene varierer punktvis, hvor fargene indikerer verdiene for hvert punkt.

3 Vi kan også gjøre det samme for g(x, y). På samme måte får vi også sett grafen g(x, y) ovenfra. 3

4 Da vi har gjort det for de enkelte grafene f x, y og g(x, y) kan vi gjøre det samme for figuren hvor figurene er tegnet sammen, men dersom vi vrir grafene på samme måte som vi gjorde for de enkelte grafene vil vi kun se de punktvise middelverdiene. Dette kan ses på figuren til høyre. Vi bør derfor vri grafen på en slik måte at det er mulig å se grafene fra en best mulig vinkel, slik at vi kan se hvordan grafene utvikler seg i forhold til hverandre. Vi kan vri på en måte slik at vi ser grafene fra en annen vinkel, hvor alle hjørnene syns. 4

5 c) Det er også mulig å tegne nivåkurver for grafene ved hjelp av kommandoen contour. Dersom vi skriver om programmet for dette vil vi få et program som tegner nivåkurvene. Det kan også være nyttig å bruke kommandoen clabel for å skrive på verdiene til den enkelte nivåkurve. a = linspace(-1.4, 1.4); b = linspace(-1.4, 1.4); [x, y] = meshgrid(a, b); f = x.^3-3.*x.*y.^; g = -y.^3 + 3.*(x.^).*y; figure(1); clabel(contour(x,y,f)); title('f(x,y)') figure(); clabel(contour(x,y,g)); title('g(x,y)') figure(3); clabel(contour(x,y,f)); hold on; clabel(contour(x,y,g)); title('f(x,y) and g(x,y)'); hold off Dersom vi kjører dette programmet i Matlab vil vi få tre bilder med nivåkurver. Et for hver enkelt grafem og et for de to grafene. Ut fra det siste bildet hvor nivåkurvene er lagt over hverandre kan det tenkes at F x, y = 0 der hvor nivåkurvene med verdi 0 møtes. Altså rundt punktet (0,0). 5

6 d) Vi kan finne de reelle løsningene for F x, y = 0 ved å se på likningssettet. F x, y = f(x, y) g x, y = x3 3xy 1 y 3 + 3x y = 0 0 Med dette får vi to likninger som skal løses. 1. x 3 3xy 1 = 0. y 3 + 3x y = 0 Først ønsker vi å finne et uttrykk for y: y 3 + 3x y = 0 3x y = y 3 y = 3x Med uttrykket for y finner vi en verdi for x: x 3 3xy 1 = 0 x 3 3x 3x 1 = 0 x 3 9x 3 = 1 8x 3 = 1 x 3 = x = 1 8 x = 1 Deretter setter vi inn verdien vi har funnet for x for å finne y: 3x = y 3 1 = y 3 4 = y y = 3 4 y = ± 3 Vi har med dette funnet to løsninger, den tredje løsningen er funnet ved å sette inn for f(x, y) eller g(x, y). Ved å anta at x eller y er 0 for x 3 3xy 1 = 0 kan vi finne den tredje løsningen. y = 0 x = 0 x 3 3xy 1 = 0 x 3 3xy 1 = 0 x 3 1 = x = 1 x = 1 x 0 Vi kan dobbeltsjekke ved å bruke den andre funksjonen g(x, y) som vi enda ikke har tatt i brukt. Dersom verdiene er riktige skal svaret bli 0. y 3 + 3x y = = = 0 6

7 Løsningene for F x, y = 0 er 1, ± 3 og 1, 0. Med andre ord: r 1 = 1, 3 r = 1, 3 r 3 = 1,0 e) Vi kan vise at F x = 0 dersom følgen x n n>0 konvergerer mot et punkt x der F (x) er inverterbar. x n+1 = x n F x n 1 F (x n ), n 1 x n+1 x n = F x n 1 F (x n ) x n+1 + x n = F x n 1 F (x n ) lim x n+1 + x n = lim n n x + x = F x 1 F (x) F x 0 = F x F x 1 F (x) 0 = I F (x) F x = 0 Vi har med dette vist at F x = 0. F x n 1 F x n f) Deretter ønsker vi å skrive et program som beregner grensen for denne følgen. Programmet har fire inputparametre: x 1, y 1, toleransen ε og det maksimale antall iterasjoner N. Videre vil utregningen foregå i en for -løkke som kjøres så lenge x n x n 1 ε er gyldig og n N. Programkoden for et slikt program kan se slik ut: % define function function [x,y,n]=newton(x1,y1,eps,n) x(1)=x1;y(1)=y1; u = [x(1); y(1)]; % handle data for n=1:n F = [u(1)^3-3*u(1)*u()^ - 1; -u()^3 + 3*u()*u(1)^]; jf = [3*u(1)^-3*u()^, -6*u(1)*u(); 6*u(1)*u(), -3*u()^+3*u(1)^]; inverse = inv(jf); unew = u - inverse*f; if (abs(unew-u)).^ <= eps break end u = unew; end % print result u, n g) Dersom vi kjører programmet med verdiene x 1, y 1 = 1,0, x 1, y 1 = 1,1 og x 1, y 1 = 1.1,0 med en passende ε får vi følgende output: 7

8 >> newton(-1,0, ,0); u = n = 9 >> newton(1,1, ,0); u = n = 8 >> newton(1.1,0, ,0); u = n = 4 Med disse startverdiene finner vi én av tre løsninger. Dersom vi bruker andre verdier er det mulig å finne andre løsninger. Eksampelvis har vi en løsning dersom vi kjører programmet med startverdiene x 1, y 1 = 1, : >> newton(-1,, ,0); u = n = 6 h) Da koden vi skal skrive tar utgangspunkt i det tidligere programmet ( newton.m ), kan det være en idé å modifisere på en slik måte at resultatet ikke blir printet for hver loop. Vi fjerner derfor de siste to linjene slik at den nye filen nå leses som: % define function function [x,y,n]=newton(x1,y1,eps,n) x(1)=x1;y(1)=y1; u = [x(1); y(1)]; % handle data for n=1:n F = [u(1)^3-3*u(1)*u()^ - 1; -u()^3 + 3*u()*u(1)^]; jf = [3*u(1)^-3*u()^, -6*u(1)*u(); 6*u(1)*u(), -3*u()^+3*u(1)^]; inverse = inv(jf); unew = u - inverse*f; if (abs(unew-u)).^ <= eps break end u = unew; end Ved å gjøre dette slipper vi at det nye programmet bruker tid på å presentere resultatene for hver loop. Det nye programmet som tar utgangspunkt i newton.m er følgende: e = ; N=40; x = zeros (801,801); y = zeros (801,801); n = zeros (801,801); h =.8/800; a = h *[0:800]; b = a; 8

9 for i=1:801; for j=1:801; [x(i,j),y(i,j),n(i,j)]=newton(a(i),b(j),e,n); end; end; figure(1); pcolor(a,b,n), shading flat; axis square; colorbar; title('antall iterasjoner'); figure(); pcolor(a,b,y), shading flat; axis square; colorbar; title ('De fire mengdene'); figure(3); pcolor(x,y,n), shading flat; axis square; colorbar; title ( x, y, n'); Dersom vi kjører dette programmet vil vi få følgende figurfiler: Her er det også mulig å se de tre reelle løsningene til F x : r 1 = 1, 3 r = 1, 3 r 3 = 1,0 Disse er markert med rødt på den mindre figuren til høyre. 9

10 De to andre figurene vi får er : Dersom vi prøver å plotte disse mengdene på et kvadrat som er mindre 0.1, 01 x 0.1,0.1, får vi et utsnitt av figuren på det respektive området. Vi kan endre verdiene på programmet vårt slik at det tas hensyn til et mindre kvadrat. Det nye programmet blir med dette: e = ; N=40; x = zeros (801,801); y = zeros (801,801); n = zeros (801,801); h = 0./800; 10

11 a = h *[0:800]; b = a; for i=1:801; for j=1:801; [x(i,j),y(i,j),n(i,j)]=newton(a(i),b(j),e,n); end; end; figure(1); pcolor(a,b,n), shading flat; axis square; colorbar; title('antall iterasjoner '); figure(); pcolor(a,b,y), shading flat; axis square; colorbar; title ('De fire mengdene '); figure(3); pcolor(x,y,n), shading flat; axis square; colorbar; title ( x, y, n'); På samme måte som vi fikk tre figurer da vi kjørte programmet første gangen, får vi også tre figurer nå. Vi kan se at de nye figurfilene er et utsnitt av området 0.1, 01 x 0.1,

12 Det andre figurbildet vi får er ganske likt det vi fikk første gangen vi kjørte programmet, men også her et utsnitt av området 0.1, 01 x 0.1,0.1. Det same gjelder for den tredje figuren, som også er et utsnitt på det samme området. 1

TMA Kræsjkurs i Matlab. Oppgavesett 1/3

TMA Kræsjkurs i Matlab. Oppgavesett 1/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste

Detaljer

Oppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do

Oppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do Oppgave 7.2.6 a) x d 1.0 for n from 1 by 1 to 200 do x d sin x Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. d) Det er klart at f x = 0 hvis og bare hvis x

Detaljer

Om plotting. Knut Mørken. 31. oktober 2003

Om plotting. Knut Mørken. 31. oktober 2003 Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at

Detaljer

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013 Noen MATLAB-koder Fredrik Meyer 23. april 2013 1 Plotte en vanlig funksjon Anta at f : [a, b] R er en vanlig funksjon. La for eksempel f(x) = sin x+x for x i intervallet [2, 5]. Da kan vi bruke følgende

Detaljer

MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag

MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag 1 MAT 111: Obligatorisk oppgave 1, V-7: Løsningsforslag Oppgave 1. a) Vi deriverer på vanlig måte: ( e (sinh x) x e x ) = = ex + e x = cosh x, ( e (cosh x) x + e x ) = = ex e x = sinh x Enkel algebra gir

Detaljer

Oppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x.

Oppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. Oppgave 7.2.6 a) x d 1.0 x := 1.0 (1) for n from 1 by 1 to 20 do x d sin x end do x := 0.8170988 x := 0.7562117 x := 0.6783077 x := 0.6275718321 x := 0.5871809966 x := 0.550163908 x := 0.5261070755 x :=

Detaljer

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag MAT1110: Obligatorisk oppgave 2, V-2015 Oppgave 1: a) Vi har Av 1 = ( 4 6 6 1 Løsningsforslag ) ( 3 2 ) = ( 24 16 ) = 8v 1, så v 1 er en egenvektor med egenverdi 8. Tilsvarende er ( ) ( ) ( ) 4 6 2 10

Detaljer

Oppgave 4. Med utgangspunkt i eksemplet gitt i oppgaveteksten er veien ikke lang til følgende kode i Matlab/Octave:

Oppgave 4. Med utgangspunkt i eksemplet gitt i oppgaveteksten er veien ikke lang til følgende kode i Matlab/Octave: Oppgave 4 Med utgangspunkt i eksemplet gitt i oppgaveteksten er veien ikke lang til følgende kode i Matlab/Octave: 1 %% FY1005 / TFY4165, Oving 1, Oppgave 4, del 1 2 %% 3 %%R = gasskonstanten = 8.314 J/

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 40

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 40 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 40 Løsningsforlsag Oppgave 1 Lagring og innlesing av data a) Dersom vi skriver save Filnavn, blir alle variable vi har lagra til ei l som heter 'Filnavn'.

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Examples plotting. Øyvind Ryan

Examples plotting. Øyvind Ryan Examples plotting Øyvind Ryan 19. februar 2013 Example 0.1. Vi skal tegne grafen til f (x, y) = x 3 4y 2 over rektangelet x [ 3,3], y [ 5,5]. Vi lager først en oppdeling av de to intervallene vi er interessert

Detaljer

Øving 2. Oppgave 1: Diverse algebra med føring. Oppgave 2: Ligningssystem som tekstoppgave. Oppgave 3: Grafgjenkjenning

Øving 2. Oppgave 1: Diverse algebra med føring. Oppgave 2: Ligningssystem som tekstoppgave. Oppgave 3: Grafgjenkjenning Øving 2 Oppgave 1: Diverse algebra med føring Finn x som løser ligningene: a) x 2 + 9 = 25 b) x 2 = 2x + 8 c) 2x 2 + 12x = 32 d) x 1 = 1/x e) 2x 4 = x + 2 f) Gå gjennom føringen av oppgave a) og e) med

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA251 Numeriske metoder Løsningsforslag, Øving 3 Oppgave 1 a) Start med å tegne en skisse av funksjonen f(x) = x.99(e x 1). Vi oppdager fort at α må ligge svært nær, faktisk rundt.2. Newtons metode anvendt

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Examples MAT1110. Øyvind Ryan

Examples MAT1110. Øyvind Ryan Examples MAT1110 Øyvind Ryan 19. februar 2013 Example 0.1. Vi skal tegne grafen til f (x, y) = x 3 4y 2 over rektangelet x [ 3,3], y [ 5,5]. Vi lager først en oppdeling av de to intervallene vi er interessert

Detaljer

function newton(start,fogdf) % MATLAB-funksjon som utfrer Newtons metode pa en funksjon % f med derivert df spesifisert pa filen 'fogdf.m'. % Innparam

function newton(start,fogdf) % MATLAB-funksjon som utfrer Newtons metode pa en funksjon % f med derivert df spesifisert pa filen 'fogdf.m'. % Innparam Lsningsforslag til lab 4 Lsning til oppgave 1 a) Vi bruker flge for-lkke: >> x=1; >> for t=1:5 xny=x-(x^3+2*x^2-2)/(3*x^2+4*x); x=xny Matlab svarer da med a skrive ut alle tilnrmingsverdiene den regner

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, while Benjamin A. Bjørnseth 12. oktober 2015 2 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 34

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 34 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 34 I denne øvinga skal vi først og fremst lære oss å lage plott i Octave. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring i ulike kataloger.

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2.

MEK1100, vår Obligatorisk oppgave 1 av 2. 9. februar 2017 Innleveringsfrist MEK1100, vår 2017 Obligatorisk oppgave 1 av 2 Torsdag 2. mars 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels

Detaljer

Numerisk løsning av ikke-lineære ligninger

Numerisk løsning av ikke-lineære ligninger Numerisk løsning av ikke-lineære ligninger Anne Kværnø February 26, 2018 1 Problemstilling Vi vil først se på numeriske teknikker for å løse skalare ligninger (en ligning, en ukjent), for eksempel eller

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

Alternativ II: Dersom vi ikke liker å stirre kan vi gå forsiktigere til verks. Først ser vi på komponentlikninga i x-retning

Alternativ II: Dersom vi ikke liker å stirre kan vi gå forsiktigere til verks. Først ser vi på komponentlikninga i x-retning Forelesning / 8 Finne skalarfunksjon når gradienten er kjent. Se GF kap..3.4. Ta som eksempel β = yi + xj + k. Vi vet at β = x i + j + z k og følgelig ser vi at vi må løse et system av tre likninger som

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5 Fasit til utvalgte oppgaver MAT1110, uka 8/4-/5 Tom Lindstrøm (lindstro@math.uio.no) 5..5 a) Alle punktene i B har avstand til origo større enn 1, så d(0, B) må være minst 1. Ved å velge punkter på x-aksen

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). 28. februar 2019 Innleveringsfrist MEK1100, vår 2019 Obligatorisk oppgave 1 av 2 Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2 Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon F x = x K f x f' x, starter med en x 0 og beregner x 1 = F x 0, x = F x 1, x 3 = F x,... Dette er en metode der en for-løkke egner

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.

Detaljer

MAT 1110: Oblig 1, V-12, Løsningsforslag

MAT 1110: Oblig 1, V-12, Løsningsforslag MAT 0: Oblig, V-2, Løsningsforslag Oppgave: a Jacobi-matrisen er F (x, y u x v x u y v y 3x 2 2 3y 2 b Lineariseringen i punktet a er gitt ved T a F(x F(a + F (a(x a. I vårt tilfelle er a ( 2, 2, og vi

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver veke 14 Løysingsforslag Oppgave 1 Samanlikning med analytisk løysing y = 3 2 x y, y(0) = 1. a) Dierensiallikninga er separabel: dy dx = 3 x y 2 dy = 3 x dx y

Detaljer

Python i MEK1100. Feltteori og vektoranalyse

Python i MEK1100. Feltteori og vektoranalyse Python i MEK1100 En oversettelse fra Matlab til Python av deler av kompendiet Feltteori og vektoranalyse av Bjørn Gjevik og Morten Wang Fagerland 2014 oversettelse ved Karsten Trulsen med bistand fra Susanne

Detaljer

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag I kapittel 9 i kompendiet forklarte vi at maximum-likelihood er en av de viktige anvendelsene av ikke-lineær optimering. Vi skal se litt mer på hva

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave Oppgave a) Vi kan finne divergens og virvling av det todimensjonale hastighetsfeltet ved å finne v og v. Gitt at v = ui + vj, hvor u = cos x sin y og v = sin x cos y, får vi følgende:

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 5. Pensum: for-løkker, fprintf, while-løkker. Benjamin A. Bjørnseth 5. oktober 2015 2 Oversikt Gjennomgang auditorieøving Repetisjon: for-løkke, fprintf While-løkker

Detaljer

Øvingsforelesning 3 Python (TDT4110)

Øvingsforelesning 3 Python (TDT4110) Øvingsforelesning 3 Python (TDT4110) For og While-løkker Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av øving 1 Programmering for Øving 3 2 Studasser og Piazza Studasser er der for å hjelpe

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer h og f g og f Matematikk TMA3M og TMA 5N 0. Mai 0 Løsningsforslag med utfyllende kommentarer Oppgave Funksjonen f () = sin, de nert på intervallet [0; ], skal utvides til en odde funksjon, g, og en like

Detaljer

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, preallokering, funksjonsvariabler, persistente variabler Benjamin A. Bjørnseth 13. oktober 2015 2 Oversikt Funksjoner

Detaljer

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 = Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)

Detaljer

Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0

Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0 Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0 = y 0 der F x, y står for et uttrykk i x og y. De er iterative metoder, så for - løkker egner seg ypperlig i denne sammenengen.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere

Detaljer

TDT4105 IT Grunnkurs Høst 2014

TDT4105 IT Grunnkurs Høst 2014 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital

Detaljer

TDT4105 IT Grunnkurs Høst 2016

TDT4105 IT Grunnkurs Høst 2016 TDT4105 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følge informasjon i blokkbokstaver Navn:

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Skript I denne øvinga skal vi lære oss å lage skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Dette er noe vi kommer

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

Newtons metode for system av ligninger

Newtons metode for system av ligninger Newtons metode for system av ligninger Arne Morten Kvarving http://www.math.ntnu.no/ arnemort/m4-itersys.pdf Department of Mathematical Sciences Norwegian University of Science and Technology 15. Oktober

Detaljer

Løsning ved iterasjon

Løsning ved iterasjon Løsning ved iterasjon Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 17. September 2009 Problem Gitt problemet f (x) = 0 for en eller annen funksjon

Detaljer

MAT1120 Plenumsregningen torsdag 26/8

MAT1120 Plenumsregningen torsdag 26/8 MAT1120 Plenumsregningen torsdag 26/8 Øyvind Ryan (oyvindry@i.uio.no) August 2010 Innføring i Matlab for dere som ikke har brukt det før Vi skal lære følgende ting i Matlab: Elementære operasjoner Denere

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 14 juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: INF-MAT2350

Detaljer

Plotting av data i grafer

Plotting av data i grafer Kapittel 8 Plotting av data i grafer 8.1 Forskjellige typer grafer De viktigste plottetypene eller graftypene er Waveform Chart, som gir kontinuerlig oppdatert plotting, med stadig nye punkter på grafen.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Å lage et plott a) Vi kan tilordne vektoren slik i kommandovinduet: ` x=0:.1:7*pi;' Legg merke til at det ikke er opplagt hvordan

Detaljer

Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14.

Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14. og Institutt for geofag Universitetet i Oslo 17. Oktober 2012 i MatLab En funksjon vil bruke et gitt antall argumenter og produsere et gitt antall resultater og : Hvorfor Først og fremst bruker vi når

Detaljer

MATLAB-OPPGAVER I IGR1601 MATEMATIKK 2 VÅREN 2017

MATLAB-OPPGAVER I IGR1601 MATEMATIKK 2 VÅREN 2017 MATLAB-OPPGAVER I IGR60 MATEMATIKK 2 VÅREN 207 UIT NORGES ARKTISKE UNIVERSITET Irina Pettersson, UiT. Innhold Introduksjon............................................................... 3. Rekker.................................................................

Detaljer

Innføring i MATLAB - The language of Technical Computing

Innføring i MATLAB - The language of Technical Computing Innføring i MATLAB - The language of Technical Computing Hvordan bruke MATLAB til å analysere eksperimentelle data. TFY4145 Mekanisk fysikk Utstyr: Datarom med PC for studenter. Datamaskin med projektor

Detaljer

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1. NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + + 36 + 49 + 64 + 81 + 100 = 38. c) I

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36

Detaljer

MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT

MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT 3 Skriftlige besvarelser skal innleveres til den gruppelæreren på den regneøvelsen hver enkel er påmeldt til, etter nærmere avtale. Innleveringsfristen er fredag

Detaljer

Løsning, funksjoner av flere variable.

Løsning, funksjoner av flere variable. Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av

Detaljer

Hangman. Steg 1: Velg et ord. Steg 2: Gjett en bokstav. Sjekkliste. Sjekkliste. Introduksjon

Hangman. Steg 1: Velg et ord. Steg 2: Gjett en bokstav. Sjekkliste. Sjekkliste. Introduksjon Hangman Erfaren Python Introduksjon La oss lage et spill: Hangman! Datamaskinen vil velge et ord og du kan gjette det bokstav for bokstav. Dersom du gjetter feil for mange ganger taper du. Steg 1: Velg

Detaljer

Matlab-tips ved oblig3 i FYS-MEK/F 1110 våren 2006

Matlab-tips ved oblig3 i FYS-MEK/F 1110 våren 2006 1 Matlab-tips ved oblig3 i FYS-MEK/F 1110 våren 2006 Utforsking av et kaotisk system. I dette skrivet gir vi noen tips som kan være nyttige når man skal skrive et Matlab-program for å gjøre beregninger

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A =

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A = Oblig - MAT Fredrik Meyer. september 9 Oppgave Linkmatrise: A = En basis til nullrommet til matrisen A I kan finnes ved å bruke MATLAB. Jeg kjører kommandoen rref(a-i) og får følge: >> rref(a-i). -.875.

Detaljer

FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 )

FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 ) FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 ) Hvorfor holder enkelte dropper seg oppe? Ved å benytte beregning.m på små dråpestørrelser, kan man legge til merke at for at en dråpe

Detaljer

Oblig 1 FYS2130. Elling Hauge-Iversen

Oblig 1 FYS2130. Elling Hauge-Iversen Oblig 1 FYS2130 Elling Hauge-Iversen February 9, 2009 Oppgave 1 For å estimere kvalitetsfaktoren til basilarmembranen for ulike frekvenser har jeg laget et program som generer et rent sinussignal. Ideen

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + 5 + 36 + 49 + 64 + 81 + 100 = 385.

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

Exercises population. Øyvind Ryan

Exercises population. Øyvind Ryan Exercises population Øyvind Ryan 19. februar 2013 1. Vi antar at en bakteriepopulasjon vokser eksponentielt og har en vekst gitt ved P = P 0 e kt der t er tiden i sekunder, P 0 = 120 er antall bakterier

Detaljer

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 14. desember 2018 Klokkeslett: 09.00 13.00 Sted

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015 Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =

Detaljer

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der Øving uke 44 Kritiske punkter Se også Mathematicakompendiet, kap 3.8 En funksjon av to variable kan ha lokale maksimal- og minimalpunkter innenfor definisjonsmengden, akkurat som funksjoner av en variabel.

Detaljer

Eksamen S1 Va ren 2014 Løsning

Eksamen S1 Va ren 2014 Løsning Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

Hangman. Level. Introduksjon

Hangman. Level. Introduksjon Level 2 Hangman All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Introduksjon

Detaljer

MAT1110. Obligatorisk oppgave 1 av 2

MAT1110. Obligatorisk oppgave 1 av 2 30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. > 2+2 4 > 3-2 1

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. Ellers minner vi om at der er mange MATLAB-ressurser tilgjengelig.

Detaljer

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene: Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:

Detaljer

Introduksjon til Marinteknikk

Introduksjon til Marinteknikk Introduksjon til Marinteknikk MAS124 Gloria Stenfelt gste@hvl.no Vad er MATLAB? Beregningsverktøy som bruker et spesifikt programmeringsspråk, på samme måte som JAVA, C-kod, python Brukes over hele verden

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

1. (a) Finn egenverdiene og egenvektorene til matrisen A =

1. (a) Finn egenverdiene og egenvektorene til matrisen A = 1. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 2 3. 1 4 Svar: λ = 5 med egenvektorer [x, y] T = y[1, 1] T og λ = 1 med egenvektorer [x, y] T = y[ 3, 1] T, begge strengt tatt med y 0. (b)

Detaljer