Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14."

Transkript

1 og Institutt for geofag Universitetet i Oslo 17. Oktober 2012

2 i MatLab En funksjon vil bruke et gitt antall argumenter og produsere et gitt antall resultater og

3 : Hvorfor Først og fremst bruker vi når vi ønsker: og å kategorisere programkode å kontrollere og organisere programmene våre å utføre beregninger av matematiske er spesielt nyttige for beregninger eller programkode du bruker ofte!

4 : Hvorfor og Vi har allerede brukt mange MatLab som sum(), sin(), length(), min(), plot() osv. Disse funksjonene utfører programkode vi bruker ofte Fordel: vi slipper å programmere opp koden hver gang vi bruker den Når brydde du deg sist om hva som egentlig skjer når du bruker sinus-knappen på kalkulatoren din? Det er resultatet vi er opptatt av!

5 : En funksjon er som en sort boks >> w = sqrt(3); input argument(s) (tallet 3) function (sqrt) output argument(s) (w= 2) og sort boks

6 : En funksjon er som en sort boks >> w = sqrt(3); og Når vi skriver kommandoen sqrt(3), så vet ikke vi hva som skjer inne i selve funksjonen, vi vet kun resultatet av beregningen Det samme gjelder når vi lager våre egene ; beregningene som gjøres i funksjonen er lokale og er ikke synlige

7 : En funksjon er som en sort boks og >> w = sqrt(3); Alle variabler definert utenfor funksjonen er ikke tilgjenglige for funksjonen De eneste variablene funksjonen kjenner til er variablene du sender inn som argumenter (i eksempelet over tallet 3) og variabler definert lokalt (inne i) i funksjonen Alle variabler du definerer inne i funksjonen er ikke kjent for MatLab utenfor funksjonen (vi vet ikke hva som defineres inne i funksjonen sqrt). Disse variablene dukker derfor ikke opp i workspace vinduet

8 : En funksjon er som en sort boks >> w = sqrt(3); og Variabler definert i kalles lokale variabler (de vet vi ikke hva er) Variabler definert i kommandovinduet eller i vanlige m-filer kalles globale variabler Disse variablene finnes i workspace vinduet (w er en global variabel )

9 : r vi og Generell form: function[ut1, ut2,..., utn]= funknavn(inn1, inn2,..., innm) Et eksempel: function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates % konverterer fra kartesiske koordinater % til polar koordinater r = sqrt(x^2+y^2); theta = atand(y/x); end

10 : r vi og En funksjon lagres som en egen m-fil; funknavn.m Kommandoen function må være den første kommandoen i m-filen du lagrer funksjonskoden i Kommentarer kan evt. komme før kommandoen function, men det er vanlig å sette kommentarene etter første linje Her må funksjonen lagres som cart2plr.m function [theta, r] = cart2plr(x,y)

11 Funksjonen trenger ikke å sende tilbake verdier. Om du ikke ønsker det kan du enten droppe hakeparentesene eller la de stå tomme : r vi og function [theta, r] = cart2plr(x,y) Hakeparentes, [ ], kalles output argument list Her skriver du hvilke variabler du vil at funksjonen skal sende tilbake I eksempelet over sendes det tilbake 2 variabler; theta og r Det er ingen begrensing på hvilken type eller hvordan størrelse det er på variabelen(variablene) funksjonen sender tilbake

12 : r vi og function [theta, r] = cart2plr(x,y) Navnet på funksjonen skrives etter likhetstegnet Navnet på m-filen og funksjonsnavnet må være identiske Reglene for funksjonsnavn er de samme som for variabelnavn: Navnet må begynne med en bokstav Deretter kan dere bruke bokstaver, tall og understrek i hvilken kombinasjon dere ønsker Ingen blanke tegn Ikke bruk funksjonsnavn som allerede er definert i MatLab! Bruk kommandoen help funksjonsnavn

13 : r vi og function [theta, r] = cart2plr(x,y) Parentes, ( ), kalles input argument list og skrives etter funksjonsnavnet Her skriver du hvilke variabler funksjonen mottar I eksempelet over mottar funksjonen to verdier, x og y Funksjonen trenger ikke å ta imot input argumenter om dette ikke er ønskelig

14 : r vi function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates og Den første linjen etter kommandoen function kalles H1-line Denne linjen beskriver funksjonen i en setning Det er vanlig å skrive funksjonsnavnet i store bokstaver og hvor mange variabler funksjonen skal ha som input argumenter og hvor mange variabler funksjonen returnerer

15 : r vi function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates % konverterer fra kartesiske koordinater % til polar koordinater og På de neste linjene kan du beskrive funksjonen din mer nøye. Dette er nyttig både for deg selv og for andre som ønsker å bruke funksjonen din senere Alle linjene med kommentarer, frem til en blank linje eller kommandoene begynner, blir skrevet ut i kommandovinduet når du skriver help funksjonsnavn

16 : r vi og Skriver du help cart2plr i kommandovinduet dukker beskrivelsen opp >> help cart2plr [theta, r] = cart2plr(x,y) cartesian to polar coordinates konverterer fra kartesiske koordinater til polar koordinater

17 : r vi og Alle linjene med kommentarer, frem til en blank linje eller kommandoene begynner, blir skrevet ut i kommandovinduet når du skriver help funksjonsnavn function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates % konverterer fra kartesiske koordinater % til polar koordinater % disse linjene kommer ikke med % naar du bruker help kommandoen

18 : r vi og Det er vanlig å slutte funksjonen med end... men dette er ikke nødvendig function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates % konverterer fra kartesiske koordinater % til polar koordinater r = sqrt(x^2+y^2); theta = atand(y/x); end

19 : r vi og Selve programmeringskoden du skriver i funksjonen bestemmes av hva du ønsker å beregne eller gjøre 3 nyttige tips: Funksjonen utfører kommandoene sekvensielt fra første programkode i funksjonen frem til kommandoen end eller til funksjonen slutter Kun input argumentene er kjent for funksjonen. Ingen av variablene definert utenfor funksjonen er kjent Alle ouput argumentene må (beregnes og) defineres i funksjonskoden

20 : og Når vi skal bruke er vi nødt til å vite hvor mange input argumenter som behøves og ikke minst rekkefølgen på argumentene Skal jeg bruke funksjonen cart2plr må jeg sende inn 2 verdier og x-verdien må sendes inn først Her sender jeg inn koordinatene (3,4) >> cart2plr(3,4) Legg merke til at jeg ikke trenger å kalle argumentene jeg sender inn x og y

21 : Jeg må også vite hvor mange variabler som blir sendt tilbake og I dette tilfellet blir det sendt tilbake 2 variabler; theta og r Skriver jeg kun >> cart2plr(3,4) ans = får jeg bare den første verdien tilbake; verdien til theta

22 : For å få verdien til både theta og r må jeg skrive og >> [theta, r]=cart2plr(3,4) theta = r = 5

23 : og Det er utolig viktig å vite hvor mange variabler som skal sendes inn til funksjonen hvor mange variabler som returneres rekkefølgen til variablene (både de som sendes inn og de som returneres) Derfor er H1-line så viktig! >> [theta, r]=cart2plr(3,4) theta = r = 5

24 : Det finnes flere varianter og Generell form: function[ut1, ut2,..., utn]= funknavn(inn1, inn2,..., innm) Eksempel: function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates % konverterer fra kartesiske koordinater % til polar koordinater r = sqrt(x^2+y^2); theta = atand(y/x); end

25 : Det finnes flere varianter og Hvis funksjonen kun returnerer en variabel kan vi droppe hakeparentes (vi kan også beholde dem) Eksempel: function r = hypotenus(x,y) % r = HYPOTENUS(X,Y) returnerer hypotenusverdi % funksjonen mottar to katetverdier i en trekant % og returnerer hypotenusverdien r = sqrt(x^2+y^2); end

26 : Det finnes flere varianter og Hvis funksjonen ikke returnerer variabler holder det å skrive function funknavn(inn1, inn2,...,innm) Eksempel: function addtwo(x,y) % ADDTWO(X,Y) legger sammen to variable % funksjonen legger sammen to tall, vektorer, matriser, o.l. % og skriver ut resultatet i kommandovinduet disp(x+y) end

27 : Det finnes flere varianter og Hvis funksjonen ikke returnerer variabler og heller ikke tar imot variabler kan vi skrive function funknavn Dette er veldig sjedent Eksempel: function ros % ROS gir deg litt anerkjennelse % denne kan brukes om du trenger en oppmuntring load handel.mat sound(y, Fs*2) end

28 : Det finnes flere varianter og Enda et eksempel: function du_er_flink % DU_ER_FLINK gir deg enda mer anerkjennelse % enn funksjonen ros % denne kan brukes om du trenger ekstra mye ros! load handel.mat sound(y, Fs*1.5) figure(1) xlim([0 1]) ylim([0 1]) farg= kgmrcg ; yindex=[ ]; for i = 1:10 %plotter firkanter i cyan text(0.25,0.5, \bf DU ER FLINK!!, fontsize,38, Color, farg(yindex(i))) %setter gronn bakgrunnsfarge utenfor figuren %gcf betyr get current figure set(gcf, Color,farg(yindex(i)+1)) %setter magneta bakgrunnsfarge inni figuren set(gca, Color,farg(yindex(i)+2)) pause(0.2) end

29 : Ett eksempel og En funksjon som regner ut gjenomsnittet, minimums og maksimumsverdi av en vektor function [gjsnitt, minst, maks] = statistikk(x) % [gjsnitt, minst, maks] = STATISTIKK(X) regner ut % statistiske egenskaper til en vektor % funksjonen regner ut og returnerer % gjenomsnittet, minste verdi og storste verdi til en % vektor x gjsnitt = mean(x); minst = min(x); maks = max(x); end

30 : Oppgave 1 og Lag som leser inn et kronebeløp og omregner beløpet til amerikanske dollar, euro og svenske kroner. Resultatet skal funksjonen skrive ut i kommandovinduet. Omregningen er etter følgende valutakurser: 1USD = 5.7NOK 1EUR = 7.4NOK 1 SEK = 0.85NOK

31 : Oppgave 2 og Den daglige veksten for penger i banken kan skrives som: x n = x n 1 + p x n 1 hvor p er årlig rente og n angir dag nr. n a) Lag, rente, som mottar antall dager pengene har stått på konto N, renten p og startbeløpet x 0. Funksjonen skal returnere x N, som viser kontobeløpet etter N dager b) Se hvor mye beløpet blir om du setter inn 100kr og lar dem stå i 720 dager med en årlig rente på 4%

32 i m-filer: Oppgave 6.8 i kompendiet og Om du kaster en ball vil den følge en bane gitt av formelen: f (x,θ,v 0,y 0 ) = xtan(θ) 1 2v 0 gx 2 cos 2 (θ) + y 0 der v 0 er starthastigheten (m/s), θ er vinkelen du kaster ballen i forhold til bakken, y 0 er høyden ballen kastes i (x=0) og g er tyngdeakselerasjonen (lik 9.81m/s 2 ) a) Lag som tar i mot θ, v 0 og y 0, regner ut banen til ballen og plotter resultatet. x-verdiene kan du definere i selve funksjonen.

33 i m-filer: Oppgave 6.8 i kompendiet forts. og b) Lag et program der du bruker funksjonen du lagde i a) og plotter banen til ballen i 3 subplot. Det første subplottet skal vise banen til ballen for 3 ulike verdier av θ, det andre subplottet skal vise banen for 3 ulike verdier av av v 0 og det tredje subplottet skal vise banen til ballen for 3 ulike verdier av y 0.

34 : og Kommandoen return stopper funksjonen function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates % konverterer fra kartesiske koordinater % til polar koordinater % x og y kan innholde tall eller vektorer if length(x) ~=length(y) return; end r = sqrt(x.^2+y.^2); theta = atand(y./x); end

35 : og Kommandoen error stopper funksjonen og skriver ut en feilmelding (som du lager) i kommandovinduet function [theta, r] = cart2plr(x,y) % [theta, r] = CART2PLR(X,Y) cartesian to polar coordinates % konverterer fra kartesiske koordinater % til polar koordinater % x og y kan innholde tall eller vektorer if length(x) ~=length(y) error( x og y er ikke samme lengde ) end r = sqrt(x.^2+y.^2); theta = atand(y./x); end

Kapittel august Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 2.

Kapittel august Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 2. Institutt for geofag Universitetet i Oslo 28. august 2012 Kommandovinduet Det er gjennom kommandovinduet du først og fremst interagerer med MatLab ved å gi datamaskinen kommandoer når >> (kalles prompten

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, preallokering, funksjonsvariabler, persistente variabler Benjamin A. Bjørnseth 13. oktober 2015 2 Oversikt Funksjoner

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 3 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære om hvordan

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6)

TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) 1 TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Anders Christensen anders@idi.ntnu.no Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Læringsmål: Synlighet av variabler

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære å designe

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 1. september 2015 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

ITGK - H2010, Matlab. Repetisjon

ITGK - H2010, Matlab. Repetisjon 1 ITGK - H2010, Matlab Repetisjon 2 Variabler og tabeller Variabler brukes til å ta vare på/lagre resultater Datamaskinen setter av plass i minne for hver variabel En flyttallsvariabel tar 8 bytes i minne

Detaljer

Programmering i R. 6. mars 2004

Programmering i R. 6. mars 2004 Programmering i R 6. mars 2004 1 Funksjoner 1.1 Hensikt Vi har allerede sette på hvordan vi i et uttrykk kan inkludere kall til funksjoner som er innebygd i R slik som funksjonene sum, plot o.s.v. Generelt

Detaljer

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 6 + en hel del ekstra.

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 6 + en hel del ekstra. Institutt for geofag Universitetet i Oslo 11. september 212 plotfunksjonen Den vanligste funksjonen for å plotte 2D-data i MatLab er plotfunksjonen Funksjonen plotter vektorer med data og lager rette linjer

Detaljer

Noen innebygde funksjoner - Vektorisering

Noen innebygde funksjoner - Vektorisering 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Matlab-tips til Oppgave 2

Matlab-tips til Oppgave 2 Matlab-tips til Oppgave 2 Numerisk integrasjon (a) Velg ut maks 10 passende punkter fra øvre og nedre del av hysteresekurven. Bruk punktene som input til Matlab og lag et plot. Vi definerer tre vektorer

Detaljer

Noen innebygde funksjoner - Vektorisering

Noen innebygde funksjoner - Vektorisering 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

MATLABs brukergrensesnitt

MATLABs brukergrensesnitt Kapittel 3 MATLABs brukergrensesnitt 3.1 Brukergrensesnittets vinduer Ved oppstart av MATLAB åpnes MATLAB-vinduet, se figur 1.1. MATLAB-vinduet inneholder forskjellige (under-)vinduer. De ulike vinduene

Detaljer

Control Engineering. MathScript. Hans-Petter Halvorsen

Control Engineering. MathScript. Hans-Petter Halvorsen Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 15.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Sondre Wangenstein Baugstø 4. september 2017 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

16 Programmere TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5

16 Programmere TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 16 Programmere Skrive et program på TI-86... 248 Kjøre et program... 256 Arbeide med programmer... 258 Laste ned og kjøre et assemblerspråkprogram... 261 Skrive inn og lagre en streng... 263 TI -86 M1

Detaljer

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.)

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Av Jo Skjermo (basert på Alf Inge Wang sin versjon om JSP). 1. Utførelse av kode i kommando/kalkulatormodus Et dataprogram består oftest

Detaljer

Hvordan du kommer i gang med LOGO.

Hvordan du kommer i gang med LOGO. Hvordan du kommer i gang med LOGO. Innhold: Velkommen til et kurs for å lære grunnleggende bruk av LOGO. Vi går gjennom noen viktige funksjoner slik at du til slutt kan få til å programmere. Dette opplegget

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang Matematikk 1000 Øvingeoppgaver i numerikk leksjon 1 Å komme i gang I denne øvinga skal vi bli litt kjent med MATLAB. Vi skal ikkje gjøre noen avanserte ting i dette oppgavesettet bare få et visst innblikk

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer

Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Intro til funksjoner TDT4110 IT Grunnkurs Professor Guttorm Sindre Snart referansegruppemøte Viktig mulighet for å gi tilbakemelding på emnet Pensumbøker Forelesninger Øvingsforelesninger Veiledning

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 1/3

TMA Kræsjkurs i Matlab. Oppgavesett 1/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. > 2+2 4 > 3-2 1

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Hva gjør disse skriptene? a) Skriptet lager plottet vi ser i gur 1. Figur 1: Plott fra oppgave 1 a). b) Om vi endrer skriptet

Detaljer

Kapittel 4. 4. og 5. september 2012. Institutt for geofag Universitetet i Oslo. GEO1040 - En Introduksjon til MatLab. Kapittel 4.

Kapittel 4. 4. og 5. september 2012. Institutt for geofag Universitetet i Oslo. GEO1040 - En Introduksjon til MatLab. Kapittel 4. r r Institutt for geofag Universitetet i Oslo 4. og 5. september 2012 r r Ofte ønsker vi å utføre samme kommando flere ganger etter hverandre gjør det mulig å repetere en programsekvens veldig mange ganger

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere

Detaljer

Matematikk Øvingeoppgaver i numerikk leksjon 1 Å komme i gang

Matematikk Øvingeoppgaver i numerikk leksjon 1 Å komme i gang Matematikk 1000 Øvingeoppgaver i numerikk leksjon 1 Å komme i gang I denne øvinga skal vi bli litt kjent med MATLAB. Vi skal ikkje gjøre noen avanserte ting i dette oppgavesettet bare få et visst innblikk

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Plotting av data. Kapittel 6. 6.1 Plott med plot-funksjonen

Plotting av data. Kapittel 6. 6.1 Plott med plot-funksjonen Kapittel 6 Plotting av data MATLAB har mange muligheter for plotting av data. Vi skal her konsentrere oss om de viktigste funksjonene og kommandoene for 2-dimensjonale plott. Plottefunksjoner listes opp

Detaljer

lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen mellom globale og lokale variabler

lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen mellom globale og lokale variabler 42 Funksjoner Kapittel 4 Funksjoner Etter dette kapitlet skal du kunne lage og bruke enkle funksjoner lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen

Detaljer

TDT4105 IT Grunnkurs Høst 2014

TDT4105 IT Grunnkurs Høst 2014 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre,

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 16. Sept. Noen oppstartsproblemer

Detaljer

Utførelse av programmer, metoder og synlighet av variabler i JSP

Utførelse av programmer, metoder og synlighet av variabler i JSP Utførelse av programmer, metoder og synlighet av variabler i JSP Av Alf Inge Wang 1. Utførelse av programmer Et dataprogram består oftest av en rekke programlinjer som gir instruksjoner til datamaskinen

Detaljer

En innføring i MATLAB for STK1100

En innføring i MATLAB for STK1100 En innføring i MATLAB for STK1100 Matematisk institutt Universitetet i Oslo Februar 2017 1 Innledning Formålet med dette notatet er å gi en introduksjon til bruk av MATLAB. Notatet er først og fremst beregnet

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Funksjoner Matriser Matriseoperasjoner Sannhetsuttrykk

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. >> 2+2 4 >> 3-2

Detaljer

Løpende strekmann Erfaren Videregående Python PDF

Løpende strekmann Erfaren Videregående Python PDF Løpende strekmann Erfaren Videregående Python PDF Introduksjon I denne oppgaven skal du lage et spill der du styrer en strekmann som hopper over hindringer. Steg 1: Ny fil Begynn med å lage en fil som

Detaljer

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler MATLAB for STK1100 Matematisk institutt Univeristetet i Oslo Januar 2014 1 Enkel generering av stokastiske variabler MATLAB har et stort antall funksjoner for å generere tilfeldige tall. Skriv help stats

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler

Detaljer

19. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 8 (del 2) Ada Gjermundsen

19. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 8 (del 2) Ada Gjermundsen Institutt for geofag Universitetet i Oslo 19. september 2012 Repetisjon: Generell formel for Når vi jobber med matriser bruker vi ofte (men ikke alltid) dobbel for-løkke Dette er først og fremst fordi

Detaljer

Kom forberedt til tirsdag. INF1000 Tips til obligatorisk oppgave 4. Noen generelle tips. Oblig4: Komme igang

Kom forberedt til tirsdag. INF1000 Tips til obligatorisk oppgave 4. Noen generelle tips. Oblig4: Komme igang Kom forberedt til tirsdag INF1000 Tips til obligatorisk oppgave 4 Kikk på prøveeksamen fra 2004 http://www.uio.no/studier/emner/matnat/ifi/inf1000/h 07/undervisningsmateriale/proveeksamen-H2004.pdf Tittel:

Detaljer

Sprettende ball Introduksjon Processing PDF

Sprettende ball Introduksjon Processing PDF Sprettende ball Introduksjon Processing PDF Introduksjon: I denne modulen skal vi lære et programmeringsspråk som heter Processing. Det ble laget for å gjøre programmering lett for designere og andre som

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Skript I denne øvinga skal vi lære oss å lage skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Dette er noe vi kommer

Detaljer

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Oppgaver Kapittel 5 (del 2) Ada Gjermundsen

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Oppgaver Kapittel 5 (del 2) Ada Gjermundsen : Institutt for geofag Universitetet i Oslo 11. september 2012 Oppgave 1: Vektor operasjoner : Lag en vektor som inneholder objektene: a) 2, 4, 6, 8, 10, 12 b) 10, 8, 6, 2, 0, -2, -4 c) 1, 1/2, 1/3, 1/4,

Detaljer

Kapittel september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 7.

Kapittel september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 7. Institutt for geofag Universitetet i Oslo 18. september 2012 MatLabs store styrke er tallberegninger og grafisk fremstilling av resultater Noen ganger er det allikevel ønskelig å manipulere tekst (f.eks.

Detaljer

Matlab-intro MUS4218

Matlab-intro MUS4218 Matlab-intro MUS4218 Kristian Nymoen 1 Introduksjon Dette kompendiet tar utgangspunkt i teknikkene som ble vist i Matlab i MUS4218 våren 2017. Det oppdateres underveis i semesteret, og er derfor litt ustrukturert.

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, while Benjamin A. Bjørnseth 12. oktober 2015 2 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering

Detaljer

Tall, vektorer og matriser

Tall, vektorer og matriser Tall, vektorer og matriser Kompendium: MATLAB intro Tallformat Komplekse tall Matriser, vektorer og skalarer BoP(oS) modul 1 del 2-1 Oversikt Tallformat Matriser og vektorer Begreper Bruksområder Typer

Detaljer

Livsforsikring et eksempel på bruk av forventningsverdi

Livsforsikring et eksempel på bruk av forventningsverdi et eksempel på bruk av forventningsverdi Ø. Borgan og A.B. Huseby Department of Mathematics University of Oslo, Norway STK 1100 Beregning av rettferdig forsikringspremie Vi skal benytte forventninger av

Detaljer

MAT 1110: Oblig 1, V-12, Løsningsforslag

MAT 1110: Oblig 1, V-12, Løsningsforslag MAT 0: Oblig, V-2, Løsningsforslag Oppgave: a Jacobi-matrisen er F (x, y u x v x u y v y 3x 2 2 3y 2 b Lineariseringen i punktet a er gitt ved T a F(x F(a + F (a(x a. I vårt tilfelle er a ( 2, 2, og vi

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Forelesningsinfo. Tider Mandag Tirsdag Onsdag Torsdag Fredag

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Forelesningsinfo. Tider Mandag Tirsdag Onsdag Torsdag Fredag 1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Læringsmål og pensum. Tekststrenger Læringsmål Skal kunne forstå og programmere med tekststrenger. Pensum Matlab, Chapter 7

Læringsmål og pensum. Tekststrenger Læringsmål Skal kunne forstå og programmere med tekststrenger. Pensum Matlab, Chapter 7 1 TDT4105 Informasjonsteknologi grunnkurs: Uke 41 Strenger og strenghåndtering Asbjørn Thomassen, IDI Tobias Buschmann Iversen, IDI 2 Læringsmål og pensum Læringsmål Skal kunne forstå og programmere med

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu. 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + 5 + 36 + 49 + 64 + 81 + 100 = 385.

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab 1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Disclaimer Funksjoner Matriser Matriseoperasjoner

Detaljer

Straffespark Introduksjon Scratch Lærerveiledning

Straffespark Introduksjon Scratch Lærerveiledning Straffespark Introduksjon Scratch Lærerveiledning Introduksjon Vi skal lage et enkelt fotballspill, hvor du skal prøve å score på så mange straffespark som mulig. Steg 1: Katten og fotballbanen Vi begynner

Detaljer

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv Bygg et Hus Introduksjon I denne leksjonen vil vi se litt på hvordan vi kan få en robot til å bygge et hus for oss. Underveis vil vi lære hvordan vi kan bruke løkker og funksjoner for å gjenta ting som

Detaljer

INF109 - Uke 1b 20.01.2016

INF109 - Uke 1b 20.01.2016 INF109 - Uke 1b 20.01.2016 1 Variabler Et program er ikke til stor hjelp hvis det er statisk. Statisk betyr at programmet bare bearbeider faste data som er lagt inn i programkoden. For å gjøre programmer

Detaljer

Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i.

Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i. Skilpaddeskolen Steg 1: Flere firkanter Nybegynner Python Åpne IDLE-editoren, og åpne en ny fil ved å trykke File > New File, og la oss begynne. Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell'

Detaljer

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014

Detaljer

Kom i gang med Stata for Windows på UiO - hurtigstart for begynnere

Kom i gang med Stata for Windows på UiO - hurtigstart for begynnere Kom i gang med Stata for Windows på UiO - hurtigstart for begynnere Hensikten med denne introduksjonen er å lære hvordan man kommer raskt i gang med grunnleggende funksjoner i Stata. Teksten er tilpasset

Detaljer

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 5 (del 2) Ada Gjermundsen

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 5 (del 2) Ada Gjermundsen , Institutt for geofag Universitetet i Oslo 11. september 2012 Litt repetisjon: Array, En array er en variabel som inneholder flere objekter (verdier) En endimensjonal array er en vektor En array med to

Detaljer

MAT 1120: Obligatorisk oppgave 2, H-09

MAT 1120: Obligatorisk oppgave 2, H-09 MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,

Detaljer

MathScript. Hans- Pe1er Halvorsen, M.Sc.

MathScript. Hans- Pe1er Halvorsen, M.Sc. MathScript Hans- Pe1er Halvorsen, M.Sc. Ja! De1e er et IA fag dvs. både AutomaFsering og InformaFkk! Arbeidslivet krever anvendt kunnskap! Tilstandsrom- modeller Dataverktøy SpesialFlfelle MathScript LabVIEW

Detaljer

Ditt og Datt i MATLAB. En introduksjon til Matlab og Simulink for ferske kybernetikk-studenter

Ditt og Datt i MATLAB. En introduksjon til Matlab og Simulink for ferske kybernetikk-studenter Ditt og Datt i MATLAB En introduksjon til Matlab og Simulink for ferske kybernetikk-studenter Sist oppdatert 17. juli 2014 Innhold 1 Generelle tips Matlab 2 1.1 Kommandovinduet vs.m-skript....................

Detaljer

PGZ - Hangman Ekspert Python Lærerveiledning

PGZ - Hangman Ekspert Python Lærerveiledning PGZ - Hangman Ekspert Python Lærerveiledning Introduksjon I denne oppgaven skal vi lage vårt eget hangman-spill. Vi har laget litt ferdigskrevet kode for å hjelpe deg på vei. Den kan du laste ned her.

Detaljer

Skilpaddefraktaler Erfaren Python PDF

Skilpaddefraktaler Erfaren Python PDF Skilpaddefraktaler Erfaren Python PDF Introduksjon Vi vil nå jobbe videre med skilpaddekunsten fra tidligere. Denne gangen skal vi tegne forskjellige figurer som kalles fraktaler. Fraktaler er figurer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Obligatorisk oppgave: STK 2400 - Elementær innføring i risiko- og pålitelighetsanalyse Innleveringsfrist: Torsdag 10. november 2011, kl.

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 5. Pensum: for-løkker, fprintf, while-løkker. Benjamin A. Bjørnseth 5. oktober 2015 2 Oversikt Gjennomgang auditorieøving Repetisjon: for-løkke, fprintf While-løkker

Detaljer

Skilpaddetekst. Steg 1: Tekst på flere linjer. Sjekkliste. Introduksjon

Skilpaddetekst. Steg 1: Tekst på flere linjer. Sjekkliste. Introduksjon Skilpaddetekst Ekspert Python Introduksjon I denne oppgaven skal vi skrive kode, slik at vi kan skrive stor tekst ved hjelp av turtle slik som på bildet under. Steg 1: Tekst på flere linjer Vi har allerede

Detaljer

GEO1040: Grunnkurs i programmering for geofaglige problemstillinger

GEO1040: Grunnkurs i programmering for geofaglige problemstillinger UNIVERSITETET I OSLO Institutt for geofag GEO1040: Grunnkurs i programmering for geofaglige problemstillinger Valérie Maupin Gunnar Wollan Thomas Vikhamar Schuler Ada Gjermundsen Henrik Grythe Øyvind Ryan

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Kapittel 7 Filer og unntak ( exceptions ) Professor Alf Inge Wang Stipendiat Lars Bungum

TDT4110 Informasjonsteknologi grunnkurs: Kapittel 7 Filer og unntak ( exceptions ) Professor Alf Inge Wang Stipendiat Lars Bungum 1 TDT4110 Informasjonsteknologi grunnkurs: Kapittel 7 Filer og unntak ( exceptions ) Professor Alf Inge Wang Stipendiat Lars Bungum 2 Læringsmål Mål Introduksjon til filer (som inndata og utdata) Å bruke

Detaljer

4. og 5. september 2012

4. og 5. september 2012 r Institutt for geofag Universitetet i Oslo 4. og 5. september 2012 Oppgave 1 r Hvor mange ganger blir Hello Verden! skrevet ut i kommandovinduet? for i=0:20 disp( Hello Verden! ) Oppgave 2 r Hva blir

Detaljer

Verden. Steg 1: Vinduet. Introduksjon

Verden. Steg 1: Vinduet. Introduksjon Verden Introduksjon Processing Introduksjon Velkommen til verdensspillet! Her skal vi lage begynnelsen av et spill hvor man skal gjette hvilke verdensdeler som er hvor. Så kan du utvide oppgava til å heller

Detaljer

Debugging. Tore Berg Hansen, TISIP

Debugging. Tore Berg Hansen, TISIP Debugging Tore Berg Hansen, TISIP Innhold Innledning... 1 Å kompilere og bygge et program for debugging... 1 Når debugger er i gang... 2 Symbolene i verktøylinjen... 3 Start på nytt... 3 Stopp debugging...

Detaljer

Ta kontakt i pausen. Viktig at vi kommer i gang med dette arbeidet!

Ta kontakt i pausen. Viktig at vi kommer i gang med dette arbeidet! 1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Mer om funksjoner. Logiske betingelser og betinget programutførelse (valg). Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget

Detaljer

START MED MATLAB. Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette :

START MED MATLAB. Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette : 1 START MED MATLAB Disse sidene er hovedsakelig ment for dem som ikke har brukt Matlab eller som trenger en oppfriskning. Start fra toppen og gå systematisk nedover. I tillegg brukes Matlablefsa. Noe av

Detaljer

Finne ut om en løsning er helt riktig og korrigere ved behov

Finne ut om en løsning er helt riktig og korrigere ved behov Finne ut om en løsning er helt riktig og korrigere ved behov Finurlige feil og debugging av kode IN1000, uke5 Geir Kjetil Sandve Oppgave (Lett modifisert fra eksamen 2014) Skriv en funksjon Dersom parameteren

Detaljer

YouTube-kanal ITGK. Læringsmål og pensum

YouTube-kanal ITGK.  Læringsmål og pensum 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Enkle funksjoner - 3rd edition: Kapittel 5.1-5.6 Professor Alf Inge Wang 2 YouTube-kanal ITGK Professor Guttorm Sindre (foreleser den andre Python-parallellen

Detaljer

TDT4105 IT Grunnkurs Høst 2016

TDT4105 IT Grunnkurs Høst 2016 TDT4105 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følge informasjon i blokkbokstaver Navn:

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Hangman. Steg 1: Velg et ord. Steg 2: Gjett en bokstav. Sjekkliste. Sjekkliste. Introduksjon

Hangman. Steg 1: Velg et ord. Steg 2: Gjett en bokstav. Sjekkliste. Sjekkliste. Introduksjon Hangman Erfaren Python Introduksjon La oss lage et spill: Hangman! Datamaskinen vil velge et ord og du kan gjette det bokstav for bokstav. Dersom du gjetter feil for mange ganger taper du. Steg 1: Velg

Detaljer

MATLAB - Flere laster om bord og automatisering fribordsberegning med if else

MATLAB - Flere laster om bord og automatisering fribordsberegning med if else Høgskolen i Bergen Avdeling for Ingeniørutdanning Institutt for Maskin/Marin Øving 4 MATLAB - Flere laster om bord og automatisering fribordsberegning med if else Oppgave 1 I denne oppgaven skal vi legge

Detaljer

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Variable og beregninger, input og utskrift TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål for denne uka: Vite litt om design av programmer (2.1, 2.2, 2.4) Kunne skrive ut

Detaljer

Input fra brukeren. Hente tekst fra brukeren. Moduler og program. Modell, meldinger og oppdatering. Skriv ut teksten. Introduksjon

Input fra brukeren. Hente tekst fra brukeren. Moduler og program. Modell, meldinger og oppdatering. Skriv ut teksten. Introduksjon Input fra brukeren Erfaren Elm Introduksjon Input-felter lar brukere skrive inn tekst, tall, datoer og så videre i nettsiden vår. Informasjonen vi får fra brukerne kan vi endre, skrive ut, og kombinere

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Enkle funksjoner. - 3rd edition: Kapittel Professor Alf Inge Wang

TDT4110 Informasjonsteknologi grunnkurs: Tema: Enkle funksjoner. - 3rd edition: Kapittel Professor Alf Inge Wang 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Enkle funksjoner - 3rd edition: Kapittel 5.1-5.6 Professor Alf Inge Wang 2 YouTube-kanal ITGK Professor Guttorm Sindre (foreleser den andre Python-parallellen

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Oppgave 1 Funksjonsler b) Kommandoen ` help FunksjonenMin' gjør at dette blir skrevet til skjerm: Funksjonen f(x)=sin(x) - x^. Funksjonen

Detaljer

41070 STABILITET I ELKRAFTSYSTEMER

41070 STABILITET I ELKRAFTSYSTEMER NTNU Gitt: 26.01.00 Fakultet for Elektroteknikk og telekommunikasjon Leveres: 09.02.00 Institutt for elkraftteknikk 1 41070 STABILITET I ELKRAFTSYSTEMER ØVING 13. Obligatorisk dataøving. Formål: - gi en

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Pensum fra øving 2 og 3: if, switch, for, matriser. Benjamin A. Bjørnseth 14. september 2015 2 Innhold If-setninger Switch For-løkker Diverse 3 Oversikt If-setninger Switch

Detaljer

Verden - Del 2. Steg 0: Oppsummering fra introduksjonsoppgaven. Intro

Verden - Del 2. Steg 0: Oppsummering fra introduksjonsoppgaven. Intro Verden - Del 2 Nybegynner Processing Intro Denne oppgaven bygger på oppgaven med samme navn som ligger på introduksjonsnivå her i Processingoppgavene. Klikk her for å gå til introduksjonsoppgaven av verden.

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose

TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose 1 TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose Anders Christensen (anders@ntnu.no) Rune Sætre (satre@ntnu.no) TDT4105 IT Grunnkurs

Detaljer