TDT4105 IT Grunnkurs Høst 2014
|
|
- Mathias Nygård
- 2 år siden
- Visninger:
Transkript
1 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital representasjon av lyd? c) Hvorfor kjører skript nummer 2 tregere enn nummer 1? x = zeros ( 10000) for i = 1: x(i) = i; for i = 1: x(i) = i; 2 Kodeforståelse Hva skriver følge kode ut? Gå gjennom koden først, og noter deg hva du mener den skriver ut, før du kjører den. function c = afunction ( a, b) c = a + b; b = 3; b = 5; c = 2; d = afunction (c, b); disp (b); disp (c); disp (d); Side 1 av 5
2 3 Trapesmetoden a) Lag funksjonen f, gitt av: f(x) = 8sin(x) x 5 Pass på at funksjonen kan regne på vektorer. Tips: a ˆ b fungerer kun hvis a og b er tall, a.ˆ b fungerer også hvis a og b er vektorer. Følge skript tester funksjonen: f (0) % skal returnere 3 f ( 1. 5) % skal returnere % skal returnere [ ] f ([0:0.5:2]) b) Plott funksjonen fra 0 til 2 med steglengde c) Plott funksjonen fra 0 til 2 med steglengde 0.2 Hvis du skriver hold on før du kjører plot-funksjonen, vil plottene legge seg oppå hverandre. Hvis du har gjort dette vil plottet se ca. slik ut: For å nne arealet under en graf er det vanlig å integrere funksjonen. Men det er ikke alle funksjoner som er enkle å integrere. Funksjonen i denne oppgaven er et eksempel på en slik funksjon. Men med litt programmering kan vi tilnærme oss arealet av denne funksjonen. Se på plottet ovenfor, og legg merke til at de to grafene nesten ligger oppå hverandre. Legg også merke til at den blå linjen, sammen med bunnlinjen og de vertikale grå linjene, danner 10 trapeser. Trapes er det enkelt å regne ut arealet av. Side 2 av 5
3 d) Lag funksjonen trapezoidarea som tar inn parametrene a, b og h. Bruk følge funksjon for å regne ut arealet. A = a + b h 2 Her er a og b lengden på de to parallelle sidene i trapeset, og h er distansen mellom disse. Test funksjonen slik: trapezoidarea (1, 1, 1) % skal returnere 1 trapezoidarea (3, 1, 1) % skal returnere 2 trapezoidarea (1, 3, 2) % skal returnere 4 e) Lag funksjonen trapezoidmethod, som skal regne ut en tilnærming av arealet under funksjonen f fra oppgave a). Funksjonen skal ta inn start, stop og n som parametre. Her er start start-punktet for arealet (0 i eksempelet over), stop er stopp-punktet (2 i eksempelet over) og n er antall trapeser. Test funksjonen slik: trapezoidmethod (0, 2, 10) % skal returnere trapezoidmethod (0, 2, 2) % skal returnere trapezoidmethod (1, 3, 10) % skal returnere Hva skjer når du øker n? 4 Kulestøt Når man støter kule er det ikke bare hastigheten på kulen som avgjør hvor langt man støter - vinkelen man støter med og høyden over bakken spiller også en rolle. I denne oppgaven skal vi lage en funksjon som modellerer dette problemet, og vi skal nne ut hvilken vinkel som er optimal for en gitt høyde. Vi skal regne på bevegelse i to dimensjoner, x og y. Det er ikke nødvig å forstå fysikken bak bevegelsene, siden du skal få oppgitt riktige formler og hvor de skal brukes. Men vi må likevel ha en liten intuisjon for hva som foregår. Hvis høyden er lik 2 så er startposisjonen x = 0 og y = 2. Side 3 av 5
4 For å kalkulere banen som kulen tar, trenger vi å vite hvor kulen er, hva farten er og hvilken akselerasjon den har. Videre lar vi det gå en tidsenhet, slik at kulen ytter seg litt og kalkulerer disse variablene på nytt. Dette gjentar vi så lenge y-koordinatet er større enn 0. Når y-koordinatet er 0 har kulen landet, og lengden av kastet er gitt av x-koordinatet. Vi vet allerede hvor kulen er når den starter, så det første vi må kalkulere er hastigheten i henholdsvis x-retning og y-retning. Dette er gitt av hastigheten og vinkelen ved følge formler: v x = cos(angle) speed v y = sin(angle) speed a) Skriv funksjonen initialspeed(angle, speed) som returnerer hastighet i x og y retning. Tips: cos og sin i matlab regner med radianer og ikke grader. Hvis du vil bruke grader i løsningen din kan du bruke funksjonene cosd og sind. Eller du kan gjøre omregningen selv. Husk at grader = radianer 180 π Funksjonen kan testes med følge skript: % skal returnere x = 100, y = 0 [x, y] = initialspeed (0, 100) % skal returnere x = e -15, y = 100 [x, y] = initialspeed ( pi /2, 100) % skal returnere x = , y = [x, y] = initialspeed ( pi /4, 100) Posisjonen i neste steg forholder seg til posisjonen og farten i det nåvære steget slik: dt er her størrelsen på et tidsintervall. x n+1 = x n + v xn dt y n+1 = y n + v yn dt b) Skriv funksjonen med signaturen function [x, y] = position(x, y, vx, vy, dt) som kalkulerer x- og y-koordinatet i neste steg, ut ifra det nåvære stegets posisjon og fart. Funksjonen kan testes med følge skript: % skal returnere x = 10, y = 11 [x, y] = position (10, 10, 0, 1, 1) % skal returnere x = 11, y = 10 Side 4 av 5
5 [x, y] = position (10, 10, 1, 0, 1) % skal returnere x = 10.1, y = [x, y] = position (10, 10, 1, 1, 0.1) Akselerasjonen er i denne oppgaven gitt ved: a xn+1 = k v xn abs(v xn ) a yn+1 = k v yn abs(v yn ) g Hvor k = 0.01 og angir luftmotstanden, og g er gravitasjonskonstanten (9.81 på jorden). c) Skriv en funksjon med signaturen function [ax, ay] = acceleration(vx, vy) som kalkulerer akselerasjonen i det neste steget ut i fra det nåvære stegets fart. Funksjonen kan testes slik: % skal returnere x = 0, y = [ x, y] = acceleration (0, 0) % skal returnere x = -1, y = [ x, y] = acceleration (10, 10) Farten i neste steg forholder seg til farten og akselerasjonen i det nåvære steget slik: dt er her størrelsen på et tidsintervall. v xn+1 = v xn + a xn dt v yn+1 = v yn + a yn dt d) Skriv en funksjon med signaturen function [vx, vy] = speed(vx, vy, ax, ay, dt) som kalkulerer farten i det neste steget ut ifra det nåvære stegets fart og akselerasjon. Nå kan vi bruke funksjonen i a for å nne starttilstanden og funksjonene i b-d for å gå fra et steg til det neste. e) Skriv funksjonen trajectory som tar inn vinkel, fart og høyde over bakken som parameter. Funksjonen skal returnere to vektorer, en for alle x-koordinatene og en for alle y-koordinatene. Siden vi ikke vet hvor mange iterasjoner løkken skal inneholde, må funksjonen benytte en while-løkke. Løkken skal stoppe når y-koordinatet er mindre enn 0. f) Lag funksjonen plottrajectory som har de samme parameterene som trajectory, men som bruker plot-funksjonen til å plotte kulebanen. g) (frivillig) Lag funksjonen plottrajectorylength. Den skal kalle trajectory med forskjellige vinkler mellom 0 og pi/2 (90 ), for å nne lengden av et kulestøt med den aktuelle vinkelen. Deretter skal funksjonen plotte vinkel mot lengde ved hjelp av plot. Et greit vinkelsteg her kan være pi / 32. Hvilken vinkel gir best resultat? Hva skjer om man rer på høyden; rer vinkelen seg da? Hva skjer om man rer på k og g? Har farten noe å si for vinkelen? Klarer du å lage en 3D plot med høyde og vinkel? Side 5 av 5
TDT4105 IT Grunnkurs Høst 2014
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 7 1 Teori a) Konverter tallet 69 fra det desimale til det binære og
Høst 2014. Øving 5. 1 Teori. 2 Månedskalender. Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 5 1 Teori a) Hva er den binære ASCII-verdien av bokstaven E (stor e)?
Fysikkmotorer. Andreas Nakkerud. 9. mars Åpen Sone for Eksperimentell Informatikk
Åpen Sone for Eksperimentell Informatikk 9. mars 2012 Vektorer: posisjon og hastighet Posisjon og hastighet er gitt ved ( ) x r = y Ved konstant hastighet har vi som gir likningene v= r = r 0 + v t x =
TDT4110 IT Grunnkurs Høst 2012
TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 7 Denne øvingen er en fellesøving laget i samarbeid med emnet TMA4100
Øvingsforelesning i Matlab TDT4105
Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, while Benjamin A. Bjørnseth 12. oktober 2015 2 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering
Øvingsforelesning i Matlab TDT4105
Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, preallokering, funksjonsvariabler, persistente variabler Benjamin A. Bjørnseth 13. oktober 2015 2 Oversikt Funksjoner
TDT4105 IT Grunnkurs Høst 2012
TDT4105 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 9 1 Teori a) Hva er en protokoll? b) Hva er HTTP og når brukes den?
Løsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer
Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.
Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3
med canvas Canvas Grafikk Læreplansmål Gløer Olav Langslet Sandvika VGS
Grafikk med canvas Gløer Olav Langslet Sandvika VGS Høsten 2011 Informasjonsteknologi 2 Canvas Læreplansmål Eleven skal kunne bruke programmeringsspråk i multimedieapplikasjoner Med CSS3, HTML og JavaScript
TDT4110 IT Grunnkurs Høst 2012
TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 2 Navn: Linje: Brukernavn: Oppgavesettet inneholder 5 oppgaver.
1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =
Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (
BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)
Kan vi forutse en pendels bevegelse, før vi har satt den i sving?
Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,
FY0001 Brukerkurs i fysikk
NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F
MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag
1 MAT 111: Obligatorisk oppgave 1, V-7: Løsningsforslag Oppgave 1. a) Vi deriverer på vanlig måte: ( e (sinh x) x e x ) = = ex + e x = cosh x, ( e (cosh x) x + e x ) = = ex e x = sinh x Enkel algebra gir
FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 )
FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 ) Hvorfor holder enkelte dropper seg oppe? Ved å benytte beregning.m på små dråpestørrelser, kan man legge til merke at for at en dråpe
MA1102 Grunnkurs i analyse II Vår 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).
Fasit MAT102 juni 2016
Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet
EKSAMEN RF3100 Matematikk og fysikk
Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes
Simulerings-eksperiment - Fysikk/Matematikk
Simulerings-eksperiment - Fysikk/Matematikk Tidligere dette semesteret er det gjennomført et såkalt Tracker-eksperiment i fysikk ved UiA. Her sammenlignes data fra et kast-eksperiment med data fra en tilhørende
TDT4105 IT Grunnkurs Høst 2016
TDT4105 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følge informasjon i blokkbokstaver Navn:
Steg 1: Streken. Steg 2: En hoppende helt. Sjekkliste. Sjekkliste. Introduksjon. Hei der! Hoppehelt
Hei der! Hoppehelt Ser ut som dette er ditt første besøk, vil du ha en omvisning? Ekspert Scratch PDF Introduksjon Hoppehelt er litt inspirert av musikkspillet Guitar Hero. I Hoppehelt skal man kontrollere
Øvingsforelesning i Matlab TDT4105
Øvingsforelesning i Matlab TDT4105 Øving 5. Pensum: for-løkker, fprintf, while-løkker. Benjamin A. Bjørnseth 5. oktober 2015 2 Oversikt Gjennomgang auditorieøving Repetisjon: for-løkke, fprintf While-løkker
Kapittel august Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 2.
Institutt for geofag Universitetet i Oslo 28. august 2012 Kommandovinduet Det er gjennom kommandovinduet du først og fremst interagerer med MatLab ved å gi datamaskinen kommandoer når >> (kalles prompten
Snake Expert Scratch PDF
Snake Expert Scratch PDF Introduksjon En eller annen variant av Snake har eksistert på nesten alle personlige datamaskiner helt siden slutten av 1970-tallet. Ekstra populært ble spillet da det dukket opp
Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag
Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +
Om plotting. Knut Mørken. 31. oktober 2003
Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL
Impuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor
eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)
Matematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF3100 Løsningsforslag 16. mars 2015 Tidsfrist: 23. mars 2015 klokken 14.00 Oppgave 1 Her skal vi se på hvordan man kan sikte seg inn på stridsvogner i bevegelse. Ved t = 0 befinner
Pong. Oversikt over prosjektet. Steg 1: En sprettende ball. Plan. Sjekkliste. Introduksjon
Pong Introduksjon Pong er et av de aller første dataspillene som ble laget, og det første dataspillet som ble en kommersiell suksess. Selve spillet er en forenklet variant av tennis hvor to spillere slår
RF3100 Matematikk og fysikk Leksjon 6
RF3100 Matematikk og fysikk Leksjon 6 Lars Sydnes, NITH 4.oktober 2013 I. FUNKSJONER TILFELDIGE EKSEMPLER x-koordinaten er en funksjon av t når startposisjon x 0 og startfart v x er gitt: x = x 0 + v x
Sprettball Erfaren ComputerCraft PDF
Sprettball Erfaren ComputerCraft PDF Introduksjon Nå skal vi lære hvordan vi kan koble en skjerm til datamaskinen. Med en ekstra skjerm kan vi bruke datamaskinen til å kommunisere med verden rundt oss.
Pilotprosjekt i faglig bruk av IKT i sivilingeniørutdannelsen: «Numerisk fysikk»
Pilotprosjekt i faglig bruk av IKT i sivilingeniørutdannelsen: «Numerisk fysikk» Emnet/emnene «Fysikk»: Et av de store «fellesemnene» på Gløshaugen. Tas av (nesten) alle siving studentene. Emner som vil
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
TDT4102 Prosedyre og Objektorientert programmering Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Løsningsforslag øving 2 Frist: DD.MM.YYYY Mål
SINUS R1, kapittel 5-8
Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173
Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011
NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten
a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =
Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende
Løsning, gruppeoppgave om corioliskraft og karusell, oppgave 7 uke 15 i FYS-MEK/F 1110 våren 2005
1 Løsning, gruppeoppgave om corioliskraft og karusell, oppgave 7 uke 15 i FYS-MEK/F 1110 våren 2005 Oppgaven lød: To barn står diamentralt i forhold til hverandre ved ytterkanten på en karusell med diameter
MA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår 3 Løsningsforslag Øving 7 9.4.5 La A = (,, 3) og B = (,, ). Finn vektorrepresentasjonen til
Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
Øvingsforelesning i Matlab (TDT4105)
Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 1. september 2015 2 Oversikt Praktisk informasjon Om øvingsforelesninger
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2
Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler
FYSMEK1110 Oblig 5 Midtveis Hjemmeeksamen Sindre Rannem Bilden
Oblig 5 Midtveis Hjemmeeksamen a) Om man tenker seg en trekant med side d, y og l. Vil l uttrykkes gjennom Pytagoras setning som l = y 2 + d 2. b) c) Fjærkraft er definert ved F = ± k l der l = l - l 0
Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:
Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn
1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)
1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.
Lengde, hastighet og aksellerasjon
Lengde, hastighet og aksellerasjon Nicolai Kristen Solheim Abstract I denne oppgaven har vi målt lengde, hastighet og akselerasjon for å få et bedre forhold til sammenhengen mellom disse. Et annet fokus
BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver veke 14 Løysingsforslag Oppgave 1 Samanlikning med analytisk løysing y = 3 2 x y, y(0) = 1. a) Dierensiallikninga er separabel: dy dx = 3 x y 2 dy = 3 x dx y
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza
Løsningsforslag heldagsprøve våren 2010 1T
Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y
MAT-INF 2360: Obligatorisk oppgave 1
6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)
5.201 Galilei på øret
RST 1 5 Bevegelse 20 5.201 Galilei på øret undersøke bevegelsen til en tung sylinder ved hjelp av hørselen Eksperimenter Fure Startstrek Til dette forsøket trenger du to høvlede bordbiter som er over en
Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
Prosjektoppgave i FYS-MEK 1110
Prosjektoppgave i FYS-MEK 1110 03.05.2005 Kari Alterskjær Gruppe 1 Prosjektoppgave i FYS-MEK 1110 våren 2005 Hensikten med prosjektoppgaven er å studere Jordas bevegelse rundt sola og beregne bevegelsen
TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL
TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2
TDT4105 IT Grunnkurs Høst 2014
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 9 1 Teori a) Hva er en protokoll? b) Hva er HTTP og når brukes den?
Matematikk Øvingsoppgaver i numerikk leksjon 5. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x) er en elementær
Sammendrag kapittel 9 - Geometri
Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning
Skilpaddekunst. Steg 1: Møt skilpadden. Sjekkliste. Introduksjon. Turtles
Skilpaddekunst Introduksjon Skilpadder (turtles på engelsk) er en form for roboter som har vært i bruk innen programmering i lang tid. Vi vil bruke skilpadde-biblioteket i Python til å utforske flere programmeringskonsepter
BOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs
BOKMÅL Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN
TMA4245 Statistikk Høst 2016
TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 2 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:
Matlab-tips til Oppgave 2
Matlab-tips til Oppgave 2 Numerisk integrasjon (a) Velg ut maks 10 passende punkter fra øvre og nedre del av hysteresekurven. Bruk punktene som input til Matlab og lag et plot. Vi definerer tre vektorer
Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
Løsningsforslag MAT102 - v Jon Eivind Vatne
Løsningsforslag MAT02 - v203 - Jon Eivind Vatne. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 4 2. 3 Svar: Fra den karakteristiske ligningen A λi 2 = λ 2 + 3λ + 2 = 0 får vi egenverdiene
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje
Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje 2.1 Vi skal gjennomføre en enkel bestemmelse av gjennomsnittshastighet ved å simulere en luftputebenk. En vogn kan gli tilnærmet
Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14.
og Institutt for geofag Universitetet i Oslo 17. Oktober 2012 i MatLab En funksjon vil bruke et gitt antall argumenter og produsere et gitt antall resultater og : Hvorfor Først og fremst bruker vi når
Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv
Bygg et Hus Introduksjon I denne leksjonen vil vi se litt på hvordan vi kan få en robot til å bygge et hus for oss. Underveis vil vi lære hvordan vi kan bruke løkker og funksjoner for å gjenta ting som
Øvingsforelesning i Matlab (TDT4105)
Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 15.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Sondre Wangenstein Baugstø 4. september 2017 2 Oversikt Praktisk informasjon Om øvingsforelesninger
Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:
Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
Bruk piazza for å få rask hjelp til alles nytte!
Kunnskap for en bedre verden 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab 5: Løkker (FOR og WHILE) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no
TDT4110 IT Grunnkurs Høst 2014
TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Navn: Linje: Brukernavn (blokkbokstaver): Oppgavesettet
Løsningsforslag. f(x) = 2/x + 12x
Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
TDT4110 IT Grunnkurs Høst 2016
TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følgende informasjon i blokkbokstaver
Matematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF3100 Øving 16. mars 2015 Tidsfrist: 23. mars 2015 klokken 14.00 Oppgave 1 Her skal vi se på hvordan man kan sikte seg inn på stridsvogner i bevegelse. Ved t = 0 befinner vi
Kan micro:biten vår brukes som en terning? Ja, det er faktisk ganske enkelt!
Microbit PXT: Terning Skrevet av: Geir Arne Hjelle Kurs: Microbit Språk: Norsk bokmål Introduksjon Kan micro:biten vår brukes som en terning? Ja, det er faktisk ganske enkelt! Steg 1: Vi rister løs Vi
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
TDT4110 IT Grunnkurs Høst 2015
TDT4110 IT Grunnkurs Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforlag Auditorieøving 1 1 Teori Løsning er skrevet med uthevet tekst
i x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
Notat om trigonometriske funksjoner
Notat om trigonometriske funksjoner Dette notatet ble først skrevet for MA000 våren 005 av Ole Jacob Broch. Dette er en noe omarbeidet versjon skrevet høsten 0. Radianer Anta at en vinkel A er gitt, f.eks
Repetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
SG: Spinn og fiktive krefter. Oppgaver
FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =
TMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte
TDT4110 IT Grunnkurs Høst 2014
TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 10 Denne øvingen er en to-ukers øving (prosjekt) og inneholder én
Fy1 - Prøve i kapittel 5: Bevegelse
Fy1 - Prøve i kapittel 5: Bevegelse Løsningsskisser Generelt: Alle svar skal avrundes korrekt med samme antall gjeldende siffer som er gitt i oppgaven. Alle svar skal begrunnes: - Tekst/figur/forklaring
Spøkelsesjakten. Steg 1: Lag et flyvende spøkelse. Sjekkliste. Introduksjon
Spøkelsesjakten Introduksjon Dette prosjektet er inspirert av tivolispillet Whack-a-mole, hvor man slår muldvarper ned igjen i hullene sine. I vårt spill er det spøkelsene som blir borte vi klikker på
Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark
Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn
AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn
AKTIVITET 8-10. trinn Baneberegninger modellraketter Utviklet av Tid Læreplanmål Nødvendige materialer 1-2 timer Bruke egne målinger og tabellverdier til å gjøre baneberegninger på modellraketten. Modellrakett
Spøkelsesjakten. Introduksjon
1 Spøkelsesjakten All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Introduksjon
Hvor i All Verden? Del 3 Erfaren Scratch PDF
Hvor i All Verden? Del 3 Erfaren Scratch PDF Introduksjon Hvor i All Verden? er et reise- og geografispill hvor man raskest mulig skal fly innom reisemål spredt rundt i Europa. Dette er den siste av tre