Øvingsforelesning i Matlab TDT4105

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Øvingsforelesning i Matlab TDT4105"

Transkript

1 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, while Benjamin A. Bjørnseth 12. oktober 2015

2 2 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering (Funksjoner som variabler)

3 3 Konsept 1. Funksjon y = f (x):

4 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )]

5 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )]

6 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)]

7 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Eksempel: sin(x)

8 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Eksempel: sin(x) 2. Funksjon skalar = f (x)

9 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Eksempel: sin(x) 2. Funksjon skalar = f (x) Funger uansett hvor lang x er

10 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Eksempel: sin(x) 2. Funksjon skalar = f (x) Funger uansett hvor lang x er Eksempel: sum(x)

11 4 Eksempler 1. Lag en funksjon f(x) som regner ut 2πx

12 4 Eksempler 1. Lag en funksjon f(x) som regner ut 2πx 2. Lag en funksjon g(x) som regner ut f 2 (x)

13 4 Eksempler 1. Lag en funksjon f(x) som regner ut 2πx 2. Lag en funksjon g(x) som regner ut f 2 (x) 3. Lag en funksjon h(x, i) som regner ut x i i!

14 4 Eksempler 1. Lag en funksjon f(x) som regner ut 2πx 2. Lag en funksjon g(x) som regner ut f 2 (x) 3. Lag en funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! i!

15 4 Eksempler 1. Lag en funksjon f(x) som regner ut 2πx 2. Lag en funksjon g(x) som regner ut f 2 (x) 3. Lag en funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! e(x) = i=0 xi i! i!

16 5 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering (Funksjoner som variabler)

17 6 Større oppgaver 1. Les oppgavene nøye (gjerne to-tre ganger). 2. Let etter enkle utgangspunkt Skal jeg lage en funksjon? Skal jeg bare opprette en variabel? Skal jeg sette sammen en løsning i et script? 3. Fyll ut med detaljer for å få løsningen til å stemme.

18 7 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering (Funksjoner som variabler)

19 8 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) Kan være lister, eller matriser (plott per kolonne)

20 8 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) Flere plots samtidig (kan også være punkt)

21 8 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) plot(yverdier) Typisk blir x-verdier indekser (med mindre y-verdiene er komplekse)

22 8 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) plot(yverdier) Merk: for linjeplott må alle punktene være samlet i en matrise.

23 9 Eksempel: sannsynlighetsfordelinger 1. Plott en standard normalfordeling for x [ 5, 5] f (x) = 1 2π e x2 2

24 9 Eksempel: sannsynlighetsfordelinger 1. Plott en standard normalfordeling for x [ 5, 5] f (x) = 1 2π e x Plott en standard eksponensialfordeling for x [ 1, 10] { e x if x >= 0 f (x) = 0 if x < 0

25 10 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering (Funksjoner som variabler)

26 11 Effektiv matlab Hvis du trenger en vektor, lag hele med en gang Raskere enn å lage vektoren litt og litt Preallokering v = zeros(0, 1, 100); for i = 1:100 v(i) = f(i); end Uten preallokering v = []; for i = 1:100 v(i) = f(i); end

27 12 Eksempel 1. Lag en funksjon fibonacci(n) som returnerer en liste med fibonaccitallene 1 til n. Lag to varianter: 1.1 En med preallokering. 1.2 En uten preallokering. 2. Lag et script som måler forskjell i tid på regne ut fibonacci(1e6)

28 13 While-løkker og preallokering Vi vet ikke hvor mange ganger løkken kjører Det er derfor vi bruker while og ikke for Hvis vi skal produsere en vektor: hvordan kan vi vite hvor stor den må være?

29 13 While-løkker og preallokering Vi vet ikke hvor mange ganger løkken kjører Det er derfor vi bruker while og ikke for Hvis vi skal produsere en vektor: hvordan kan vi vite hvor stor den må være? Løsning: estimer, og øk eventuelt etter hvert. Kutt eventuelt bort ekstra elementer til slutt.

30 14 While-løkker og preallokering: eksempel Modifiser Newtons metode til å ikke skrive ut midlertidige resultater, men returnere dem i en vektor.

31 15 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering (Funksjoner som variabler)

32 16 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil

33 16 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil Eksempler: integrer(funksjon, a, b) finn_nullpunkt(funksjon)

34 16 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil Eksempler: integrer(funksjon, a, b) finn_nullpunkt(funksjon) Gitt funksjonen f(x): min_funksjon lager en ny variabel som referer til f(x) kaller funksjonen finn_nullpunkt med funksjonen f som parameter.

35 17 Eksempel: numerisk integrering Estimer x 2 dx ved å bruke matlabs integral-funksjon

36 18 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet.

37 18 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet. Syntaks: min_funksjon = <uttrykk>;

38 18 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet. Syntaks: min_funksjon = <uttrykk>; Eksempel: x_i_annen x^2; x_i_annen(2) x_i_annen(5)

39 19 Eksempel: parametriserte sannsynlighetsfordelinger 1. Plott flere normalfordelinger med forskjellige forventningsverdier og varianser Eksempelbilde på wikipedia.

40 20 Eksempel: generisk newtons metode 1. Modifiser newtons metode til å fungere for vilkårlige funksjoner Nytt navn: finn_nullpunkt(f, df) 2. Bruk den nye newtons metode-funksjonen til å implementere kvadratrot

41 21 Eksempel: arrayfun Matlabfunksjonen arrayfun kaller en gitt funksjon for hvert element i en gitt liste. Bruk arrayfun til å estimere flere verdier av e x ved hjelp av h(x, i) fra tidligere eksempel.

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, preallokering, funksjonsvariabler, persistente variabler Benjamin A. Bjørnseth 13. oktober 2015 2 Oversikt Funksjoner

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 5. Pensum: for-løkker, fprintf, while-løkker. Benjamin A. Bjørnseth 5. oktober 2015 2 Oversikt Gjennomgang auditorieøving Repetisjon: for-løkke, fprintf While-løkker

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 1/3

TMA Kræsjkurs i Matlab. Oppgavesett 1/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Pensum fra øving 2 og 3: if, switch, for, matriser. Benjamin A. Bjørnseth 14. september 2015 2 Innhold If-setninger Switch For-løkker Diverse 3 Oversikt If-setninger Switch

Detaljer

Fasit eksamen i MAT102 4/6 2014

Fasit eksamen i MAT102 4/6 2014 Fasit eksamen i MAT /6. (a Løs ligningssstemene. Svar: i ( x i = 3x + = 7 x + = ( 6, ii x z ii = x + z = 3x + 6 + z = +. er fri. (b Ved å bruke MATLAB-kommandoen rref på totalmatrisen til ligningssstemet

Detaljer

TDT4105 IT Grunnkurs Høst 2014

TDT4105 IT Grunnkurs Høst 2014 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015 Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =

Detaljer

TDT4105 IT Grunnkurs Høst 2016

TDT4105 IT Grunnkurs Høst 2016 TDT4105 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følge informasjon i blokkbokstaver Navn:

Detaljer

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

TDT4110 IT Grunnkurs Høst 2012

TDT4110 IT Grunnkurs Høst 2012 TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 7 Denne øvingen er en fellesøving laget i samarbeid med emnet TMA4100

Detaljer

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ: Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,

Detaljer

Matlab-tips til Oppgave 2

Matlab-tips til Oppgave 2 Matlab-tips til Oppgave 2 Numerisk integrasjon (a) Velg ut maks 10 passende punkter fra øvre og nedre del av hysteresekurven. Bruk punktene som input til Matlab og lag et plot. Vi definerer tre vektorer

Detaljer

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Forelesningsinfo. Tider Mandag Tirsdag Onsdag Torsdag Fredag

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Forelesningsinfo. Tider Mandag Tirsdag Onsdag Torsdag Fredag 1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

Øvingsforelesning i Python (TDT4110)

Øvingsforelesning i Python (TDT4110) Øvingsforelesning i Python (TDT4110) Tema: Øving 2, Betingelser, if/elif/else Kristoffer Hagen Oversikt Praktisk informasjon Gjennomgang av Øving 1 Oppgaver for Øving 2 2 Praktisk Bruke andre studasser

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Om plotting. Knut Mørken. 31. oktober 2003

Om plotting. Knut Mørken. 31. oktober 2003 Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at

Detaljer

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene: Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Funksjoner Matriser Matriseoperasjoner Sannhetsuttrykk

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

Løsningsforslag øving 8, ST1301

Løsningsforslag øving 8, ST1301 Løsningsforslag øving 8, ST3 Oppgave Hva gjør følgende funksjon? Hvilken fordeling har variabelen n som returneres som funksjonsverdi? Forklar hvorfor. Forutsett at to enkle positive tall blir oppgitt

Detaljer

Notat 6 - ST februar 2005

Notat 6 - ST februar 2005 Notat 6 - ST1301 22. februar 2005 1 Instruksjoner som data I begynnelsen av kurset definerte vi data som informasjon uttrykkt i et programmeringsspråk. Slike data kan være av ulik type, f.eks. enkle skalarer

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring

Detaljer

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Oppgaver Kapittel 5 (del 2) Ada Gjermundsen

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Oppgaver Kapittel 5 (del 2) Ada Gjermundsen : Institutt for geofag Universitetet i Oslo 11. september 2012 Oppgave 1: Vektor operasjoner : Lag en vektor som inneholder objektene: a) 2, 4, 6, 8, 10, 12 b) 10, 8, 6, 2, 0, -2, -4 c) 1, 1/2, 1/3, 1/4,

Detaljer

Noen innebygde funksjoner - Vektorisering

Noen innebygde funksjoner - Vektorisering 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler

Detaljer

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013 Noen MATLAB-koder Fredrik Meyer 23. april 2013 1 Plotte en vanlig funksjon Anta at f : [a, b] R er en vanlig funksjon. La for eksempel f(x) = sin x+x for x i intervallet [2, 5]. Da kan vi bruke følgende

Detaljer

Noen innebygde funksjoner - Vektorisering

Noen innebygde funksjoner - Vektorisering 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 1. september 2015 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Løsningsforslag MAT102 - v Jon Eivind Vatne

Løsningsforslag MAT102 - v Jon Eivind Vatne Løsningsforslag MAT02 - v203 - Jon Eivind Vatne. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 4 2. 3 Svar: Fra den karakteristiske ligningen A λi 2 = λ 2 + 3λ + 2 = 0 får vi egenverdiene

Detaljer

1 Oppgave 1 Skriveoppgave Manuell poengsum. 2 Oppgave 2 Code editor Manuell poengsum. 3 Oppgave 3 Skriveoppgave Manuell poengsum

1 Oppgave 1 Skriveoppgave Manuell poengsum. 2 Oppgave 2 Code editor Manuell poengsum. 3 Oppgave 3 Skriveoppgave Manuell poengsum MAT102 - Demoprøve Oppgaver Oppgavetype Vurdering Forside Dokument Ikke vurdert 1 Oppgave 1 Skriveoppgave Manuell poengsum 2 Oppgave 2 Code editor Manuell poengsum 3 Oppgave 3 Skriveoppgave Manuell poengsum

Detaljer

Øvingsforelesning 3 Python (TDT4110)

Øvingsforelesning 3 Python (TDT4110) Øvingsforelesning 3 Python (TDT4110) For og While-løkker Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av øving 1 Programmering for Øving 3 2 Studasser og Piazza Studasser er der for å hjelpe

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

MIK 200 Anvendt signalbehandling, 2012.

MIK 200 Anvendt signalbehandling, 2012. Stavanger, 1. november 2011 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Prosjekt 1, Tapsfri komprimering. Vi skal i dette miniprosjektet se litt på hvordan en kan gjøre

Detaljer

Pilkast og kjikvadrat fordelingen

Pilkast og kjikvadrat fordelingen Pilkast og kjikvadrat fordelingen Halvor Aarnes, IBV, 014 Innhold Pilkast... 1 Simulering av pilkast... Kjikvadratfordelingen og gammafordelingen... 3 Rayleigh-fordelingen... 5 Pilkast brukt til å estimere

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)

Detaljer

1. (a) Finn egenverdiene og egenvektorene til matrisen A =

1. (a) Finn egenverdiene og egenvektorene til matrisen A = 1. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 2 3. 1 4 Svar: λ = 5 med egenvektorer [x, y] T = y[1, 1] T og λ = 1 med egenvektorer [x, y] T = y[ 3, 1] T, begge strengt tatt med y 0. (b)

Detaljer

Livsforsikring et eksempel på bruk av forventningsverdi

Livsforsikring et eksempel på bruk av forventningsverdi et eksempel på bruk av forventningsverdi Ø. Borgan og A.B. Huseby Department of Mathematics University of Oslo, Norway STK 1100 Beregning av rettferdig forsikringspremie Vi skal benytte forventninger av

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave 1 a) Oppgaveteksten oppgir et vektorfelt f(x, y) F x, y = g x, y der f og g er oppgitt ved f x, y = x 3 3xy 1 og g x, y = y 3 + 3x y. Vi kan med dette regne ut Jacobimatrisen F x,

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A =

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A = Oblig - MAT Fredrik Meyer. september 9 Oppgave Linkmatrise: A = En basis til nullrommet til matrisen A I kan finnes ved å bruke MATLAB. Jeg kjører kommandoen rref(a-i) og får følge: >> rref(a-i). -.875.

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Programmering i R. 6. mars 2004

Programmering i R. 6. mars 2004 Programmering i R 6. mars 2004 1 Funksjoner 1.1 Hensikt Vi har allerede sette på hvordan vi i et uttrykk kan inkludere kall til funksjoner som er innebygd i R slik som funksjonene sum, plot o.s.v. Generelt

Detaljer

Læringsmål og pensum. Oversikt

Læringsmål og pensum. Oversikt 1 2 Læringsmål og pensum TDT4105 Informasjonsteknologi grunnkurs: Uke 39 Betingede løkker og vektorisering Læringsmål Skal kunne forstå og programmere betingede løkker med while Skal kunne utnytte plassallokering

Detaljer

3.1.1 Eksempel: "Student's" t-fordeling Lognormal-fordeling... 7

3.1.1 Eksempel: Student's t-fordeling Lognormal-fordeling... 7 Kristian R. Hansen Innhold 1 Innlending... 3 1.1 Hjelp og dokumentasjon... 3 1.2 Kommandolinje... 3 1.3 Dokumentasjon... 3 1.4 Data import og eksport... 3 1.4.1 Regneark... 3 1.4.2 Import Wizard... 3 1.4.3

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag

MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag 1 MAT 111: Obligatorisk oppgave 1, V-7: Løsningsforslag Oppgave 1. a) Vi deriverer på vanlig måte: ( e (sinh x) x e x ) = = ex + e x = cosh x, ( e (cosh x) x + e x ) = = ex e x = sinh x Enkel algebra gir

Detaljer

19. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 8 (del 2) Ada Gjermundsen

19. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 8 (del 2) Ada Gjermundsen Institutt for geofag Universitetet i Oslo 19. september 2012 Repetisjon: Generell formel for Når vi jobber med matriser bruker vi ofte (men ikke alltid) dobbel for-løkke Dette er først og fremst fordi

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 3 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære om hvordan

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære å designe

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +

Detaljer

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 15.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Sondre Wangenstein Baugstø 4. september 2017 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve

Detaljer

En innføring i MATLAB for STK1100

En innføring i MATLAB for STK1100 En innføring i MATLAB for STK1100 Matematisk institutt Universitetet i Oslo Februar 2017 1 Innledning Formålet med dette notatet er å gi en introduksjon til bruk av MATLAB. Notatet er først og fremst beregnet

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er

Detaljer

ITGK - H2010, Matlab. Repetisjon

ITGK - H2010, Matlab. Repetisjon 1 ITGK - H2010, Matlab Repetisjon 2 Variabler og tabeller Variabler brukes til å ta vare på/lagre resultater Datamaskinen setter av plass i minne for hver variabel En flyttallsvariabel tar 8 bytes i minne

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA501 Numeriske metoder Vår 009 Øving 9 Oppgave 1 Bruk vedlagte matlab-program skyt.m til å løse randverdiproblemet x + e x = 0, x(0) = x(1) = 0 Oppgave Gitt startverdiproblemet x = t(x ), x(0) = 1, x

Detaljer

Control Engineering. MathScript. Hans-Petter Halvorsen

Control Engineering. MathScript. Hans-Petter Halvorsen Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 4 Løsningsskisse Oppgave 1 Mureren La X være mengden mørtel mureren bruker i løpet av en tilfeldig valgt arbeidsdag.

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017 Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

Notat 2, ST Sammensatte uttrykk. 27. januar 2006

Notat 2, ST Sammensatte uttrykk. 27. januar 2006 Notat 2, ST1301 27. januar 2006 1 Sammensatte uttrykk Vi har sett at funksjoner ikke trenger å bestå av annet enn ett enkeltuttrykk som angir hva funksjonen skal returnere uttrykkt ved de variable funksjonen

Detaljer

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag I kapittel 9 i kompendiet forklarte vi at maximum-likelihood er en av de viktige anvendelsene av ikke-lineær optimering. Vi skal se litt mer på hva

Detaljer

Tall, vektorer og matriser

Tall, vektorer og matriser Tall, vektorer og matriser Kompendium: MATLAB intro Tallformat Komplekse tall Matriser, vektorer og skalarer BoP(oS) modul 1 del 2-1 Oversikt Tallformat Matriser og vektorer Begreper Bruksområder Typer

Detaljer

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) = Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 4, blokk I Løsningsskisse Oppgave 1 a) Utfallsrommet til X 1 er {1, 2,, 4, 5, }. Sannsynlighetsfordelingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3440 / INF 4440 Signalbehandling Eksamensdag: 27. oktober 2003 10. november 2003 Tid for eksamen: 12.00 12.00 Oppgavesettet

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til Auditorieøving 1 1 Teori 1. Hvilket tall kan IKKE lagres

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følgende informasjon i blokkbokstaver

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Mer om funksjoner: - rekursive funksjoner

TDT4105 Informasjonsteknologi, grunnkurs. Mer om funksjoner: - rekursive funksjoner 1 TDT4105 Informasjonsteknologi, grunnkurs Mer om funksjoner: - rekursive funksjoner Pensum: 10.5 i Matlab-boka 10.1-10.4 er orienteringsstoff og ikke aktuelt til eksamen Kunnskap for en bedre verden Amanuensis

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Største primtallsfaktor i tall

Største primtallsfaktor i tall 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 40: Gjør ferdig problemløsning (faktorisering) Vektorisering Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen)

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 15. desember 017 Klokkeslett: 09.00 13.00 Sted /

Detaljer

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.

Detaljer

Øvingsforelesning 9 i Python (TDT4110)

Øvingsforelesning 9 i Python (TDT4110) Øvingsforelesning 9 i Python (TDT4110) Dictionaries, Exception, Filhåndtering Vegard Hellem Oversikt Praktisk Info Gjennomgang av Øving 7 Programmering til øving 9 2 Praktisk info Auditorieøving 2 Må ikke

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte

Detaljer