Øvingsforelesning i Matlab TDT4105

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Øvingsforelesning i Matlab TDT4105"

Transkript

1 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, preallokering, funksjonsvariabler, persistente variabler Benjamin A. Bjørnseth 13. oktober 2015

2 2 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler

3 3 Konsept 1. Funksjon y = f (x):

4 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )]

5 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )]

6 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)]

7 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner

8 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x)

9 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x) 2. Funksjon skalar = f (x)

10 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x) 2. Funksjon skalar = f (x) Funger uansett hvor lang x er

11 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x) 2. Funksjon skalar = f (x) Funger uansett hvor lang x er Eksempel: sum(x)

12 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx

13 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x)

14 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i i!

15 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! i!

16 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! e(x) = i=0 xi i! i!

17 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! e(x) = i=0 xi i! Tips: n! regnes i matlab vha factorial(n) i!

18 5 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler

19 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) Kan være lister, eller matriser (plott per kolonne)

20 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) Flere plots samtidig (kan også være punkt)

21 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) plot(yverdier) Typisk blir x-verdier indekser (med mindre y-verdiene er komplekse)

22 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) plot(yverdier) Merk: for linjeplott må alle punktene være samlet i en matrise.

23 7 Eksempel: sannsynlighetsfordelinger 1. Plott en standard normalfordeling for x [ 5, 5] f (x) = 1 2π e x2 2

24 7 Eksempel: sannsynlighetsfordelinger 1. Plott en standard normalfordeling for x [ 5, 5] f (x) = 1 2π e x Plott en standard eksponensialfordeling for x [ 1, 10] { e x if x >= 0 f (x) = 0 if x < 0

25 8 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler

26 9 Større oppgaver 1. Les oppgavene nøye (gjerne to-tre ganger). 2. Let etter enkle utgangspunkt Skal jeg lage en funksjon? Skal jeg bare opprette en variabel? Skal jeg sette sammen en løsning i et script? 3. Fyll ut med detaljer for å få løsningen til å stemme.

27 10 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler

28 11 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m

29 12 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m

30 13 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 1. Variabel brukt som argument

31 14 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 1. Variabel brukt som argument 2. Variabelnavn brukt til å lagre parameterverdi i lokalt workspace.

32 15 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 1. Variabel brukt som argument 3. Variabelnavn brukt for å hente ut verdi fra lokalt workspace. 2. Variabelnavn brukt til å lagre parameterverdi i lokalt workspace.

33 16 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 4. Variabelnavn brukt til å lagre returverdi etter funksjonskall. 1. Variabel brukt som argument 3. Variabelnavn brukt for å hente ut verdi fra lokalt workspace. 2. Variabelnavn brukt til å lagre parameterverdi i lokalt workspace.

34 17 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: Globalt workspace

35 18 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Globalt workspace Gjennomførelse av funksjonskallet: 1. Send verdier til funksjonen (funksjonsprolog) 2. Kjør funksjonen 3. Hent eventuelt ut resultater fra funksjonen (funksjonsepilog)

36 19 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog Globalt workspace

37 20 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog 1. Lag nytt lokalt workspace for funksjonskallet. Globalt workspace Lokalt workspace

38 21 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog 1. Lag nytt lokalt workspace for funksjonskallet. 2. Regn ut argumentverdier Globalt workspace Lokalt workspace

39 22 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog 1. Lag nytt lokalt workspace for funksjonskallet. 2. Regn ut argumentverdier 3. Bind parameternavn til argumentverdier i lokalt workspace Globalt workspace Lokalt workspace

40 23 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: selve funksjonen Globalt workspace Lokalt workspace

41 24 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: selve funksjonen 1. Kjør funksjonen linje for linje. Globalt workspace Lokalt workspace

42 25 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: selve funksjonen 1. Kjør funksjonen linje for linje. Globalt workspace Lokalt workspace

43 26 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog Globalt workspace Lokalt workspace

44 27 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog 1. Slå opp verdien av returverdivariabelen i funksjonens lokale workspace Globalt workspace Lokalt workspace

45 28 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog 1. Slå opp verdien av returverdivariabelen i funksjonens lokale workspace 2. Bind variabelnavn til variabel for lagring av resultat til verdien fra funksjonen. Globalt workspace Lokalt workspace

46 29 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog 1. Slå opp verdien av returverdivariabelen i funksjonens lokale workspace 2. Bind variabelnavn til variabel for lagring av resultat til verdien fra funksjonen. 3. Slett det lokale workspacet. Globalt workspace

47 30 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: ferdig! Globalt workspace

48 31 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m MERK! Navnet på lokal returverdivariabel og variabel brukt for lagring av resultat er helt urelatert! (men ofte heter de det samme, siden de refererer til samme type verdi.)

49 32 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m MERK! Navnet på funksjonens lokale parametre og variabler sendt som argument er helt urelatert! (men ofte heter de det samme, siden de refererer til samme type verdi.)

50 33 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m - Utskrift sender verdier til skjerm - Retur av verdier er overføring fra lokalt workspace til aktivt workspace hvor funksjonen ble kalt. Globalt workspace Lokalt workspace

51 34 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler

52 35 Effektiv matlab Hvis du trenger en vektor, lag hele med en gang Raskere enn å lage vektoren litt og litt Preallokering v = zeros(1, 100); for i = 1:100 v(i) = f(i); end Uten preallokering v = []; for i = 1:100 v(i) = f(i); end

53 36 Eksempel 1. Lag en funksjon fibonacci(n) som returnerer en liste med fibonaccitallene 1 til n. Lag to varianter: 1.1 En med preallokering. 1.2 En uten preallokering. 2. Lag et script som måler forskjell i tid på regne ut fibonacci(1e6)

54 37 While-løkker og preallokering Vi vet ikke hvor mange ganger løkken kjører Det er derfor vi bruker while og ikke for Hvis vi skal produsere en vektor: hvordan kan vi vite hvor stor den må være?

55 37 While-løkker og preallokering Vi vet ikke hvor mange ganger løkken kjører Det er derfor vi bruker while og ikke for Hvis vi skal produsere en vektor: hvordan kan vi vite hvor stor den må være? Løsning: estimer, og øk eventuelt etter hvert. Kutt eventuelt bort ekstra elementer til slutt.

56 38 While-løkker og preallokering: eksempel Modifiser Newtons metode til å ikke skrive ut midlertidige resultater, men returnere dem i en vektor.

57 39 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler

58 40 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil

59 40 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil Eksempler: integrer(funksjon, a, b) finn_nullpunkt(funksjon)

60 40 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil Eksempler: integrer(funksjon, a, b) finn_nullpunkt(funksjon) Gitt funksjonen f(x): min_funksjon lager en ny variabel som referer til f(x) kaller funksjonen finn_nullpunkt med funksjonen f som parameter.

61 41 Eksempel: numerisk integrering Estimer x 2 dx ved å bruke matlabs integral-funksjon

62 42 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet.

63 42 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet. Syntaks: min_funksjon = <uttrykk>;

64 42 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet. Syntaks: min_funksjon = <uttrykk>; Eksempel: x_i_annen x^2; x_i_annen(2) x_i_annen(5)

65 43 Eksempel: parametriserte sannsynlighetsfordelinger 1. Plott flere normalfordelinger med forskjellige forventningsverdier og varianser Eksempelbilde på wikipedia.

66 44 Eksempel: generisk newtons metode 1. Modifiser newtons metode til å fungere for vilkårlige funksjoner Nytt navn: finn_nullpunkt(f, df) 2. Bruk den nye newtons metode-funksjonen til å implementere kvadratrot

67 45 Eksempel: arrayfun Matlabfunksjonen arrayfun kaller en gitt funksjon for hvert element i en gitt liste. Bruk arrayfun til å estimere flere verdier av e x ved hjelp av h(x, i) fra tidligere eksempel.

68 46 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler

69 47 Konsept Brukes til å lagre verdier i en funksjons skop på tvers av funksjonskall. function y = f(x) persistent i; if isempty(i) i = 0; end i = i + 1; fprintf( f() kalt for %d. gang\n, i); y = x+x; end

70 48 Eksempel: bruk raskeste implementasjon Lag en funksjon raskeste_fibonacci(n), som bruker en persistent variabel til å holde den raskeste implementasjonen og regner ut svaret ved å bruke denne. 1. Opprett en lokal persistent variabel impl. 2. Hvis impl ikke er satt, ta tiden på fibonacci med og uten preallokering. 3. Bind impl til den raskeste funksjonen. 4. Returner svaret ved å kalle impl.

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, while Benjamin A. Bjørnseth 12. oktober 2015 2 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering

Detaljer

Øvingsforelesning i Matlab TDT4105

Øvingsforelesning i Matlab TDT4105 Øvingsforelesning i Matlab TDT4105 Øving 5. Pensum: for-løkker, fprintf, while-løkker. Benjamin A. Bjørnseth 5. oktober 2015 2 Oversikt Gjennomgang auditorieøving Repetisjon: for-løkke, fprintf While-løkker

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Funksjoner Matriser Matriseoperasjoner Sannhetsuttrykk

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 15.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Sondre Wangenstein Baugstø 4. september 2017 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 1. september 2015 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 1/3

TMA Kræsjkurs i Matlab. Oppgavesett 1/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Disclaimer Funksjoner Matriser Matriseoperasjoner

Detaljer

TDT4105 IT Grunnkurs Høst 2016

TDT4105 IT Grunnkurs Høst 2016 TDT4105 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følge informasjon i blokkbokstaver Navn:

Detaljer

TDT4105 IT Grunnkurs Høst 2014

TDT4105 IT Grunnkurs Høst 2014 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

Noen innebygde funksjoner - Vektorisering

Noen innebygde funksjoner - Vektorisering 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Noen innebygde funksjoner - Vektorisering

Noen innebygde funksjoner - Vektorisering 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Matlab-tips til Oppgave 2

Matlab-tips til Oppgave 2 Matlab-tips til Oppgave 2 Numerisk integrasjon (a) Velg ut maks 10 passende punkter fra øvre og nedre del av hysteresekurven. Bruk punktene som input til Matlab og lag et plot. Vi definerer tre vektorer

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Pensum fra øving 2 og 3: if, switch, for, matriser. Benjamin A. Bjørnseth 14. september 2015 2 Innhold If-setninger Switch For-løkker Diverse 3 Oversikt If-setninger Switch

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

ITGK - H2010, Matlab. Repetisjon

ITGK - H2010, Matlab. Repetisjon 1 ITGK - H2010, Matlab Repetisjon 2 Variabler og tabeller Variabler brukes til å ta vare på/lagre resultater Datamaskinen setter av plass i minne for hver variabel En flyttallsvariabel tar 8 bytes i minne

Detaljer

Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14.

Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14. og Institutt for geofag Universitetet i Oslo 17. Oktober 2012 i MatLab En funksjon vil bruke et gitt antall argumenter og produsere et gitt antall resultater og : Hvorfor Først og fremst bruker vi når

Detaljer

TDT4110 IT Grunnkurs Høst 2012

TDT4110 IT Grunnkurs Høst 2012 TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 7 Denne øvingen er en fellesøving laget i samarbeid med emnet TMA4100

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 2. september 2016 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Oppgaver Kapittel 5 (del 2) Ada Gjermundsen

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Oppgaver Kapittel 5 (del 2) Ada Gjermundsen : Institutt for geofag Universitetet i Oslo 11. september 2012 Oppgave 1: Vektor operasjoner : Lag en vektor som inneholder objektene: a) 2, 4, 6, 8, 10, 12 b) 10, 8, 6, 2, 0, -2, -4 c) 1, 1/2, 1/3, 1/4,

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)

Detaljer

Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Intro til funksjoner TDT4110 IT Grunnkurs Professor Guttorm Sindre Snart referansegruppemøte Viktig mulighet for å gi tilbakemelding på emnet Pensumbøker Forelesninger Øvingsforelesninger Veiledning

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6)

TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) 1 TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Anders Christensen anders@idi.ntnu.no Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Læringsmål: Synlighet av variabler

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Forelesningsinfo. Tider Mandag Tirsdag Onsdag Torsdag Fredag

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Forelesningsinfo. Tider Mandag Tirsdag Onsdag Torsdag Fredag 1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Fasit eksamen i MAT102 4/6 2014

Fasit eksamen i MAT102 4/6 2014 Fasit eksamen i MAT /6. (a Løs ligningssstemene. Svar: i ( x i = 3x + = 7 x + = ( 6, ii x z ii = x + z = 3x + 6 + z = +. er fri. (b Ved å bruke MATLAB-kommandoen rref på totalmatrisen til ligningssstemet

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Programmering i R. 6. mars 2004

Programmering i R. 6. mars 2004 Programmering i R 6. mars 2004 1 Funksjoner 1.1 Hensikt Vi har allerede sette på hvordan vi i et uttrykk kan inkludere kall til funksjoner som er innebygd i R slik som funksjonene sum, plot o.s.v. Generelt

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære å designe

Detaljer

Om plotting. Knut Mørken. 31. oktober 2003

Om plotting. Knut Mørken. 31. oktober 2003 Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at

Detaljer

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.)

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Av Jo Skjermo (basert på Alf Inge Wang sin versjon om JSP). 1. Utførelse av kode i kommando/kalkulatormodus Et dataprogram består oftest

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 3 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære om hvordan

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør

Detaljer

Øvingsforelesning i Python (TDT4110)

Øvingsforelesning i Python (TDT4110) Øvingsforelesning i Python (TDT4110) Tema: Øving 2, Betingelser, if/elif/else Kristoffer Hagen Oversikt Praktisk informasjon Gjennomgang av Øving 1 Oppgaver for Øving 2 2 Praktisk Bruke andre studasser

Detaljer

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

Notat 6 - ST februar 2005

Notat 6 - ST februar 2005 Notat 6 - ST1301 22. februar 2005 1 Instruksjoner som data I begynnelsen av kurset definerte vi data som informasjon uttrykkt i et programmeringsspråk. Slike data kan være av ulik type, f.eks. enkle skalarer

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + 5 + 36 + 49 + 64 + 81 + 100 = 385.

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1

Detaljer

Løse reelle problemer

Løse reelle problemer Løse reelle problemer Litt mer om løkker, prosedyrer, funksjoner, tekst og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve 1 Tilbakeblikk Dere bør nå beherske det sentrale fra uke 1 og 2: Uttrykk, typer,

Detaljer

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015 Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A =

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A = Oblig - MAT Fredrik Meyer. september 9 Oppgave Linkmatrise: A = En basis til nullrommet til matrisen A I kan finnes ved å bruke MATLAB. Jeg kjører kommandoen rref(a-i) og får følge: >> rref(a-i). -.875.

Detaljer

Løsningsforslag øving 8, ST1301

Løsningsforslag øving 8, ST1301 Løsningsforslag øving 8, ST3 Oppgave Hva gjør følgende funksjon? Hvilken fordeling har variabelen n som returneres som funksjonsverdi? Forklar hvorfor. Forutsett at to enkle positive tall blir oppgitt

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre,

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 16. Sept. Noen oppstartsproblemer

Detaljer

Læringsmål og pensum. Oversikt

Læringsmål og pensum. Oversikt 1 2 Læringsmål og pensum TDT4105 Informasjonsteknologi grunnkurs: Uke 39 Betingede løkker og vektorisering Læringsmål Skal kunne forstå og programmere betingede løkker med while Skal kunne utnytte plassallokering

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ: Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt

Detaljer

Finne ut om en løsning er helt riktig og korrigere ved behov

Finne ut om en løsning er helt riktig og korrigere ved behov Finne ut om en løsning er helt riktig og korrigere ved behov Finurlige feil og debugging av kode IN1000, uke5 Geir Kjetil Sandve Oppgave (Lett modifisert fra eksamen 2014) Skriv en funksjon Dersom parameteren

Detaljer

Control Engineering. MathScript. Hans-Petter Halvorsen

Control Engineering. MathScript. Hans-Petter Halvorsen Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,

Detaljer

Løse reelle problemer

Løse reelle problemer Løse reelle problemer Løse problemer med data fra fil, samt litt mer om funksjoner IN1000, uke6 Geir Kjetil Sandve Mål for uken Få enda mer trening i hvordan bruke løkker, samlinger og beslutninger for

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet ut? Variabler,

Detaljer

Programmeringsspråket C Del 2

Programmeringsspråket C Del 2 Programmeringsspråket C Del 2 Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no 30.08.2005 inf1060 H05 1 Et eksempel Dette er lite eksempel som ber om et tall, leser det og så teller fra det ned til 0. 30.08.2005

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu. 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

Vektorer. Dagens tema. Deklarasjon. Bruk

Vektorer. Dagens tema. Deklarasjon. Bruk Dagens tema Dagens tema Deklarasjon Vektorer Vektorer (array-er) Tekster (string-er) Adresser og pekere Dynamisk allokering Alle programmeringsspråk har mulighet til å definere en såkalte vektor (også

Detaljer

START MED MATLAB. Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette :

START MED MATLAB. Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette : 1 START MED MATLAB Disse sidene er hovedsakelig ment for dem som ikke har brukt Matlab eller som trenger en oppfriskning. Start fra toppen og gå systematisk nedover. I tillegg brukes Matlablefsa. Noe av

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Mer om funksjoner: - rekursive funksjoner

TDT4105 Informasjonsteknologi, grunnkurs. Mer om funksjoner: - rekursive funksjoner 1 TDT4105 Informasjonsteknologi, grunnkurs Mer om funksjoner: - rekursive funksjoner Pensum: 10.5 i Matlab-boka 10.1-10.4 er orienteringsstoff og ikke aktuelt til eksamen Kunnskap for en bedre verden Amanuensis

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til Auditorieøving 1 1 Teori 1. Hvilket tall kan IKKE lagres

Detaljer

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene: Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose

TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose 1 TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose Anders Christensen (anders@ntnu.no) Rune Sætre (satre@ntnu.no) TDT4105 IT Grunnkurs

Detaljer

Innføring i MATLAB - The language of Technical Computing

Innføring i MATLAB - The language of Technical Computing Innføring i MATLAB - The language of Technical Computing Hvordan bruke MATLAB til å analysere eksperimentelle data. TFY4145 Mekanisk fysikk Utstyr: Datarom med PC for studenter. Datamaskin med projektor

Detaljer

19. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 8 (del 2) Ada Gjermundsen

19. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 8 (del 2) Ada Gjermundsen Institutt for geofag Universitetet i Oslo 19. september 2012 Repetisjon: Generell formel for Når vi jobber med matriser bruker vi ofte (men ikke alltid) dobbel for-løkke Dette er først og fremst fordi

Detaljer

Øvingsforelesning TDT4105

Øvingsforelesning TDT4105 Øvingsforelesning TDT4105 Gjennomgang øving 9, intro øving 10. Eksamensoppgaver. Benjamin A. Bjørnseth 10. november 2015 2 Oversikt Praktisk Gjennomgang øving 9 Introduksjon sudoku Oppgave 4 Kont-eksamen

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Oppgave 1 Funksjonsler b) Kommandoen ` help FunksjonenMin' gjør at dette blir skrevet til skjerm: Funksjonen f(x)=sin(x) - x^. Funksjonen

Detaljer

Høgskolen i Oslo og Akershus. i=1

Høgskolen i Oslo og Akershus. i=1 Innlevering i BYFE/EMFE 1000 Oppgavesett 2 Innleveringsfrist: 19. oktober klokka 14:00 Antall oppgaver: 2 Løsningsforslag Oppgave 1 a) Skriptet starter med å la Sum være 0, så blir det for hver iterasjon

Detaljer

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv Bygg et Hus Introduksjon I denne leksjonen vil vi se litt på hvordan vi kan få en robot til å bygge et hus for oss. Underveis vil vi lære hvordan vi kan bruke løkker og funksjoner for å gjenta ting som

Detaljer

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013 Noen MATLAB-koder Fredrik Meyer 23. april 2013 1 Plotte en vanlig funksjon Anta at f : [a, b] R er en vanlig funksjon. La for eksempel f(x) = sin x+x for x i intervallet [2, 5]. Da kan vi bruke følgende

Detaljer

Programmeringsspråket C Del 3

Programmeringsspråket C Del 3 Programmeringsspråket C Del 3 Michael Welzl E-mail: michawe@ifi.uio.no 29.08.13 inf1060 1 Dynamisk allokering Ofte trenger man å opprette objekter under kjøringen i tillegg til variablene. Standardfunksjonen

Detaljer

Dagens tema INF1070. Vektorer (array er) Tekster (string er) Adresser og pekere. Dynamisk allokering

Dagens tema INF1070. Vektorer (array er) Tekster (string er) Adresser og pekere. Dynamisk allokering Dagens tema Vektorer (array er) Tekster (string er) Adresser og pekere Dynamisk allokering Dag Langmyhr,Ifi,UiO: Forelesning 23. januar 2006 Ark 1 av 23 Vektorer Alle programmeringsspråk har mulighet til

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)

Detaljer

Dagens tema C, adresser og pekere

Dagens tema C, adresser og pekere Dagens tema C, adresser og pekere (Kapittel 17 i Patt&Patel-boken) Variable og adresser Pekervariable Parametre Dynamisk allokering Stakker og ringbuffere Ark 1 av 26 Adresser Som nevnt tidligere ligger

Detaljer

<?php. count tar en array som argument, og returnerer et tall som uttrykker antallet innførsler i arrayen.

<?php. count tar en array som argument, og returnerer et tall som uttrykker antallet innførsler i arrayen. Hver gang funksjonen printhallo kalles utføres instruksjonene spesifisert i den. [Kurssidene] [ ABI - fagsider bibin ] Webprogrammering høsten 2015 //funksjonskall printhallo(); //enda en gang printhallo();

Detaljer

lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen mellom globale og lokale variabler

lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen mellom globale og lokale variabler 42 Funksjoner Kapittel 4 Funksjoner Etter dette kapitlet skal du kunne lage og bruke enkle funksjoner lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen

Detaljer

Programmeringsspråket C Del 3

Programmeringsspråket C Del 3 Programmeringsspråket C Del 3 Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no Dynamisk allokering Ofte trenger man å opprette objekter under kjøringen i tillegg til variablene. Standardfunksjonen malloc

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 40

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 40 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 40 Løsningsforlsag Oppgave 1 Lagring og innlesing av data a) Dersom vi skriver save Filnavn, blir alle variable vi har lagra til ei l som heter 'Filnavn'.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Riemann-summer a) b) f(x) = 1/x P = {1, 6/5, 7/5, 8/5, 9/5, 2} S = {6/5, 7/5, 8/5, 9/5, 2} (x i = x i ) Her kan partisjon og

Detaljer

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 5 (del 2) Ada Gjermundsen

11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 5 (del 2) Ada Gjermundsen , Institutt for geofag Universitetet i Oslo 11. september 2012 Litt repetisjon: Array, En array er en variabel som inneholder flere objekter (verdier) En endimensjonal array er en vektor En array med to

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

Matematikk Øvingeoppgaver i numerikk leksjon 1 Å komme i gang

Matematikk Øvingeoppgaver i numerikk leksjon 1 Å komme i gang Matematikk 1000 Øvingeoppgaver i numerikk leksjon 1 Å komme i gang I denne øvinga skal vi bli litt kjent med MATLAB. Vi skal ikkje gjøre noen avanserte ting i dette oppgavesettet bare få et visst innblikk

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følgende informasjon i blokkbokstaver

Detaljer

Utførelse av programmer, metoder og synlighet av variabler i JSP

Utførelse av programmer, metoder og synlighet av variabler i JSP Utførelse av programmer, metoder og synlighet av variabler i JSP Av Alf Inge Wang 1. Utførelse av programmer Et dataprogram består oftest av en rekke programlinjer som gir instruksjoner til datamaskinen

Detaljer

Kapittel 1 En oversikt over C-språket

Kapittel 1 En oversikt over C-språket Kapittel 1 En oversikt over C-språket RR 2015 1 Skal se på hvordan man En innføring i C Skriver data til skjermen Lese data fra tastaturet Benytter de grunnleggende datatypene Foretar enkle matematiske

Detaljer