Matematisk morfologi III
|
|
- Ingar Gjerde
- 9 år siden
- Visninger:
Transkript
1 Matematisk morfologi III Lars Aurdal Norsk regnesentral 4. desember 2003 Copyright Lars Aurdal, NTNU/NR
2 Oversikt, kursdag 3 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter. Copyright Lars Aurdal, NTNU/NR 1
3 Den såkalte hit-or-miss-transformen (HMT-transformen) omfatter bruk av to strukturelementer, det ene må passe objektet man studerer mens det andre må passe objektets bakgrunn. HMT-transformen brukes for eksempel for å finne bestemte nabolagskonfigurasjoner så som isolerte forgrunnspiksler etc. Det å legge alle piksler med en bestemt konfigurasjon til et objekt gir oss definisjonen av tykking, mens det å fjerne de samme pikslene gir oss definisjonen av tynning. Copyright Lars Aurdal, NTNU/NR 2
4 Iterativ anvendelse av tynning med bestemte sammensatte strukturelementer gir den såkalte mediale aksen (skjelettet) for et sett. Skjelettene er viktige i anvendelser så som formanalyse og mønstergjenkjenning. Copyright Lars Aurdal, NTNU/NR 3
5 Den grunnleggende ideen bak HMT-transformen består i å trekke ut bestemte piksler med helt definerte nabolagskonfigurasjoner fra binære bilder. De aktuelle nabolagskonfigurasjonene defineres ved to strukturelementer. Det første av disse strukturelementene må passe den aktuelle konfigurasjonen mens det andre må passe konfigurasjonens bakgrunn. Begge disse strukturelementene har ett unikt origo. Copyright Lars Aurdal, NTNU/NR 4
6 Figur 1: Sammensatte strukturelementer for deteksjon av isolerte forgrunnspiksler i henholdsvis 4- og 8-konnektivitet. Copyright Lars Aurdal, NTNU/NR 5
7 For å utføre en HMT-transform flyttes origo for det sammensatte strukturelementet til alle piksler i det aktuelle bildet. I hver posisjon undersøkes det om det første strukturelementet passer i den posisjonen samtidig som det andre strukturelementet ikke passer i samme posisjon (det vil si at det andre strukturelementet passer i bakgrunnen). Alle piksler der dette er tilfelle tilhører det HMT-transformerte settet. Copyright Lars Aurdal, NTNU/NR 6
8 Formell definisjon av HMT: HMT B (X)={x (B 1 ) x X, (B 2 ) x X C } Copyright Lars Aurdal, NTNU/NR 7
9 En alternativ definisjon basert på snitt av erosjoner er følgende: HMT B (X)=ε B1 (X) ε B2 (X C ) Copyright Lars Aurdal, NTNU/NR 8
10 Husk: B 1 og B 2 må ha felles origo. B 1 og B 2 må ikke overlappe, det vil si: B 1 B2 = /0 hvis ikke vil resultatet av en HMT alltid være det tomme settet /0. Copyright Lars Aurdal, NTNU/NR 9
11 B B2 B1 X X HMT(X,B) Figur 2: HMT av et sett X med et sammensatt strukturelement B. Copyright Lars Aurdal, NTNU/NR 10
12 Anvendelser: Isolerte piksler: Isolerte piksler er definert som forgrunnspiksler uten noen forgrunnspiksler blant sine naboer. For å finne disse velges B 1 lik en enkeltstående piksel og B 2 dennes naboer. Endepunkter: Endepunkter er definert som forgrunnspiksler som har nøyaktig én forgrunnspiksel blant sine naboer. Copyright Lars Aurdal, NTNU/NR 11
13 Figur 3: Inputbilde, strukturelementer for å finne 4-sammenhengende endepunkter og resultatet av en HMT med de fire strukturelementsettene. Copyright Lars Aurdal, NTNU/NR 12
14 Anvendelser: Multiple punkter: Multiple punkter er definert som forgrunnspiksler som har mer enn to forgrunnspiksler blant sine naboer. Konturpunkter: Konturpunkter er forgrunnspiksler som har minst en bakgrunnspiksel blant sine naboer. Copyright Lars Aurdal, NTNU/NR 13
15 Hit-or-miss-åpning: I endel anvendelser kan det være interessant å beholde alle pikslene som passer med det sammensatte strukturelementet og ikke bare det som sammenfaller med origo for strukturelementet. Dette kan oppnås ved å dilatere resultatet av en HMT med den transponerte B 1 : γ B (X)=δ ˇ B 1 [ε B1 (X) ε B2 (X C )] Copyright Lars Aurdal, NTNU/NR 14
16 Figur 4: Inputbilde, strukturelement og resultatet av en hit-or-miss-åpning. Copyright Lars Aurdal, NTNU/NR 15
17 Tynning: Tynning består i å fjerne alle forgrunnspiksler som har en eller annen bestemt konfigurasjon. I praksis vil det si at man trekker HMT fra det opprinnelige settet. Copyright Lars Aurdal, NTNU/NR 16
18 Tynning, binært tilfelle: Tynningen av et binært bilde X med det sammensatte strukturelementet B betegnes X B og er definert ved: X B = X \ HMT B (X) Merk at origo i strukturelementet B må være inneholdt i B 1. Copyright Lars Aurdal, NTNU/NR 17
19 Tykking: Tykking består i å legge til alle bakgrunnspiksler som har en eller annen bestemt konfigurasjon til forgrunnspikslene. I praksis vil det si at man legger HMT til det opprinnelige settet. Copyright Lars Aurdal, NTNU/NR 18
20 Tykking, binært tilfelle: Tykkingen av et binært bilde X med det sammensatte strukturelementet B betegnes X B og er definert ved: X B = X HMT B (X) Merk at origo i strukturelementet B må være inneholdt i B 2. Copyright Lars Aurdal, NTNU/NR 19
21 Merk: Tynning og tykking er duale transformasjoner: der B =(B 1,B 2 ) og B C =(B 2,B 1 ). X B =(X C B C ) C Copyright Lars Aurdal, NTNU/NR 20
22 Skjeletter: I mange anvendelser må man ha en eller annen kanonisk representasjon av de objektene man studerer. I analyse av håndskrift for eksempel er det viktig å kunne ta hensyn til ulike skrifttykkelser, uavhengig av bredden på pennen som ble brukt bør det være mulig å redusere analysen av bokstaven til det å analysere en enkelt type form. Copyright Lars Aurdal, NTNU/NR 21
23 I praksis kan dette gjøres på mange måter, her skal vi betrakte en metode for å tynne objektene vi studerer til tynne linjer på en slik måte at homotopien til objektene bevares. Disse tynne linjene kalles objektets skjelett eller mediale akse. Transformasjonene som reduserer objekter til skjeletter kalles skjelettransformasjoner eller medial akse transformasjoner. Copyright Lars Aurdal, NTNU/NR 22
24 I euklidsk rom kan skjelettet gis en unik definisjon. Dette er ikke tilfelle i diskret rom. Eksempel: I det to-dimensjonale euklidske rom er skjelettet til et objekt et sett uendelig små punkter som har den egenskapen at de ligger like langt fra minst to punkter på objektets kant. En tilsvarende definisjon er ikke mulig i et to-dimensjonalt diskret rom. Copyright Lars Aurdal, NTNU/NR 23
25 En approksimasjon til skjelettet til et diskret sett kan man få vedå utføre såkalte homotopiske tynninger. Et sammensatt strukturelement sies å være homotopisk dersom tynningen med dette strukturelementet ikke modifiserer homotopien til det opprinnelige settet. Skjelettet til et sett kan oppnås ved å utføre gjentatte tynninger av settet med et (eller flere) homotopisk(e) strukturelement(er) inntil stabilitet. Copyright Lars Aurdal, NTNU/NR 24
26 I praksis utføres tynningene i sekvens med alle mulige rotasjoner av det (de) homotopiske strukturelementet (-ene). Denne prosessen kalles sekvensiell tynning og betegnes. Den sekvensielle tynningen av settet X med n rotasjoner av strukturelementet B er gitt ved: X B =(...((X Θ 1 B) Θ 2 B)...) Θ n B Tynningen fortsetter inntil stabilitet oppnås. Copyright Lars Aurdal, NTNU/NR 25
27 4-sammenhengende skjeletter oppnås ved sekvensiell tynning med de sammensatte strukturelementene (og deres fire rotasjoner) gitt i figuren under: Figur 5: De to sammensatte strukturelementene som brukes for å generere 4-sammenhengende skjeletter. Copyright Lars Aurdal, NTNU/NR 26
28 8-sammenhengende skjeletter oppnås ved sekvensiell tynning med de sammensatte strukturelementene (og deres fire rotasjoner) gitt i figuren under: Figur 6: De to sammensatte strukturelementene som brukes for å generere 8-sammenhengende skjeletter. Copyright Lars Aurdal, NTNU/NR 27
29 Figur 7: To ulike penner brukt til å skrive bokstaven a samt de resulterende skjelettene. Copyright Lars Aurdal, NTNU/NR 28
30 Øving 7 Beregn skjelettene til bokstavene vist i forrige slide (og vis hvordan det gjøres) Copyright Lars Aurdal, NTNU/NR 29
Oversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter
Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter. Oversikt, kursdag 3 Copyright Lars Aurdal, NTNU/NR
DetaljerMatematisk morfologi IV
Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember 3 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag Geodesi-transformasjoner: Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.
DetaljerOversikt, matematisk morfologi. Matematisk morfologi. Oversikt, matematisk morfologi. Oversikt, matematisk morfologi. Praktisk informasjon
Matematisk morfologi Lars urdal Norsk regnesentral aurdal@nr.no 9. august 2005 Litt praktisk informasjon.. Historie. Matematisk grunnlag. Fundamentale operatorer: Dilasjon. Erosjon. 1 Sammensatte operatorer:
DetaljerMotivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder.
1 Motivasjon INF 2310 Mesteparten av kap 9.1-9.5 i DIP Morfologiske operasjoner på binære bilder Basis-begreper Fundamentale operasjoner på binære bilder Sammensatte operasjoner Eksempler på anvendelser
DetaljerMatematisk morfologi NTNU
Matematisk morfologi Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 2004 Oversikt, matematisk morfologi Litt praktisk informasjon. Motivasjon. Historie. Matematisk grunnlag. Fundamentale operatorer:
DetaljerMorfologiske operasjoner på binære bilder
Digital bildebehandling Forelesning 13 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser
DetaljerMatematisk morfologi II
Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 2 Elementære operasjoner: Erosjon. Dilasjon. Sammensatte operasjoner:
DetaljerOversikt, kursdag 2. Matematisk morfologi II. Morfologiske operatorer, erosjon og dilasjon. Morfologiske operatorer, erosjon og dilasjon
Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Elementære operasjoner: Erosjon. Dilasjon. Oversikt, kursdag 2 Sammensatte operasjoner: Åpning. Lukning. Flosshatt-transformasjoner.
DetaljerMatematisk Morfologi Lars Aurdal
Matematisk Morfologi Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Motivasjon. Plan Grunnleggende setteori. Grunnleggende operasjoner. Dilasjon. Erosjon. Sammensatte operasjoner Åpning Lukning Algoritmer.
DetaljerMorfologiske operasjoner på binære bilder
Digital bildebehandling Forelesning 15 Morfologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser
DetaljerOversikt, kursdag 4. Matematisk morfologi IV. Geodesi-transformasjoner: Dilasjon. Geodesi-transformasjoner
Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember Geodesi-transformasjoner: Oversikt, kursdag Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.. Åpning/lukning
DetaljerMotivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk.
INF 230 Morfologi Morfologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. ammensatte operasjoner 4. Eksempler på anvendelser flettet inn GW, Kapittel
DetaljerIntroduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling
Digital bildebehandling Forelesning 3 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser
DetaljerIntroduksjon. Morfologiske operasjoner på binære bilder. Litt mengdeteori. Eksempel: Lenke sammen objekter INF
INF230 5.05.202 Morfologiske operasjoner på binære bilder Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser er flettet inn DIP: 9.-9.4, 9.5.,
DetaljerMotivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper
Basis-begreper INF 2310 08.05.2006 Kap. 11 i Efford Morfologiske operasjoner Fundamentale operasjoner på binære bilder Sammensatte operasjoner Morfologisk filtrering Morfologiske operasjoner på gråtonebilder
DetaljerLO118D Forelesning 3 (DM)
LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle
DetaljerOversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral
Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Segmentering: Watershedtransformen. Oversikt, kursdag 5 Copyright Lars Aurdal, NTNU/NR Copyright Lars Aurdal, NTNU/NR
DetaljerMorfologiske operasjoner på binære bilder
Digital bildebehandling Forelesning 9-209 Morfologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på
DetaljerMatematisk morfologi V
Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 5 Segmentering: Watershedtransformen. Copyright Lars Aurdal, NTNU/NR
DetaljerMAT1140: Kort sammendrag av grafteorien
MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt
DetaljerMotivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk.
INF 230 Morologi Morologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. Sammensatte operasjoner 4. Eksempler på anvendelser lettet inn GW, Kapittel 9.-9.4
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider
DetaljerIntroduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling
Introduksjon Digital bildebehandling Forelesning 3 Morologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 2007 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : 5 sider
DetaljerAnalyse og metodikk i Calculus 1
Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................
DetaljerHeuristiske søkemetoder III
Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Fredag 29. mars 2019 Tid for eksamen : 14:30 18:30 (4 timer) Oppgavesettet er
DetaljerMorfologi i Binære Bilder
Morfologi i Binære Bilder Lars Vidar Magnusson February 26, 2018 Delkapittel 9.1 Preliminaries Delkapittel 9.2 Dilation and Erosion Delkapittel 9.3 Opening and Closing Delkapittel 9.4 The Hit-or-Miss Transformation
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Mandag 1. juni 2015 Tid for eksamen: 14:30 18:30 Oppgavesettett er på: 6 sider Vedlegg:
DetaljerMassegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.
Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.
DetaljerINF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция
Arne Skjærholt десятая лекция Dagens språk: Russisk. dyes yataya l yektsiya Arne Skjærholt десятая лекция N,Σ,R,S Nå er vi tilbake i de formelle, regelbaserte modellene igjen, og en kontekstfri grammatikk
DetaljerUniversitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)
DetaljerEmne 12 Mengdelære. ( bokstaven g er ikke et element i mengden B ) Betyr: B er mengden av alle positive oddetall.
Emne 12 Mengdelære En mengde er en samling elementer. Mengden er veldefinert hvis vi entydig kan avgjøre om et vilkårlig element tilhører mengden eller ikke. Mengder på listeform. Endelige mengder:, Uendelige
DetaljerEKSAMEN Bildebehandling
EKSAMEN 6121 Bildebehandling 31.05.2016 Tid: 4 timer, 9 13 Målform: Bokmål/nynorsk Sidetall: 5 (denne forside + 2 + 2) Hjelpemiddel: Merknader: Vedlegg: Sensuren finner du på StudentWeb. Eksamen 6121 Bildebehandling
DetaljerEneboerspillet del 2. Håvard Johnsbråten, januar 2014
Eneboerspillet del 2 Håvard Johnsbråten, januar 2014 I Johnsbråten (2013) løste jeg noen problemer omkring eneboerspillet vha partall/oddetall. I denne parallellversjonen av artikkelen i vil jeg i stedet
DetaljerINF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet
INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner
DetaljerTMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
DetaljerMorfologi i Binære Bilder III
Morfologi i Binære Bilder III Lars Vidar Magnusson March 28, 2017 Delkapittel 9.5 Some Basic Morphological Algorithms Boundary Extraction (Grenseuthenting) Vi kan hente ut grensen til et sett (boundary)
DetaljerIntroduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling
Introduksjon Digital bildebehandling Forelesning 4 Morologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler
DetaljerGeometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale
DetaljerMorfologiske operasjoner. Motivasjon
INF 230 Digital bildebehandling orelesning nr 2-9.04.2005 Morologiske operasjoner Litteratur : Eord, Kap. Temaer : Neste gang : Basis-begreper Fundamentale operasjoner på binære bilder ammensatte operasjoner
DetaljerUNIVERSITETET I OSLO
Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 3. juni 2009 id for eksamen : 14:30 17:30 Oppgavesettet er på : 6 sider
DetaljerBrukerveiledning for student skoleeksamen HIST Oppdatert 27. oktober 2014
Brukerveiledning for student skoleeksamen HIST Oppdatert 27. oktober 2014 1 Innhold Innledning Pålogging Din oversikt over prøver og eksamener Valg av språk og skriftstørrelse m.m Besvare eksamen med sikker
DetaljerTOPOLOGI. Dan Laksov
Forum för matematiklärare TOPOLOGI Dan Laksov Institutionen för Matematik, 2009 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Topologi Dan Laksov Notater for Forum för Matematiklärare. Høst
DetaljerVann i rør Ford Fulkerson method
Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp
Detaljer(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer
5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave
DetaljerHistogrammetoder. Lars Aurdal Norsk regnesentral. Histogrammetoder p.1/91
Histogrammetoder Lars Aurdal Norsk regnesentral aurdal@nr.no Histogrammetoder p.1/91 Oversikt 1 Litt praktisk informasjon. Grånivåtransformasjoner. Grunnleggende transformasjoner. Negativer. Log-transformasjoner.
DetaljerHvordan lage et sammensatt buevindu med sprosser?
Hvordan lage et sammensatt buevindu med sprosser? I flere tilfeller er et vindu som ikke er standard ønskelig. I dette tilfellet skal vinduet under lages. Prinsippene er de samme for andre sammensatte
DetaljerØvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk
Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,
DetaljerNasjonale prøver i lesing, regning og engelsk på 5. trinn 2015
Nasjonale prøver i lesing, regning og engelsk på 5. trinn 2015 Resultater fra nasjonale prøver på 5. trinn høsten 2015 er nå publisert i Skoleporten. Her er et sammendrag for Nord-Trøndelag: - I snitt
DetaljerGrublegruppe 19. sept. 2011: Algebra I
Grublegruppe 19. sept. 2011: Algebra I Ivar Staurseth ivarsta@math.uio.no Innledning, definisjoner Vi har så langt jobbet med mengder, X, hvor vi har hatt et avstandsbegrep og hvor vi har vært i stand
DetaljerOversikt, kursdag 1. Matematisk morfologi I. Praktisk informasjon om kurset. Praktisk informasjon om kurset
Matematisk morfologi I Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 1. mars 2005 Praktisk informasjon om kurset Forelesninger. Øvinger. Pensum. Eksamen. Oversikt, kursdag 1 Tema for forelesningene.
DetaljerKapittel 5: Mengdelære
MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret
DetaljerØvingsforelesning 2. Mengdelære, funksjoner, rekurrenser, osv. TMA4140 Diskret Matematikk. 10. og 12. september 2018
Mengdelære, funksjoner, rekurrenser, osv. Øvingsforelesning 2 TMA4140 Diskret Matematikk 10. og 12. september 2018 Dagens øvingsforelesning Spørsmål til emnene i forrige uke Oppgaver fra midtsemesterprøver
DetaljerMAT 1120: Obligatorisk oppgave 2, H-09
MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,
DetaljerNotat med oppgaver for MAT1140
Notat med oppgaver for MAT1140 1 Injeksjon, surjeksjon Oppgave 1.1. La f : A B være en avbildning. Vis at da er f injektiv hvis og bare hvis følgende holder: for hver mengde C og for hver g, h : C A hvis
DetaljerLøsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II
Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 28. mars 2007 Tid for eksamen : 13:30 16:30 Oppgavesettet er på : 4 sider
DetaljerFrankering og computer-nettverk
318 Frankering og computer-nettverk Øystein J. Rødseth Universitetet i Bergen Beskrivelse av oppgaven. I denne oppgaven vil du bruke kombinatorikk, tallteori og muligens også litt analyse. Oppgaven er
DetaljerLØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en
DetaljerKorteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen
Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative
Detaljera. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z
Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)
DetaljerMatematisk morfologi I
Matematisk morfologi I Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 1 Praktisk informasjon om kurset Forelesninger. Øvinger. Pensum.
DetaljerNummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no
Nummer 8-10 H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no Hvorfor styrker man algebra i skolen? Det klages over at begynnerstudenter ved ulike høgskoler/universiteter har
DetaljerKapittel 3: Litt om representasjon av tall
MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen
DetaljerRF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
DetaljerPG 4200 Algoritmer og datastrukturer Innlevering 2
PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:
DetaljerUNIVERSITETET I OSLO. Dette er et løsningsforslag
Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :
Detaljeroppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 4 dag 1 1. Hvor mange av de ett hundre første positive heltallene, 1, 2, 3,, 99, 100, er delelig med 2, 3, 4 og 5? A)0 B) 1 C) 2 D) 3 E) 4 2. Ett tusen terninger
Detaljerwww.skoletorget.no Tall og algebra Matematikk Side 1 av 6
Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp
DetaljerMAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008
MAT1030 Diskret matematikk Forelesning 9: Mengdelære Dag Normann OVER TIL KAPITTEL 5 Matematisk Institutt, Universitetet i Oslo 11. februar 2008 MAT1030 Diskret matematikk 11. februar 2008 2 De fleste
DetaljerIntroduksjon i tallteotri med anvendelser
Introduksjon i tallteotri med anvendelser Vladimir Oleshchuk 15. september 2005 Delbarhet og divisorer Delbarhet og divisorer Vi skal betrakte tall fra Z = {,..., 2, 1, 0, 1, 2,...} og N = {0, 1,...} og
DetaljerMorfologi i Gråskala-Bilder II
Morfologi i Gråskala-Bilder II Lars Vidar Magnusson April 4, 2017 Delkapittel 9.6 Gray-Scale Morphology Top-Hat (Topphatt) Transformasjon Et eksempel på bruk av top-hat transformasjonen Top-Hat (Topphatt)
DetaljerBrukermanual for statistikk på Asset on web: Statistikk salg pr dag, uke eller måned fordelt på alle avdelinger:
Brukermanual for statistikk på Asset on web: Statistikk salg pr dag, uke eller måned fordelt på alle avdelinger: 1. Velg først "Vis avanserte funksjoner" Evt. hvis du ønsker å se på salget i går eller
Detaljer3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
DetaljerMAT1140: Kort sammendrag av grafteorien
MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)
DetaljerRepetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon
Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF230 Digital bildebehandling Eksamensdag : Onsdag 6. juni 202 Tid for eksamen : 09:00 3:00 Oppgavesettet er på : 6 sider Vedlegg
DetaljerLøsningsforslag til øving 12
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 014. Løsningsforslag til øving 1 Oppgave 1 a) I følge Galileo: (S = Sam, S = Siv, T = Toget) I følge Einstein: Dermed: Her har vi brukt
DetaljerMålet med denne masteroppgaven blir å sette seg inn i kunstnerens problemstillinger og prøve å finne metoder for hvordan ideene hans kan realiseres.
i Sammendrag Terrengmodellering i 3D er i dag en mye brukt måte å fremstille landskap på. Slike modeller kan man se i utallige dataspill, animasjonsfilmer, og geologiske modeller. Den vanligste måten å
DetaljerFYS 2150.ØVELSE 15 POLARISASJON
FYS 2150.ØVELSE 15 POLARISASJON Fysisk institutt, UiO 15.1 Polarisasjonsvektorene Vi skal i denne øvelsen studere lineært og sirkulært polarisert lys. En plan, lineært polarisert lysbølge beskrives ved
DetaljerFor en tid siden ble jeg konfrontert med følgende problemstilling:
Normat 55:, 3 7 (7) 3 Bøker på bøker En bokorms øvelse i stabling Ivar Farup Høgskolen i Gjøvik Postboks 9 N 8 Gjøvik ivar.farup@hig.no Innledning For en tid siden ble jeg konfrontert med følgende problemstilling:
DetaljerEKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
DetaljerOppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel
MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn
DetaljerMorfologi i Binære Bilder
Morfologi i Binære Bilder Lars Vidar Magnusson March 20, 2017 Delkapittel 9.1 Preliminaries Delkapittel 9.2 Dilation and Erosion Bakgrunn Morfologiske operasjoner på binære bilder beskrives med mengdeteori.
DetaljerMatematisk julekalender for 5. - 7. trinn, 2009
Matematisk julekalender for 5. - 7. trinn, 2009 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene gir et tall som svar, og dette
DetaljerEKSAMEN Styring av romfartøy Fagkode: STE 6122
Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,
DetaljerKapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1
Kapittel 14, Hashing Tema Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Hashing Hashing er en effektiv metode ved lagring og gjenfinning (søking) av informasjon Søkemetoder
DetaljerAnalyse av nasjonale prøver i engelsk, lesing og regning på 5. trinn 2015
Analyse av nasjonale prøver i engelsk, lesing og regning på 5. trinn 2015 Sammendrag I snitt presterer elevene likt i engelsk og regning i 2014 og 2015. Endringen i prestasjoner fra 2014 til 2015 i engelsk
DetaljerEmnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig
Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og
DetaljerDefinisjonene og forklaringene i denne presentasjonen er hentet fra eller basert på kap. 1 (Kristoffersen: «Hva er språk?
Definisjonene og forklaringene i denne presentasjonen er hentet fra eller basert på kap. 1 (Kristoffersen: «Hva er språk?») og 13 (Ryen: «Fremmedspråksinnlæring») i pensumboka SPRÅK. EN GRUNNBOK, Universitetsforlaget
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
DetaljerKompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder
Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2
DetaljerLØSNINGSFORSLAG, KAPITTEL 2
ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje
DetaljerForelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære MAT1030 Diskret
DetaljerDel 1. Oppgave 1. a) Løs ulikheten 2x+ 4 4x+ b) Løs ulikheten. 1) Løs likningen f( x ) = 4 grafisk og ved regning.
Del 1 Oppgave 1 a) Løs ulikheten + 4 4+ 8 b) Løs ulikheten + > + + 10 10 5 c) Vi har gitt funksjonen f( ) = lg + 3. Figuren viser grafen til f. 7 6 5 4 3 1-1 1 3 4 5 6 7-1 1) Løs likningen f( ) = 4 grafisk
DetaljerLegg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.
Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten
Detaljer