Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II"

Transkript

1 Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet på biter/sekund. Vi bruker en standard fax med 1728 fotosensorer per linje og 1075 linjer per side. Faxmaskinen gjør en terskling av bildet av siden. Hvor lang tid tar det å overføre en side uten kompresjon? Etter terskling trenger vi selvsagt 1 bit per piksel for å representere 0 og 1. 1 bit/piksel * 1728 piksler/linje * 1075 linjer/side = bits/side bits/side / bits/sekund = 387 sekunder = 6 min 27 s. b. Anta at vi hadde kunnet gjøre tekstgjenkjenning på den delen av arket som inneholder tekst, og representert symboler og mellomrom med 7 bits ASCII. Anta at det maksimalt er 60 tegn pr linje og 50 linjer pr side. Anta også at vi kunne beskrevet strektegningene som maksimalt 500 rektangler per side, og at sidene på rektanglene er parallelle med kantene på siden. Gi et worst case estimat av hvor mange biter du vil trenge for å beskrive innholdet på siden med en oppløsning som svarer til faxens oppløsning, og hvor lang tid det vil ta å overføre dette over modemlinjen. For å representere et rektangel og dets plassering trengs følgende: en koordinat for et punkt på rektanglet, f eks øverste venstre hjørne rektanglets bredde og rektanglets høyde Kordinatene for øvre venstre hjørne til et rektangel vil ligge mellom (0,0) og (1728,1075). Det betyr at begge koordinatene krever 11 biter (2048). Det samme gjelder høyde og bredde. Til sammen blir dette 4 * 11 biter = 44 biter. Da blir regnestykket slik: 500 rektangler: 44 biter/rektangel* 500 rektangler = biter 50*60 tegn: tegn * 7 biter/tegn = biter Worst case er altså at vi trenger biter pr side. Med en overføringskapasitet på bits/sekund tar dette t = biter / biter/s = 4,6 sekunder.

2 c. Vi vil gjerne undersøke hvor mye det er å spare på å separere ASCIItegn fra alt annet i en fax, og sende 7 bits ASCII kode for hvert tegn, mens resten sendes ukomprimert uansett hva det er. Hvis halvparten av hver side i gjennomsnitt er ASCII-tegn, hvor mye sparer vi da i forhold til ordinær fax? (7 biter/tegn * 3000/2 tegn + 1 bit/pixel *1728*1075/2 piksler)/(1728*1075) = ( ) / = 0,5056 Vi sparer altså 100%-50.56% = 49.43%. 2. Teorioppgave: Løpelengdekoding i binært bilde med naturlig binærkode: Du skal gjøre en løpelengde ( run-length ) transform på et 2 n 2 n piksels binært bilde. Anta at du gjør dette linje for linje i bildet, ved å angi første pikselverdi, deretter løpelengdene, og verdien 0 to ganger etter hverandre som EOL-markør. Anta også at du bruker en felles naturlig binærkode for både pikselverdiene og løpelengdene. a. Finn et uttrykk for det høyeste antall løpelengder, N, som du med disse forutsetningene kan ha i en linje i bildet hvis løpelengdetransformen skal gi noen kompresjon i forhold til det binære bildet? Svar: Det er den maksimale løpelengden vi kan ha i bildet som bestemmer ordlengden (i biter) til den naturlige binærkoden. Siden bildet er 2 n piksler bredt, må vi ha en ordlengde på n biter. Hvis vi har N runs per linje kommer vi til å bruke n(n+3) biter til å representere dette med en n-biters naturlig binærkode, mens en linje i det binære bildet krever 2 n biter. For å få kompresjon må run-length representasjonen ta et mindre antall biter enn den originale. Altså n(n+3) < 2 n eller N < (1/n) 2 n - 3.

3 b. Hva blir den høyeste verdien av N for hhv. n = 4, n = 8 og n = 10? Er forholdet mellom det maksimale antall løpelengder vi kan ha og fortsatt oppnå kompresjon, og bredden av bildet konstant etter hvert som vi øker størrelsen på bildet? Svar: For n=4 får vi N < (1/4)2 4 3 = 16/4 3 =1 => N < 1. For n=8 får vi N < (1/8)2 8 3 = 256/8 3 =29 => N < 29. For n=10 får vi N < (1/10) = 1024/10 3 = 99.4 => N < 99. Forholdet mellom det maksimale antall løpelengder (N) vi kan ha og fortsatt oppnå kompresjon og størrelsen på bildet (2 n ), er omtrent 2 n / n / 2 n = 1/n. Så dette forholdet er slett ikke konstant: For store bilder kan vi tillate oss å ha mange runs, men forholdet mellom det maksimale antall runs og antall piksler per linje avtar (langsomt) med bildestørrelsen. 3. Huffman-koding av løpelengder i binært bilde: Utsnittet på 25 * 10 piksler av et binært bilde nedenfor kan representeres med 250 biter. Ser vi på runlength-representasjonen av det samme utsnittet, finner vi at det består av 82 runs med lengder mellom 1 og 8 piksler. Hvis vi bruker 3 biter på hver, blir dette 246 biter. Imidlertid er det mulig å gjøre dette litt mer kompakt ved å Huffman-kode de 82 løpelengdene. Ved løpelengdetransformasjon av binære bilder trenger vi ikke å lagre tallpar (gråtone, løpelengde) slik som for gråtonebilder. Vi trenger bare løpelengdene, for det er bare to mulige intensitetsverdier. Løpelengdene finnes i tabellen til høyre Finn Huffmann-koden til løpelengdene i tabellen til høyre over, og finn det totale antall biter etter koding av løpelengdene.

4 Nedenfor har vi løpelengde, lengden på hvert kodeord, kodeordet, og antall forekomster av hver løpelengde. Og helt til høyre kodetreet Og det totale antall bits etter koding blir 36*1+21*3+20*4+5*5= =204 biter. 4. Transformasjoner og kompresjon av et gråtonebilde. a. Anta at vi har et piksels gråtonebilde med 8 bitplan. Pikselverdien er 0 langs venstre kant av bildet, og øker med 32 i jevne trappetrinn mot høyre, slik at det dannes 8 vertikale striper som vist i figuren nedenfor. Hvor mange biter vil vi måtte bruke per linje hvis vi løpelengdetransformerer dette gråtonebildet og bruker en felles naturlig binærkode for både pikselverdier og løpelengder, og bruker verdien 0 to ganger etter hverandre til å indikere slutten av en linje (EOL)? Hver linje vil bestå av 8 løpelengder. Alle løpelengdene er lik 512/8 = 64. Pikselverdiene trenger 8 biter. Altså får vi (8 * 2 + 2) * 8 = 18*8 = 144 biter.

5 b. Vis kodetreet og finn kodeboken for en Huffman-koding av resultatet av løpelengde-transformen ovenfor. Anta fortsatt at vi bruker (0 0) til å indikere EOL. Svar: Bildet inneholder 512 like linjer. Hver linje kommer til å bli beskrevet som Et sortert histogram for hver linje vil gi følgende hyppigheter. En mulig trestruktur og kodebok er slik: c. Finn en omtrentlig verdi for det gjennomsnittlige antall biter per piksel (i det opprinnelige bildet) når du bruker denne Huffman-koden. Angi også den omtrentlige kompresjonsfaktoren. Svar: Vi ser kodeordlengdene i tabellen ovenfor. Multipliserer vi hver kodeordlengde med de tilsvarende hyppighetene får vi det totale antall biter som blir brukt til å representere løpelengdetransformen og EOL-merket: 1*9+3*3 + 6*(4*1) = = 42 biter per linje. Men det er 512 piksle per linje i det opprinnelige bildet. Altså har vi 42/ biter per piksel (fordi 8*5 = 40). Siden det var 8 biter per piksel i det opprinnelige bildet får vi CR 8/0.08 = 100. Hvis vi hadde bedt om den gjennomsnittlig kodeordlengde for løpelengdetransformen, inklusive EOL-merket, ville svaret vært 42/ biter/kodeord.

6 d. Anta at vi hadde gjort en differansetransform av gråtonebildet som er vist i del-oppgave a. Bruk et enkelt resonnement til å forklare hvorfor kompresjonsraten ved kompresjon av enkeltpiksler etter differansetransformen er nøyaktig 3 ganger så høy som den kompresjonsraten vi kan oppnå ved kompresjon uten differansetransform. Svar: I det opprinnelige bildet er det åtte forskjellige gråtoner, og alle er like sannsynlige. 8 verdier krever 3 biter. Her kunne vi ha argumentert med at entropien til dette bildet er eksakt 3, uttrykt i biter: 8*(-(1/8)log 2 (1/8)) =8*3/8 =3. Men vi trenger ingen entropi-koding med ulik lengde på kodeordene for å oppnå dette. Når alle 8 sannsynlighetene er like er jo en naturlig binærkoding med 3 biters kodeord optimal, og vi får CR=8/3. I det differansetransformerte bildet vil vi finne sju verdier lik -32 (ved overgangen mellom trappetrinnene ). Alle de andre verdiene (i alt 505 verdier) vil være 0. Her kunne vi også ha argumentert med entropi: Hvis alle verdiene hadde vært like, ville differansebildet hatt en entropi lik 0, og i dette tilfellet må vi være ganske nær denne verdien (entropien er 0.104). Men vi trenger ikke å se på entropien. For når det bare finnes to verdier i bildet, vil vi bruke én bit: 0 på den mest sannsynlige og 1 på den minst sannsynlige verdien, eller omvendt. Altså en kompresjonsrate CR =8/1= 8. Altså er kompresjonsraten 3 ganger så høy etter differansetransformen..

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF2310, våren 2009 6. Vi har gitt følgende bilde: kompresjon og koding del I 1 0 1 2 2 2 3 3 3 1 1 1 2 1 1 3 3 3 1 0 1 1 2 2 2 3 3 2 1 2 2 3 2 3 4 4 2 1 2 3 2 2 3 4 4 2

Detaljer

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding Løsning av øvingsoppgaver, INF230, 2005,. Vi har gitt følgende bilde: kompresjon og koding 0 2 2 2 3 3 3 2 3 3 3 0 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen av

Detaljer

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (løsningsforslag) (kapittel 18) Tenk selv -oppgaver

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (løsningsforslag) (kapittel 18) Tenk selv -oppgaver IN høsten : Oppgavesett Kompresjon og koding (løsningsforslag) (kapittel ) Tenk selv -oppgaver. Heksadesimal Sudoku Vi har en kvadratisk matrise med * elementer som igjen er delt opp i * blokker på * elementer.

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF23, våren 2 6. Vi har gitt følgende bilde: kompresjon og koding del I 2 2 2 3 3 3 2 3 3 3 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen

Detaljer

INF 1040 Løsningsforslag til kapittel

INF 1040 Løsningsforslag til kapittel INF 040 Løsningsforslag til kapittel 8 Oppgave : Huffmankoding med kjente sannsynligheter Gitt en sekvens av symboler som er tilstrekkelig lang, og som inneholder de 6 symbolene A, B, C, D, E, F. Symbolene

Detaljer

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (kapittel 18)

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (kapittel 18) asitoppgaver IN høsten : Oppgavesett Kompresjon og koding (kapittel ) enne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. et er ikke nødvendigvis meningen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

Løsningsforslag til kapittel 15 Fargerom og fargebilder

Løsningsforslag til kapittel 15 Fargerom og fargebilder Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider

Detaljer

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II Lempel-Ziv-koding INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 11 Kompresjon og koding I Andreas Kleppe Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m. 18.7.2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Hvor mye informasjon inneholder en melding? 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER IN 106, V-2001 PLASS og TID Digitale bilder tar stor plass Eksempler: a 512 512 8 bits 3 farger 63 10 6 bits KOMPRESJON OG KODING 30/4 2001 b 24 36 mm fargefilm digitalisert ( x = y=12µm) 2000 3000 8 3

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

Anvendelser. Noen begreper. Kompresjon

Anvendelser. Noen begreper. Kompresjon Anvendelser INF 30 Digital it ildeehandling dli 7.04.0 Kompresjon og koding Del I Tre steg i kompresjon Redundans Bildekvalitet Transformer Koding og entropi Shannon-Fano og Huffman GW: Kap. 8 unntatt

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av

Detaljer

KOMPRESJON OG KODING

KOMPRESJON OG KODING KOMPRESJON OG KODING Et kapittel fra boken Fritz Albregtsen & Gerhard Skagestein Digital representasjon av tekster, tall former, lyd, bilder og video 2. utgave Unipub 2007 - Med enkelte mindre endringer

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 10 Kompresjon og koding I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Tre steg i kompresjon Redundanser Koding og entropi Shannon-Fano-koding Huffman-koding

Detaljer

Anvendelser. Kompresjon. Noen begreper. INF 2310 Digital bildebehandling

Anvendelser. Kompresjon. Noen begreper. INF 2310 Digital bildebehandling Anvendelser IF 3 Digital ildeehandling Kompresjon og koding Del I Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman GW: Kap. 8 unntatt 8..7, 8.., 8..6, 8.., 8.3 Kompresjon

Detaljer

Anvendelser. Noen begreper. Kompresjon. INF 2310 Digital bildebehandling

Anvendelser. Noen begreper. Kompresjon. INF 2310 Digital bildebehandling Anvendelser INF 30 Digital ildeehandling Kompresjon og koding Del I Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m. 8.7. + Appendiks B Kompresjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 9 dag 1 1. Kjetil og Øystein skal kjøre fra Stavanger til Oslo i hver sin bil. Kjetil starter først og holder en konstant fart på 75 km/t. Øystein starter en

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF2310 Digital bildebehandling FORELESNING 11 KOMPRESJON OG KODING II Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon INF2310 Digital bildebehandling Ole Marius Hoel Rindal, foiler av Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.4, 18.7.3

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 11 Kompresjon og koding II Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.4, 18.7.3

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF230 Digital bildebehandling Forelesning Kompresjon og koding II Ole Marius Hoel Rindal, foiler av Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER PLASS og TID INF 60-30042002 Fritz Albregtsen Tema: komprimering av bilder Litteratur: Efford, DIP, kap 2 Digitale bilder tar stor plass Eksempler: a 52 52 8 bits 3 farger 63 0 6 bits b 24 36 mm fargefilm

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF040 Digital representasjon Oppsummering 2008 del II Fritz Albregtsen INF040-Oppsum-FA- Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I 0 = 0-2 W/m 2,tilSmerteterskelen,0

Detaljer

INF 1040 Digital video digital bildeanalyse. Noen begreper. Kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Digital video digital bildeanalyse. Noen begreper. Kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Digital video digital ildeanalyse Tema i dag :. Hvor mye informasjon inneholder en melding?. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

Kompresjon. Noen begreper. Plass og tid. Kompresjon. Digitale data kan ta stor plass. Eksemper : Overføring av data tar tid: Dekompresjonsalgoritme

Kompresjon. Noen begreper. Plass og tid. Kompresjon. Digitale data kan ta stor plass. Eksemper : Overføring av data tar tid: Dekompresjonsalgoritme Kompresjon Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Litteratur : Cyganski kap. 7 Compressing Information kap. 8 Image Compression kap. 9 Digital Video Data Kompresjon Lagring eller oversending

Detaljer

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD INF 040 høsten 2009: Oppgavesett 2 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 6 og 7) 3. Lagring av video på DVD a) Med en bitrate på 250 Mbit/s, hvor lang tidssekvens av en digital

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG EKSAMENSOPPGAVE Fag: Lærer: IAD20003 Algoritmer og datastrukturer André Hauge Grupper: D2A Dato: 21.12.2004 Tid: 0900-1300 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle

Detaljer

1.8 Binære tall EKSEMPEL

1.8 Binære tall EKSEMPEL 1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =

Detaljer

INF2810: Funksjonell Programmering. Huffmankoding

INF2810: Funksjonell Programmering. Huffmankoding INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Huffmankoding Erik Velldal Universitetet i Oslo 20. februar 2015 Tema I går Trær som lister av lister Trerekursjon Mengder som trær

Detaljer

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 Utlevering: fredag 3. november 2006, kl. 12:00 Innlevering: fredag 17. november 2006, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO okmål ksamen i IN igital representasjon. des. UNIVRSITTT I OSLO et matematisk-naturvitenskapelige fakultet ksamen i : IN igital representasjon ksamensdag : Onsdag. desember Tid for eksamen :.. Oppgavesettet

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF igital representasjon Oppsummering 8 del II Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I - W/m,tilSmerteterskelen, W/m Oftest angir vi ikke absolutt lydintensitet

Detaljer

Fagdag CAS-trening

Fagdag CAS-trening Fagdag 03.12.2015 - CAS-trening Innhold: Viktige kommandoer på side 1. Eksempler på bruk av CAS side 1-4. Arbeidsoppgaver på side 5 og utover. Viktige kommandoer: Se oversiktene side 444 og side 446 i

Detaljer

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF-Digital bildebehandling Eksamensdag: Tirsdag. mars 5 Tid for eksamen: 5:-9: Løsningsforslaget er på: sider Vedlegg: Ingen

Detaljer

Straffespark Introduksjon Scratch Lærerveiledning

Straffespark Introduksjon Scratch Lærerveiledning Straffespark Introduksjon Scratch Lærerveiledning Introduksjon Vi skal lage et enkelt fotballspill, hvor du skal prøve å score på så mange straffespark som mulig. Steg 1: Katten og fotballbanen Vi begynner

Detaljer

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl. Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Kompresjon og koding Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Tema i dag :. Noen egreper. Redundans Data Kompresjon Lagring eller oversending Dekompresjon Data. Differanse- og løpelengdetransformer

Detaljer

da INF 2310 Digital bildebehandling

da INF 2310 Digital bildebehandling Ulike typer redundans da INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i

Detaljer

FORELESNING 11. KOMPRESJON OG KODING I Andreas Kleppe. Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman

FORELESNING 11. KOMPRESJON OG KODING I Andreas Kleppe. Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Anvendelser INF30 Digital ildeehandling FORELESNING KOMPRESJON OG KODING I Andreas Kleppe Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 160 Digital bildebehandling Eksamensdag: Mandag 13. mai - mandag 27. mai 2002 Tid for eksamen: 13. mai 2002 kl 09:00 27. mai

Detaljer

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Kompresjon og koding Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Tema i dag :. Noen egreper. Redundans Data Kompresjon Lagring eller oversending Dekompresjon Data. Differanse- og løpelengdetransformer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

Asteroids. Oversikt over prosjektet. Steg 1: Enda et flyvende romskip. Plan. Sjekkliste. Introduksjon

Asteroids. Oversikt over prosjektet. Steg 1: Enda et flyvende romskip. Plan. Sjekkliste. Introduksjon Asteroids Ekspert Scratch Introduksjon På slutten av 1970-tallet ga Atari ut to spill hvor man skulle kontrollere et romskip. Det første var Lunar Lander, men dette ble utkonkurrert av Asteroids som Atari

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44 Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 Løsningsforslag Oppgave 1. Regn ut. a) 8 + 3 (2 6) + 16 : 2 = 8 + 3 (-4) + 8 = 8 12 + 8 = 4 b) + - = 4 + 5 10 = -1 c) 5 + 5

Detaljer

Motivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk.

Motivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk. INF 230 Morfologi Morfologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. ammensatte operasjoner 4. Eksempler på anvendelser flettet inn GW, Kapittel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 2310 Digital bildebehandling Eksamensdag: Tirsdag 18. mai - tirsdag 1. juni 2004 Tid for eksamen: 18. mai 2004 kl 09:00 1.

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Eksamen i IN 106, Mandag 29. mai 2000 Side 2 Vi skal i dette oppgavesettet arbeide med et bilde som i hovedsak består av tekst. Det binære originalbil

Eksamen i IN 106, Mandag 29. mai 2000 Side 2 Vi skal i dette oppgavesettet arbeide med et bilde som i hovedsak består av tekst. Det binære originalbil UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 106 Introduksjon til signal- og bildebehandling Eksamensdag: Mandag 29. mai 2000 Tid for eksamen: 29. mai 2000 kl 09:0031.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

Olaf Christensen 27.09.2010. Digitale Bilder

Olaf Christensen 27.09.2010. Digitale Bilder Olaf Christensen Digitale Bilder 27.09.2010 1) Vi har to måter å fremstille grafikk på. Den ene er ved hjelp av rastergrafikk (bildepunkter). Den andre er ved hjelp av vektorgrafikk (koordinater). Disse

Detaljer

Digitale bilder. Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter) og vektorgrafkk (linjer og fater).

Digitale bilder. Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter) og vektorgrafkk (linjer og fater). Høgskolen i Østfold Digital Medieproduksjon Oppgave T4/Digitale bilder Uke 38/23.09.10 Jahnne Feldt Hansen Digitale bilder Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter)

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder.

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder. 1 Motivasjon INF 2310 Mesteparten av kap 9.1-9.5 i DIP Morfologiske operasjoner på binære bilder Basis-begreper Fundamentale operasjoner på binære bilder Sammensatte operasjoner Eksempler på anvendelser

Detaljer

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling Objekt-bilde relasjonen IN 3 Digital bildebehandling Oppsummering II, våren 7: y f f s s y Avbildning Naboskapsoperasjoner og konvolusjon Segmentering Kompresjon og koding av bilder argerom og bildebehandling

Detaljer

Løsningsskisser til arbeidsoppgaver i CAS.

Løsningsskisser til arbeidsoppgaver i CAS. Løsningsskisser til arbeidsoppgaver i CAS. Oppgave 1 En bonde har et 20 meter langt gjerde og skal sperre av et rektangulært område der en av sidene i rektangelet er en fjøsvegg. Finn maksimalt areal som

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

Innhold. Virtuelt minne. Paging i mer detalj. Felles rammeverk for hukommelseshierarki. 02.04.2001 Hukommelseshierarki-2 1

Innhold. Virtuelt minne. Paging i mer detalj. Felles rammeverk for hukommelseshierarki. 02.04.2001 Hukommelseshierarki-2 1 Innhold Virtuelt minne Paging i mer detalj Felles rammeverk for hukommelseshierarki 02.04.200 Hukommelseshierarki-2 Virtuelt minne Lagringskapasiteten i RAM må deles mellom flere ulike prosesser: ûoperativsystemet

Detaljer

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5.

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5. Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Flaksefugl Nybegynner Scratch Lærerveiledning

Flaksefugl Nybegynner Scratch Lærerveiledning Flaksefugl Nybegynner Scratch Lærerveiledning Introduksjon Nå skal vi lage vår egen versjon av spillet Flappy Bird. Du styrer fuglen Flakse ved å trykke på mellomromtasten for å flakse med vingene. Du

Detaljer

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

INF Kap og i DIP

INF Kap og i DIP INF 30 7.0.009 Kap..4.4 og.6.5 i DIP Anne Solberg Geometriske operasjoner Affine transformer Interpolasjon Samregistrering av bilder Geometriske operasjoner Endrer på pikslenes posisjoner o steg:. Finn

Detaljer

Tabellen viser en serie med verdier for den uavhengige variabelen, og viser den tilhørende verdien til den avhengige variabelen.

Tabellen viser en serie med verdier for den uavhengige variabelen, og viser den tilhørende verdien til den avhengige variabelen. Kapittel 13: Tabeller 13 Oversikt over tabeller... 222 Oversikt over fremgangsmåten for å generere en en tabell... 223 Velge tabellparametre... 224 Vise en automatisk tabell... 226 Bygge en manuell tabell

Detaljer