Emne 12 Mengdelære. ( bokstaven g er ikke et element i mengden B ) Betyr: B er mengden av alle positive oddetall.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Emne 12 Mengdelære. ( bokstaven g er ikke et element i mengden B ) Betyr: B er mengden av alle positive oddetall."

Transkript

1 Emne 12 Mengdelære En mengde er en samling elementer. Mengden er veldefinert hvis vi entydig kan avgjøre om et vilkårlig element tilhører mengden eller ikke. Mengder på listeform. Endelige mengder:, Uendelige mengder: Her ser vi f.eks. at ( tallet 4 er et element i mengden A ) Mengdebygger: eller ( bokstaven g er ikke et element i mengden B ) ( tallet 205 er element i C siden det er delelig med 5 ) Betyr mengden av alle elementer som oppfyller betingelsen(e) Eksempler: På listeform: Betyr: B er mengden av alle positive oddetall. På listeform: Like mengder: 2 mengder er identiske,, dersom de inneholder nøyaktig samme elementer. Her er, mens Merk! En mengde endres ikke selv om vi endrer rekkefølge på 2 elementer eller repeterer et element flere ganger, men av mengdene A, B og C er det strengt tatt bare A som kan kalles veldefinert.

2 Standard tallmengder: Noen tallmengder er så vanlige at de har fått egne navn Eksempler: Den tomme mengde ( inneholder ingen elementer ) Mengden av alle naturlige tall Mengden av alle heltall Mengden av alle rasjonale tall ( tall som kan skrives som en brøk ) Mengden av alle reelle tall Mengden av alle komplekse tall Delmengde A er en delmengde av B dersom hvert element i A også er et element i B, skrives: Merk! Dette inkluderer muligheten. Det betyr også at, dvs. A er en delmengde av seg selv. Ekte delmengde:. Samme definisjon som over, men utelukker muligheten, dvs. at det må finnes minst ett element i B som ikke finnes i A. Eksempel :. Her kan vi skrive både og, men Potensmengde: Potensmengden til A,, er mengden av alle delmengdene til A., Mengden har altså 8 delmengder, inkludert den tomme mengde og seg selv.

3 Universell mengde, En universell mengde er det opp til oss selv å definere, men det må være en veldefinert mengde som omfatter alle aktuelle delmengder i en gitt problemstilling. Komplement Mengdeoperasjoner. Komplementmengden er det motsatte av A, dvs. den inneholder alle elementer som ikke finnes i A Da er Venn-diagram: U Union Unionen av A og B er alle elementer som er med i A eller B eller begge ( A og/eller B ) Venn-diagram: U

4 Snitt Snittet av A og B er alle elementer som er med i både A og B, dvs. de elementene A og B har felles. Venn-diagram: U Differens (relativt komplement) Differensmengden A minus B er alle elementer som er med i A, men ikke i B ( dvs. de elementene som kun finnes i A ) Venn-diagram: U Merk! Disjunkte mengder: 2 mengder som ikke har noen felles elementer, dvs. Venn-diagram: A B

5 Noen mengdeidentiteter Kommutative lover: Idempotente lover: Identitetslover: Domineringslover: Komplementære lover: Assosiative lover: Distributive lover: Dobbel negasjon: DeMorgans lover:

6 ,, ( Betyr: Alle element i U som er delelig med 3 ) På listeform: Noen mengder:,, Finn et uttrykk for de skraverte mengdene, og skriv opp elementene på listeform. A B C Telleoppgaver I noen sammenhenger er vi mer interessert i antall elementer enn type element. Når vi skal finne antall elementer i en sammensatt mengde er det viktig at vi ikke teller de samme elementene flere ganger Mengde: Antall elementer i mengden:

7 Med 2 delmengder: Grafisk bevis : A B A B A B A B Gitt universalmengden og delmengdene Hvor mange av elementene i U er delelig med 9 eller 15? Svaret må være, men vi må først finne Antall elementer totalt Antall elementer delelig med 9 Antall elementer delelig med 15. NB! Viktig å avrunde nedover! Antall elementer delelig med både 9 og 15 Obs! Her må vi dele på 45 og ikke. Siden og, blir minste felles multiplum Svar:

8 Med 3 delmengder: Det foretas en spørreundersøkelse. Av 1000 spurte svarer 320 at de leser VG daglig, 194 leser Dagbladet og 243 leser Aftenposten. 74 leser VG og Dagbladet, 112 leser VG og Aftenposten, mens 30 leser Dagbladet og Aftenposten. 26 svarer at de leser alle 3 avisene daglig. Hvor mange leser daglig: a) Minst én av de 3 avisene? b) VG og Dagbladet, men ikke Aftenposten? c) Kun Aftenposten? d) Ingen av avisene? For enkelthets skyld kaller vi mengden av VG-, Dagbladet- og Aftenpostenlesere for hhv. A, B og C. Da har vi: Svar: Og videre: a) Antallet som leser minst én av avisene: b) Her kan det lønne seg å bruke et Venndiagram A B A B A B C C C Antall som leser både A og B, men ikke C:

9 Eksempel forts. c) A B A B A B A B A B C C C C C Leser kun C: d) (Antall spurte) Leser ingen av avisene: Kartesisk produkt Gitt 2 mengder A og B. Det kartesiske produktet tallpar gir mengden av alle ordnede gir: Merk! Rekkefølgen har betydning, dvs. i praksis x-y-planet. Kan selvsagt ha flere mengder, f.eks. gir ordnede talltripler, osv

10 Mengdene kan i seg selv være kartesiske mengder! Eksempel Mengden av alle ordnede tallpar ( x, y ) på eller innenfor sirkelen Skissert: 1 y y A x B x -1-1 Det gir f.eks. (grafisk løsning) Snittmengden : Differensmengden : 1 y 1 y A x B x -1-1

Matematikk 15 V-2008

Matematikk 15 V-2008 Matematikk 5 V-008 Løsningsforslag til øving 9 OPPGVE Husk at N = {alle naturlige tall} = {0,,,,... }, Z = {alle heltall} = {...,,, 0,,,,... }, R = {alle reelle tall} og = {alle komplekse tall} = { z :

Detaljer

LO118D Forelesning 3 (DM)

LO118D Forelesning 3 (DM) LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 Høgskolen i Gjøvik vd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving OPPGVE Husk at N {alle naturlige tall} { 0,,,,... }, Z {alle heltall} {...,,,0,,,,... }, R {alle reelle tall} og

Detaljer

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon. Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller

Detaljer

Diskret matematikk tirsdag 15. september 2015

Diskret matematikk tirsdag 15. september 2015 Avsnitt 2.2 fra læreboka Mengdeoperasjoner Tema for forelesningen: Snittet av to mengder Disjunkte mengder Union av to mengder Eksklusiv union (symmetrisk differens) av to mengder Differensen mellom to

Detaljer

Innføring i bevisteknikk

Innføring i bevisteknikk Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen

Detaljer

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon. Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 2016 Oblig 2 Løsningsforslag 6. september 2016 2.1.4 a, b, c, c, d og C a, b, c, d vgjør om en av mengdene er en delmengde til en av de to andre. Her ser vi at C og C 2.1.5. Hvilke

Detaljer

MAT1030 Forelesning 10

MAT1030 Forelesning 10 MAT1030 Forelesning 10 Mengdelære Roger Antonsen - 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære Oversikt Vi har nå innført de Boolske operasjonene, union snitt komplement

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære MAT1030 Diskret

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) MAT1030 Diskret

Detaljer

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5 Forelesning 9 Mengdelære Dag Normann - 11. februar 2008 OVER TIL KAPITTEL 5 De fleste som tar MAT1030 har vært borti mengder i en eller annen form tidligere. I statistikk og sannsynlighetsteori på VGS

Detaljer

TMA 4140 Diskret Matematikk, 3. forelesning

TMA 4140 Diskret Matematikk, 3. forelesning TMA 4140 Diskret Matematikk, 3. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 5, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

Mengdelære. Kapittel Hva er en mengde?

Mengdelære. Kapittel Hva er en mengde? Kapittel 1 Mengdelære 1.1 Hva er en mengde? Mengdebegrepet gjennomsyrer mye av matematikken i dag, både i skolematematikken og høyere opp i systemet. En mengde (engelsk: Set, tysk:menge) er en samling

Detaljer

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008 MAT1030 Diskret matematikk Forelesning 9: Mengdelære Dag Normann OVER TIL KAPITTEL 5 Matematisk Institutt, Universitetet i Oslo 11. februar 2008 MAT1030 Diskret matematikk 11. februar 2008 2 De fleste

Detaljer

INF1800 Forelesning 2

INF1800 Forelesning 2 INF1800 Forelesning 2 Mengdelære Roger Antonsen - 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste av det vi gjør her kan leses uavhengig av boken. Følgende avsnitt i boken

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

Mengdelære INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE. Læreboken. Mengder. Definisjon (Mengde) Roger Antonsen

Mengdelære INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE. Læreboken. Mengder. Definisjon (Mengde) Roger Antonsen INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Mengdelære Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Læreboken Mengder Definisjon

Detaljer

Oppgave: Avgjør om følgende to mengder er like: 1) (A B) C 2) A (B C)

Oppgave: Avgjør om følgende to mengder er like: 1) (A B) C 2) A (B C) Mengder, fortsettelse. Tre mengder Venndiagram for tre mengder A, B og C må tegnes slik at alle muligheter blir dekket. For å få dette til må de overlappe hverandre: Oppgave: Avgjør om følgende to mengder

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste

Detaljer

TMA 4140 Diskret Matematikk, 4. forelesning

TMA 4140 Diskret Matematikk, 4. forelesning TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

Emne 13 Utsagnslogikk

Emne 13 Utsagnslogikk Emne 13 Utsagnslogikk Et utsagn er en erklæring som er entydig sann eller usann, men ikke begge deler. Noen eksempler på (ekte) utsagn: Utsagn : Gjøvik har bystatus er sann ( i alle fall pr. dags dato

Detaljer

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. EKSAMEN Emnekode: ITF0705 Dato: 5. desember 204 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Forelesning 10. Mengdelære. Dag Normann februar Venn-diagrammer. Venn-diagrammer. Venn-diagrammer. Venn-diagrammer

Forelesning 10. Mengdelære. Dag Normann februar Venn-diagrammer. Venn-diagrammer. Venn-diagrammer. Venn-diagrammer Forelesning 10 Mengdelære Dag Normann - 13. februar 2008 Venn-diagrammer Mandag innførte vi de Booleske operasjonene Union Snitt Komplement A Mengdedifferens A B samt de faste mengdene og E. Venn-diagrammer

Detaljer

Venn-diagrammer. MAT1030 Diskret matematikk. Venn-diagrammer. Venn-diagrammer. Eksempel. Forelesning 10: Mengdelære

Venn-diagrammer. MAT1030 Diskret matematikk. Venn-diagrammer. Venn-diagrammer. Eksempel. Forelesning 10: Mengdelære Venn-diagrammer MAT1030 Diskret matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 13. februar 2008 Mandag innførte vi de Booleske operasjonene Union Snitt Komplement

Detaljer

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver Avsnitt 6. Chapter 6 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Oppgave a) Valget av en fra matematikk og en fra data er uavhengig av hverandre. Dermed blir det 35

Detaljer

Tall og mengder. Per G. Østerlie. 30. september 2013

Tall og mengder. Per G. Østerlie. 30. september 2013 Tall og mengder Per G. Østerlie 30. september 2013 1 Introduksjon Nå skal vi se på hva mengder og intervaller er og hvilke symboler vi benytter. Vi starter med å se på tall og hvordan vi kan dele opp i

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 7. desember 0 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Repetisjonsforelesning - INF1080

Repetisjonsforelesning - INF1080 Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 4 dag 1 1. Hvor mange av de ett hundre første positive heltallene, 1, 2, 3,, 99, 100, er delelig med 2, 3, 4 og 5? A)0 B) 1 C) 2 D) 3 E) 4 2. Ett tusen terninger

Detaljer

To mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}.

To mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}. Forelesning 0: Mengdelære, Induksjon Martin Giese - 23. januar 2008 1 Mengdelære 1.1 Mengder Mengder Definisjon 1.1. En mengde er en endelig eller uendelig samling objekter der innbyrdes rekkefølge og

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene. Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.

Detaljer

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008. INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1

Detaljer

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF0705 Dato:. desember 00 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian F Heide Eksamensoppgaven:

Detaljer

Grublegruppe 19. sept. 2011: Algebra I

Grublegruppe 19. sept. 2011: Algebra I Grublegruppe 19. sept. 2011: Algebra I Ivar Staurseth ivarsta@math.uio.no Innledning, definisjoner Vi har så langt jobbet med mengder, X, hvor vi har hatt et avstandsbegrep og hvor vi har vært i stand

Detaljer

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31,

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31, Tall SKOLEPROSJEKT MAT400 - VÅR 204 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM Date: March 3, 204. 2. Innledning Vårt skoleprosjekt omhandler ulike konsepter innenfor det matematiske området

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 2016 Oblig Løsningsforslag 16. september 2016 2.4.1 a) {(0, 1), (0, 2), (1, 2)} b) {(0, 0), (1, 1), (2, 2)} c) {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} d) {(0, 0), (1, 0), (1,

Detaljer

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF75 Dato: 5. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Løsningsforslag til noen oppgaver om Zorns lemma

Løsningsforslag til noen oppgaver om Zorns lemma Løsningsforslag til noen oppgaver om Zorns lemma Fredrik Meyer Her er et løsningsforslag på Oppgave 3 og Oppgave 5 i notatet om Zorns lemma. De to første oppgavene ble gjort på plenum. Oppgave 1. Vi skal

Detaljer

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p Ekvivalente utsagn Definisjoner: Et sammensatt utsagn som ALLTID er SANT kalles for en TAUTOLOGI. Et sammensatt utsagn som ALLTID er USANT kalles for en SELVMOTIGELSE eller en KONTRADIKSJON (eng. contradiction).

Detaljer

INF3170 Forelesning 1

INF3170 Forelesning 1 INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

Hans Petter Hornæs,

Hans Petter Hornæs, Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Dedekind introduserer nå en spesiell klasse snitt som han kaller rasjonale snitt:

Dedekind introduserer nå en spesiell klasse snitt som han kaller rasjonale snitt: DE IRRASJONALE TALLENE EUDOXUS TESTAMENTE. Dedekind s snitt. Vi så tidligere at de greske matmatikerene kom til klarhet over at ikke alle forhold kunne beskrives som de vi kaller rasjonale tall dvs at

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015 Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Sannsynlighet Venndiagram 1

Sannsynlighet Venndiagram 1 6 Sannsynlighet Venndiagram 1 Illustrer oppgaven med brikker og mengderinger. I hver oppgave må du først skrive på mengderingene hva de skal inneholde, enten med ord eller med forkortelser. Skriv deretter

Detaljer

Julenøtter til gruppe 5&7! (IKKE eksamensrelevant, bare for gøy gjerne i romjulen)

Julenøtter til gruppe 5&7! (IKKE eksamensrelevant, bare for gøy gjerne i romjulen) Julenøtter til gruppe 5&7! (IKKE eksamensrelevant, bare for gøy gjerne i romjulen) Dette er smakebiter på ting som dukker opp i videregående emner (MAT2400 og MAT2200). Del I og II kan gjøres uavhengig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f Sammensetningen av to funksjoner. Gitt mengdene A, B og C. La f og g være funksjonene der g: A -> B f: B -> C Da kan vi lage sammensetningen h av f og g. Den betegnes som h = f g (lese som «f ring g»).

Detaljer

KAPITTEL 3 Litt logikk og noen andre småting

KAPITTEL 3 Litt logikk og noen andre småting KAPITTEL 3 Litt logikk og noen andre småting Logikk er sentralt både i matematikk og programmering, og en innføring i de enkleste delene av logikken er hovedtema i dette kapitlet I tillegg ser vi litt

Detaljer

Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen januar Praktisk informasjon. 1.1 Forelesere og tid/sted

Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen januar Praktisk informasjon. 1.1 Forelesere og tid/sted Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen - 22. januar 2007 1 Praktisk informasjon 1.1 Forelesere og tid/sted Foreleser: Christian Mahesh Hansen (chrisha@ifi.uio.no) Kontor 2403,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Dagens plan. INF3170 Logikk

Dagens plan. INF3170 Logikk INF3170 Logikk Dagens plan Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 Hva skal vi lære? 22. januar 2007 3

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel 5 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 21. februar 2008 Oppgave 5.1 Skriv følgende mengder på listeform. (a) Mengden

Detaljer

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av

Detaljer

Mengder, relasjoner og funksjoner

Mengder, relasjoner og funksjoner MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030

Detaljer

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser.

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Kast med to terninger, A er sekser på første terning og B er sekser på andre terning. Sekser på begge terningene er Fra definisjonen av betinget

Detaljer

Cr) Høgskoleni østfold

Cr) Høgskoleni østfold Cr) Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 15. desember 2015 09.00 til 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510

HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510 HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510 BJØRN JAHREN Euklids Elementer introduserte den aksiomatiske metode i geometrien, og i mer enn 2000 år var den omtrent enerådende som lærebok i geometri.

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

Høgskoleni østfold. EKSAMEN Ny og utsatt

Høgskoleni østfold. EKSAMEN Ny og utsatt Høgskoleni østfold EKSAMEN Ny og utsatt Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 8. juni 2015 09.00 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

Niels Henrik Abels matematikkonkurranse 2011 2012

Niels Henrik Abels matematikkonkurranse 2011 2012 Bokmål Niels Henrik Abels matematikkonkurranse 011 01 Første runde. november 011 Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 0 flervalgsoppgaver som skal løses i løpet av

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik: Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995 Løsningsforslag eksamen STE 638 Geometrisk modellering 9/8 995. a) Vi skal bestemme hvilke av avbildningene/transformasjonene som er homeomorfier. f 4 6 Determinanten til matrisen er lik, dvs at den har

Detaljer

(define (naer-nok-kuberot? y x) (< (abs (- (kube y) x)) 0.001)) (define (naermere-kuberot y x) (/ (+ (* y 2) (/ x (kvadrat y))) 3))

(define (naer-nok-kuberot? y x) (< (abs (- (kube y) x)) 0.001)) (define (naermere-kuberot y x) (/ (+ (* y 2) (/ x (kvadrat y))) 3)) Oppgave 1 For å komme nærmere kuberoten (tredjeroten) til et tall x fra en foreløpig tilnærming y, kan vi bruke formelen (2y + x/y 2 )/3. Skriv prosedyrene (nær-nok-kuberot? y x), (nærmere-kuberot y x)

Detaljer

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik: Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles

Detaljer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer Obligatorisk oppgave 1 i MAT1140, Høst 2014. Oppgave 1 er med kommentarer En funksjon f : R R er en polynomfunksjon hvis f kan defineres som f(x) = a 0 + a 1 x + + a n x n hvor n 0 og a 0,..., a n er reelle

Detaljer

TOPOLOGI. Dan Laksov

TOPOLOGI. Dan Laksov Forum för matematiklärare TOPOLOGI Dan Laksov Institutionen för Matematik, 2009 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Topologi Dan Laksov Notater for Forum för Matematiklärare. Høst

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Tallenes hemmeligheter

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Tallenes hemmeligheter QED 5 10 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Tallenes hemmeligheter Kapittel Oppgave 5. Nei Oppgave 7. Addisjon og multiplikasjon Oppgave 8. b) Hvis vi ser på hele tall er {1},

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

i Dato:

i Dato: c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

Kapittel 5: Relasjoner

Kapittel 5: Relasjoner MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 23. februar 2010 (Sist oppdatert: 2010-02-23 14:33) MAT1030 Diskret Matematikk

Detaljer