NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

Størrelse: px
Begynne med side:

Download "NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at"

Transkript

1 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x), = ec 6 x3 for en c mellom 0 og x. Vi har at f (n+) (t) = e t e 0. for alle t mellom 0 og x for x < 0.. Ved Teorem 23 følger det at x a n+ R n (x) M (n + )! 0. x 3 = e 3! e For x < 0 har vi at e x ( ) n x n = n! n=0 = ( ) n+ u n, n= der u n = x n (n )!. Ved Teorem 5 med n = 3 har vi at absoluttverdien til feilen er mindre enn u 4 = x 3 3! Avsnitt 5. d. Vi ser at y = 0 når y = x, det tilsvarer de horisontale pilene i figur d. 2 c. Siden y ikke avhenger av x, er figur c den eneste muligheten. Vi ser også at y = 0 når y =. 3 a. y = 0 når x = 0 (horisontale piler) og y går mot ± (vertikale piler) når y går mot 0 og x 0. 4 b. y = 0 (horisontale piler) når y 2 = x 2, det vil si når y = x og y = x. Avsnitt Dette er en separabel differensialligning. dy dx + xy = x dy = x( y) dx y dy = x dx ln y = 2 x2 + C y = C 2 e 2 x2 lfov2 2. november 200 Side

2 TMA400 Matematikk høsten 200 Bruk initialbetingelsen til å finne C 2 = 7. y(x) = 7e 2 x2 Alternativt kan man løse ligningen ved hjelp av integrerende faktor. Ligningen er oppgitt på standardform der P (x) = x og Q(x) = x. Vi finner integrerende faktor. v(x) = e P (x) dx = e 2 x2 Multipliser begge sider av ligningen med v(x) og integrer. e 2 x2 y + e 2 x2 xy = e 2 x2 x Bruker initialbetingelsen og finner C 3 = 7. (ye 2 x2 ) = e 2 x2 x ye 2 x2 = e 2 x2 x dx = e 2 x2 + C 3 y(x) = + C 3 e 2 x2 y(x) = 7e 2 x2 22 a) Ligningen er allerede på standardform med P (t) = k m og Q(t) = 0. Vi finner integrerende faktor. v(x) = e P dt = e k m t Multipliser og integrer. e k m t u + e k m t ku m = 0 Bruker initialbetingelsen til å finne C = u 0. b) u du = (e k m t u) = 0 e k m t u = C u(t) = C e k m t u(t) = u 0 e k m t du dt + ku m = 0 ( k m ) dt ln u = k m t + C 2 u(t) = C 3 e k m t u(t) = u 0 e k m t lfov2 2. november 200 Side 2

3 TMA400 Matematikk høsten Vi har følgende sammenheng Endringsraten av CO i rommet = Raten CO kommer inn Raten CO går ut La y(t) være mengden CO i rommet, og V = 4500 være volumet av rommet. Da blir Raten CO går ut = y(t) V Raten luft blir pumpet ut Bruk at luft blir pumpet inn og ut med samme rate 0.3 og luften som blir pumpet inn inneholder 4% CO, da får vi av den første sammenhengen dy(t) dt = 0.3 4% 00% y(t) Vi setter denne på standard form. dy(t) dt y(t) = Her er P = og Q = , denne differensialligningen kan løses ved å multiplisere med integrerende faktor v(t) = e P dt = e t. Vi får e t y e t y = e t (ye t ) = e 0.3 ye t = 4500 t e t dt = e t + C Ser at = 80. Bruk så initialbetingelsen y(0) = 0 til å finne C = 80, det gir y(t) = 80 ( e 0.3 t) 4500 I oppgaven spør de om hvilken t som gir y(t) 4500 = 0.0% 00%. 0.0 y(t) = e t = e t = = t = ln(0.9975) t = 4500 ln(0.9975) Det tar altså cirka 38 minutter før karbonmonoksidkonsentrasjonen når 0.0%. lfov2 2. november 200 Side 3

4 TMA400 Matematikk høsten 200 Avsnitt 5.3 a) Av likning () får ein at farta til syklisten er lik v(t) = v 0 e kt/m, der v 0 = v(0) = 9m/s, k = 3, 9kg/s og m = Ved å integrere får ein at s(t) = v(t) dt = v 0 e kt/m dt = C mv 0 k e kt/m. Konstanten C finn ein ved å bruke at s(0) = 0 C = mv 0 s(t) = mv 0 k ( e kt/m ). k e k 0/m = mv 0 k Strekninga syklisten rullar finn ein ved å finne grensa lim t s(t). Strekninga syklisten rullar er difor lik mv 0 lim s(t) = lim t t k ( e kt/m ) = mv 0 k b) Tida det tek før syklisten rullar i m/s er lik v(t) = v 0 e kt/m = ln v 0 kt m = ln t = m ln v 0 k 4,. 68, 5. Det tek med andre ord tilnærma lik 4, sekund før syklisten rullar med ei fart på m/s. Avsnitt Eulers metode er gitt som y n+ = y n + f(x n, y n )dx I denne oppgaven er f(x, y) = 2y(x + ), dx = 0.2, y 0 = 3 og x n = ndx. Dette gir y(0.2) y = (0 + ) 0.2 = 4.2 y(0.4) y 2 = (0.2 + ) 0.2 = 6.26 y(0.6) y 3 = (0.4 + ) 0.2 = Så De eksakte verdiene finner vi ved å løse den separable differensialligningen. dy = 2y(x + ) dx y dy = 2(x + ) dx ln y = x 2 + 2x + C y(x) = C 2 e x2 +x lfov2 2. november 200 Side 4

5 TMA400 Matematikk høsten 200 Siden y(0) = 3 får vi C 2 = 3. y(x) = 3e x2 +x Dette gir y(0.2) = y(0.4) = y(0.6) = Forbedret Eulers metode er gitt som z n = y n + f(x n, y n )dx [ ] f(xn, y n ) + f(x n, z n ) y n = y n + dx 2 I denne oppgaven er f(x, y) = 2y(x + ), dx = 0.2, y 0 = 3 og x n = ndx. Dette gir n x n z n y n y(x n ) Eksamensoppgaver 27 a) Vi bruker L Hôpitals regel, integralregningens fundamentalsetning, og substitusjonen u = x 2 (det siste er ikke strengt nødvendig, men forenkler regningen noe): lim x 0 x 0 ln( + t2 ) dx x 3 = 0 0 = lim ln( + x 2 ) ln( + u) x 0 3x 2 = lim = 0 u 0 + 3u 0 = lim u 0 + b) Ligningen er separabel, og standardmetoden gir oss generell løsning ved dx y dy = x 2 2 y2 = x + C. Vi setter inn for initialdataene: x =, y = som gir C = 3 2, og dermed ( y = 2 C ) = 3 2 x x (som er definert for x 3.) 50 Hvalbestanden oppfyller differensialligningen + u 3 = 3. dp dt = ke αt P, der k er en konstant. Differensialligningen er separabel, vi separerer og integrerer: dp P = ke αt dt ln P = k α e αt + C som gir P (t) = C e (k/α)e αt (C = e C ). lfov2 2. november 200 Side 5

6 TMA400 Matematikk høsten 200 P (0) = P 0 gir C = P 0 e k/α og løsningen blir P (t) = P 0 e (k/α)( e αt). Siden α > 0 er lim t e αt = 0 og følgelig er lim t P (t) = P 0 e k/α som er en konstant. 90 a) Stigningstallet til tangenten til grafen til T gjennom punktet (0, T 0 ) er gitt ved Ligningen for tangenten er da gitt ved dt dx (0, T 0) = at b 0 = at 2 0. y T 0 = at 2 0 (x 0) y = T 0 at 2 0 x. Vi bruker tangentligningen til å finne en tilnærmet verdi for T (x) når x =.2M: T (.2) y(.2) = T 0 at = K. b) Differensialligningen er separabel. Vi separerer og integrerer: dt dx = at 2 + bx at 2 dt = + bx dx at = ln + bx + C b T =. ln + bx + C Bruk initialbetingelsen til å finne C: T 0 = C C = T 0. Det følger at T (x) = Den nøyaktige verdien for T (.2) er følgelig T (.2) = a b bt 0 a b ln + bx + = at T 0 0 ln + bx + b ln K. lfov2 2. november 200 Side 6

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Differensiallikninger Forelesning i Matematikk 1 TMA4100

Differensiallikninger Forelesning i Matematikk 1 TMA4100 Differensiallikninger Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 18. november 2011 Kapittel 15.1. Retningsfelt og Picards teorem 3 Retningsvektorfelt for y = y

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = x y(1 + 2 x ) = = 100 y y x ln 2 = ln 100 y y x = 1. 2 x = 1. f 1 (x) =

1+2 x, dvs. løse ligningen mhp. x. y = x y(1 + 2 x ) = = 100 y y x ln 2 = ln 100 y y x = 1. 2 x = 1. f 1 (x) = NTNU Institutt for matematiske fag TMA4 Matematikk høsten 2 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere f() +2, dvs. løse ligningen mhp.. + 2 ( + 2 ) 2 ln 2 ln ln 2 ln Vi btter om på og :

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt). NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Differensialligninger

Differensialligninger Oslo, 30. januar, 2009 (http://folk.uio.no/lindstro/diffoslonyprint.pdf) Vanlige ligninger og differensialligninger En vanlig (algebraisk) ligning uttrykker en sammenheng mellom det ukjente tallet x og

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46 OPPGAVESETT MAT111-H16 UKE 45 Avsn. 6.1: 19, 31 Avsn. 7.9: 9, 17, 22 På settet: S.1, S.2 Oppgaver til seminaret 11/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 6.1 4, 5, 29

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

differensiallikninger-oppsummering

differensiallikninger-oppsummering Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

Differensjalligninger av førsteorden

Differensjalligninger av førsteorden Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

y (t) = cos t x (π) = 0 y (π) = 1. w (t) = w x (t)x (t) + w y (t)y (t)

y (t) = cos t x (π) = 0 y (π) = 1. w (t) = w x (t)x (t) + w y (t)y (t) NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 013 Løsningsforslag Notasjon og merknader En vektor boken skriver som ai + bj + ck, vil vi ofte skrive som (a, b, c), og tilsvarende

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Utsatt eksamen i Matematikk 1000 MAFE ELFE KJFE 1000 Dato: 2. mars 2017 Løsningsforslag.

Utsatt eksamen i Matematikk 1000 MAFE ELFE KJFE 1000 Dato: 2. mars 2017 Løsningsforslag. Utsatt eksamen i Matematikk 1 MAFE ELFE KJFE 1 Dato: 2. mars 217 Løsningsforslag. Oppgave 1 Gitt matrisene 1 2 1 3 A = 2 1, B = 7, C = 2 4 1 2 3 [ ] 1 2 1, v = 1 1 4 [ ] 5 1 og w =. 1 6 a) Regn ut følgende

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Løsningsforslag Øving 5

Løsningsforslag Øving 5 Løsningsforslag Øving 5 TEP41 Fluidmekanikk, Vår 216 Oppgave til forberedning til Lab x dx y y Figure 1 a) Oppdriftskraften på kvartsirkelen er F B = γu = γ π2 4 L der γ = ρg er den spesifikke vekten av

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

OPPGAVESETT MAT111-H17 UKE 45. Oppgaver til seminaret 10/11. Oppgaver til gruppene uke 46

OPPGAVESETT MAT111-H17 UKE 45. Oppgaver til seminaret 10/11. Oppgaver til gruppene uke 46 OPPGAVESETT MAT111-H17 UKE 45 Avsn. 7.1: 3, 4 Avsn. 7.9: 22 På settet: S.1, S.2 Oppgaver til seminaret 10/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 7.1 1, 2, 6, 7, 18 Avsn.

Detaljer

OPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11

OPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11 OPPGAVESETT MAT111-H17 UKE 47 På settet: S.1, S.2, S.3, S.4, S.5 Oppgaver til seminaret 24/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn. 7.9 28, 29

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder 1. FAGNUMMER: JøG10 EKSAMENSDATO: 5. april 00. SENSURFRIST: 16. mai 00. KLASSE: HSIS 00-005. TID: kl. 8.00 1.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

R2 - kapittel 5 EF og 6 ABCD

R2 - kapittel 5 EF og 6 ABCD R2 - kapittel 5 EF og 6 ABCD Løsningsskisser Oppgave Løs differensialligningene: a) y x cosx b) y yx x c) y y x a) Eksakt DL, løses direkte: y cosx x y cosx x dx sin x 2 x2 C b) Lineær: y xy x (Kan løse

Detaljer

UDIRs eksempeloppgave høsten 2008

UDIRs eksempeloppgave høsten 2008 UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

Test, 4 Differensiallikninger

Test, 4 Differensiallikninger Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.

Detaljer

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s.

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s. NTNU Institutt for matematiske fag TMA435 Matematikk 4D eksamen 8 august Løsningsforslag a) Andre forskyvningsteorem side 35 i læreboken) gir at der ut) er Heaviside-funksjonen f t) = L {F s)} = ut ) g

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Institutt for matematiske fag Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Faglig kontakt under eksamen: Magnus Landstad Tlf: Eksamensdato: 6. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Repitisjon av Diverse Emner

Repitisjon av Diverse Emner NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 014 Løsningsforslag Eksamen august Løsning: Oppgave 1 1 0 3 A 7, 3 4 1 x 10 A y 3 z På grunn

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

lny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx

lny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 2 Avsnitt 3.7 95 Vi antar at > 0 og får Avsnitt 3.8 6 a) 2π/3 b) π/4 c) 5π/6 ln = (ln) 2 = 2ln = 2ln = 2ln ln.

Detaljer

LØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

LØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 EKSAMEN I MATEMATIKK N/D (TMA25 TMA3 TMA35 3. August 27 LØSNINGSFORSLAG Oppgave a Løsning: fouriersinusrekken til

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

TMA4100 Matematikk 1 Høst 2012

TMA4100 Matematikk 1 Høst 2012 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer