Mục lục A. ĐẶT VẤN ĐỀ:... 2 B. GIẢI QUYẾT VẤN ĐỀ... 2 PHẦN I: LÝ THUYẾT... 2 I. HỆ TRỤC TOẠ ĐỘ DESCARTES VUÔNG GÓC TRONG MẶT PHẲNG...

Like dokumenter
ĐỊNH LÝ SÁU ĐIỂM VÀ ỨNG DỤNG

LỜI GIẢI CÁC BÀI TOÁN HÌNH HỌC PHẲNG THI CHỌN ĐỘI TUYỂN QUỐC GIA ************

Ord og begreper. Norsk Morsmål: Tegning (hvis aktuelt)

Cần có cơ hội dành cho bất kỳ người nào muốn làm tình nguyện bất kể giới tính, tuổi tác hay sự khác biệt về văn hóa.

Eksamen FSP5921 Vietnamesisk II PSP5580 Vietnamesisk nivå II. Nynorsk/Bokmål

Cuô c bâ u cư Hô i đô ng công xa va Hô i đô ng ti nh năm 2015

Innledende riter. Ca nhập lễ. Hành động thống hối. Syndsbekjennelse. Tiếng Việt. I Faderens og Sønnens og Den Hellige Ånds navn.

gi o tr nh tin häc c së phçn lëp tr nh trªn ng«n ng C

Giới thiệu SEO Tools Google Webmaster Tools Google Analytics phân tích traffic SEO Power Suite, web auditor để onpage Ahrefs, phân tích từ khóa và Lin

Fortiden er jeg paa ferie og kommer hjem til Norge paa slutten av uke 27.

1.1. KHÁI NIỆM VỀ PHỨC CHẤT

Bản dịch tiếng Việt thơ thứ 1 của BCH HNVTN gơ i cho BTV qua Espen Wæhle * Bản tiếng Na Uy bên dưới

HỒ SƠ THỊ TRƯỜNG NAUY

Tích Vô Hướng Và Ứng Dụng

H 2015 H Tập Công Thức Toàn Diện (Danh Sách các Thuốc Được Đài Thọ)

HU0NG DAN CHAM DIEM CAC TIEU CHI THI DUA TRU0NG THCS NAM HOC

CHÀO ĐÓN BẠN ĐẾN BỊNH VIỆN CHUYÊN KHOA FEIRING

Vietnam-strategien Chiến lược hợp tác của Na uy với Việt Nam The Vietnam Strategy. Utenriksdepartementet, juni 2008

Kinh - LANH DAO CPC; - CAC BAN CPC;

TONG CONG TY DAU KHI VIET NAM CONG TY DICH VU DU LICH DAU Kill

TONG CONG TY CO PHAN XUAT NHAP KHAU VA XAY DUNG VIET NAM

BAO CAO TAI CHINH QUA' III NAM 2017

BANG CAN DOI Kt TOAN - HOP

HOfP NHAT QUY 1/2017

Deloitte. BAO CAO Ti( LE AN TOAN TAI CHiNH DA MAK SOAT XET CONG TY CO PHAN CHUNG KHOAN DAU KI-11

BAO CAO TAI CHiNH QUY II NAM 2016

Søndagsblad. Menigheten gratulerer Dåp 23/04: Colin Dang. Søndag 1. mai Uke 17, søndag i påsketiden

Vietnam Vetiver Network

CAPACITOR. TỤ BÙ HẠ THẾ (Nhiều Hãng)

TAM TINH MOT LANG VIET:

fi_ va CONG TV CON SAO Y BAN CHiNH N'.. TMng.. tcnam 2~.1P. TONG GIAM eoc k't< ;t, A:3>Cs flji:jtluk

BAO CAO TAI CHINH HgP NHAT GIU'A NIEN DO 6 THANG DAU CUA NAM TAI CHINH KO- THUC NGAY 31 THANG 12 NAM 2018 CONG TY CO PHAN GEMADEPT

THU'ONG M~I MAY sal GON

BAO CAO TINH HINH QUAN TRI NGAN HANG

Khuong Viet Tempel / Buddhistforbundet LYSFEST 2558 / Søndag 14. desember

sommerleirer Norges Unge Katolikker katolske leirer for barn og ungdom

Søndagsblad. Menigheten gratulerer. Søndag 10. april Uke 14, søndag i påsketiden

I dag: søndag 12. oktober 28. søndag i det alminnelige kirkeår

DANH SÁCH ĐỊA CHỈ MÁY ATM CỦA NGÂN HÀNG TECHCOMBANK TRÊN TOÀN QUỐC MIỀN BẮC

Vision. Tầm Nhìn DRAFT PLAN 計劃草案 DỰ THẢO KẾ HOẠCH. Lake Merritt Station Area Plan: Lake Merritt 捷運站區域計劃 : Kế Hoạch Khu Vực Nhà Ga Lake Merritt

108 b i tªp v v n v b t ng thùc

Søndagsblad «Du har kunngjort meg livets vei, Herre du gir meg gledens fylde for ditt åsyn.»

I dag: søndag 21.september 25. søndag i det allminnelige kirkeår

Søndagsblad. Søndag 20. desember Uke 51, SØNDAG I ADEVNT. Evangeliet etter Lukas 2, Pavens bønneintensjoner for desember

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt

Søndagsblad. Søndag 5. mars Uke 9, søndag i fasten. Korsveiandakter etter kveldsmessen:

Søndagsblad. Søndag 22. november Uke 47, søndag i det alminnelige kirkeår. Kristi Kongefest

apple К apple fl 0 0

CONG HOA xa HO! CHU NGHiA V!T NAM

Søndagsblad Vi vil juble over din frelse og fryde oss i Herrens, vår Guds navn

"#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H ( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *H X )* c# N<. G # X& PU a# / Q #K KB A

SOMMERLEIRER. norges. unge KATOLSKE LEIRER FOR BARN OG UNGDOM. katolikker

Søndagsblad. Sommerutgave. Ukene Vi ønsker alle en god og varm sommer og minner om andre åpningstider for menighetskontoret i sommer.

(((0(-+) <(( <(+0-+0*, # JK!" #$% &'! () *+!"! "# $" %& & ' "$ $!"#$%&'((() *(+ ()*+,+-((,-./01,((((! " # $ "%& ' # ((() '& *(+ " # ( # ")%,)((( '& (

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

Søndagsblad. Sommerutgave. Pavens bønneintensjoner for juli 2017

I dag: søndag 28. september Caritas-søndag 26. søndag i det alminnelige kirkeår

Nh ng y u tâ v hiv vø aids (sida)

VEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy

C$! %!" T$K %!" F$"$ %

!"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./ !"# $%& ' % 89:; 2%3 2 - (45 < =>? #

MA2401 Geometri Vår 2018

näüi dung cuía âiãöu âang âæåüc noïi âãún nãúu chuïng ta hiãøu biãút vãö caïc phæång hæåïng.

Kapittel 5 - Vektorer - Oppgaver

BAo cao rhudttc trttetrt

Prosent- og renteregning

R2 - Vektorer Løsningsskisser

menighetsbrev for katolikker på Nedre Romerike Årgang 57 nr. 4 november 2010 februar 2011

Fasit til Flervariabelanalyse med lineær algebra

S i d e : 1D a t o : 1 7 j u n i Ti d : 0 9 : 0 0 : 4 1

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka

Søndagsblad. Søndag 15. januar Uke 2, søndag i det alm. kirkeår. Messe på engelsk. Pavens bønneintensjoner for Januar 2017

!" #$$ % &'& ( ) * +$ $ %,% '-!" (,+% %#&. /000)( '', 1('2#- ) ,*,, - 7 )8, +$,+$#& *! +&$ % -

!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '

!"#$ # % &'# #% # # ( )*+,-.-% / :; +, BCD #./0 1"# # E!"#$%&' () *+,-./01 )!"#$% : 6; )!"#$%./ D 9:E 9 9:E

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b.

Søndagsblad. Søndag 31. mai Uke 22, 2015 DEN HELLIGE TREENIGHET. Menigheten gratulerer Dåp: 16/05 : Kari Villa Alsvik 10/05 : Liam Tran

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

1 Geometri R2 Løsninger

Søndagsblad. Søndag 8. mai Uke 18, søndag i påsketiden. Menigheten gratulerer. Dåp 30.04: Marcus Ødegaard Matibag 30.04: Mai-Phuong Do Tran

Nh ng y u tâ v chˆng vi m gan lo i A, B vø C vø cæch ph ng ng a { b n kh ng bfi l y bÿnh

HiST-AFT-EDT Digitalteknikk EDT001T-A 11H

Eksamen R2 høsten 2014 løsning

Enkel beskrivelse av vietnamesisk

Søndagsblad. Søndag 23. august Uke 34, søndag i det alminnelige kirkeår Søndagstekster år B, hverdagslesninger år I

Arbeidsoppgaver i vektorregning

Løsningsskisser og kommentarer til endel oppgaver i. kapittel 1.6 og 1.7

Søndagsblad. Søndag 17. april Uke 15, søndag i påsketiden Kallsøndag. Vipps oss kollekten eller andre ting. Lett som bare det til nr 11282

!"#$%&%'()" *+,!-.&%'(+, /%,%-"0",' 1+& *+02$"3 %,4!5,%0(# 6"'7+&89

Geometri R1, Prøve 1 løsning

I dag: søndag 04.mai 3. søndag i Påskeoktaven

!" " #$ "% & & %(!!!! )* %+, *-./--0 1! 1 11!"#!!"! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! "#$%&' ()*+,-./

! "#$! %&' & $ ' ' ( )*+, & -'.!,!-/ $ $ abm \$ $[\ \ U6 \ ab )!"#$%&' ()*!+,-./%&, :; 7<= 1 AB<=CDE 71./FGH1IJ KLMNO! E 2 1

"Kapittel 5 i et nøtteskall"

Søndagsblad. Menigheten gratulerer. Søndag 24. april Uke 16, søndag i påsketiden Særkollekt til Ukraina

!" # $ %& &'!"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. / '789:,; $, /0 FGHIJKL PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc

r r F r r pram de har tatt. yin -

$ ( 8 " 7 6 / 6* 6 -!" #$% & ' ()* +, ( -!"#$%&' ()* +,-./01 * :!"# ; $% +! :& $% AB9C D E 2 F G HIJK LMN=O ' # $% $ # L 8 PQ RSTUG V

MA1201/MA6201 Høsten 2016

Transkript:

Mục lục A. ĐẶT VẤN ĐỀ:... B. GIẢI QUYẾT VẤN ĐỀ... PHẦN I: LÝ THUYẾT... I. HỆ TRỤC TOẠ ĐỘ DESCARTES VUÔNG GÓC TRONG MẶT PHẲNG.... 1. Định nghĩa:.... Toạ độ của một điểm và của một véc tơ:... 3. Các phép tính véc tơ :... 3 4. Các công thức về lượng :... 3 5. Phương trình của đường thẳng, đường tròn.... 3 II.HỆ TRỤC TOẠ ĐỘ DESCARTES VUÔNG GÓC TRONG KHÔNG GIAN.... 3 6. Định nghĩa :... 3 7. Toạ độ của một điểm và của một véc tơ.... 4 8. Các phép tính véc tơ :... 4 9. Các công thức về lượng :... 4 10. Phương trình của mặt phẳng, đường thẳng và mặt cầu.... 5 PHẦN II : CÁC BÀI TOÁN... 5 III. CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG:... 5 11. CÁC BÀI TOÁN ĐẠI SỐ:... 5 1. CÁC BÀI TOÁN HÌNH HỌC :... 11 IV. CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP TOẠ ĐỘ TRONG KHÔNG GIAN.... 15 13. 1. CÁC BÀI ĐẠI SỐ:... 15 14. CÁC BÀI TOÁN HÌNH HỌC KHÔNG GIAN... 17 C. KẾT LUẬN... 1 1

A. ĐẶT VẤN ĐỀ: Dựa vào phương pháp toạ độ do chính mình phát minh Descartes đã sáng lập ra môn hình học giải tích.qua đó cho phép chúng ta nghiên cứu hình học bằng ngôn ngữ đại số thay cho ngôn ngữ hình học.việc này giúp ta bỏ đi thói quen tư duy cụ thể, trực quan, nhằm đạt tới đỉnh cao của sự khái quát hoá và trừu tượng của toán học và nhiều lĩnh vực khác. Trong dạy và học toán việc lựa chọn công cụ phù hợp để giải các bài toán là việc làm rất cần thiết, chọn được công cụ thích hợp tất nhiên lời giải sẽ tốt nhất. Sau đây tôi xin trình bày việc sử dụng phương pháp vectơ và toạ độ để giải một số bài toán sơ cấp ơ phổ thông. B. GIẢI QUYẾT VẤN ĐỀ PHẦN I: LÝ THUYẾT I. HỆ TRỤC TOẠ ĐỘ DESCARTES VUÔNG GÓC TRONG MẶT PHẲNG. Định nghĩa: Trong mặt phẳng cho hai đường thẳng x ox, y oy vuông góc với nhau.trên Ox, Oy lần lượt chọn các véc tơ đơn vị e 1, e.như vậy ta có một hệ trục toạ độ Descartes vuông góc Oxy. Toạ độ của một điểm và của một véc tơ: Cho điểm M trong mp Oxy. Hạ MH vuông góc x Ox và MK vuông góc y Oy. Theo qui tắc hình bình hành, ta có: OM OH OK xe1 ye Bộ hai (x, y) được hoàn toàn xác định bởi điểm M và được gọi là toạ độ của điểm M, ký hiệu M(x, y). Cho a trên hệ trục. Khi đó tồn tại duy nhất một điểm M sao cho OM a. Gọi (x,y) là toạ độ của điểm M. Khi đó bộ hai (x,y) gọi là toạ độ của véc tơ a trên hệ trục Oxy và ký hiệu là a = (x,y).

Các phép tính véc tơ : Cho hai véc tơ a ( a1, a) ; b ( b1, b ) và k là một số thực. Các phép tính véc tơ như phép cộng, phép trừ, phép nhân một số với một véctơ, tích vô hướng hai véc tơ được xác định như sau: a b ( a1 b1, a b ) a b ( a1 b1, a b ) k. a ( ka1, ka1 ) a. b a b a b 1 1 Các công thức về lượng : Cho hai véc tơ a ( a1; a) ; b ( b1 ; b ) và gọi là góc tạo bởi hai véctơ đó a. b a. b khi và chỉ khi a và b là hai véctơ cùng hướng cos a. b a1. b1 a. b a b a a. b b 1 1 Khoảng cách từ điểm M(x 0, y 0 ) đến đường thẳng (d):ax +By +C = 0 là : d( M, d) Ax By C Phương trình của đường thẳng, đường tròn. o A o B = R * Phương trình của đường thẳng (d) đi qua điểm M(x 0, y 0 ) và nhận véctơ n ( A, B) làm véc tơ pháp tuyến là: A(x x 0 ) + B(y y 0 ) = 0 * Phương trình đường tròn tâm I (a, b) bán kính R là: (x a) + (y b) II.HỆ TRỤC TOẠ ĐỘ DESCARTES VUÔNG GÓC TRONG KHÔNG GIAN. Định nghĩa : Trong không gian cho ba đường thẳng x ox, y oy, z Oz vuông góc với nhau đôi một. Trên Ox, Oy, Oz lần lượt chọn các véc tơ đơn vị e 1, e, e. Như vậy ta có 3 một hệ trục toạ độ Descartes vuông góc Oxyz. 3

Toạ độ của một điểm và của một véc tơ. Cho điểm M trong không gian Oxyz. Hạ MH vuông góc x Ox, MK vuông góc y Oy và ML vuông góc z Oz. Theo qui tắc hình hộp, ta có : OM OH OK OL xe ye ze 1 3 Bộ ba (x,y,z) được hoàn toàn xác định bởi điểm M và được gọi là toạ độ của điểm M, ký hiệu M(x,y,z). Cho a. Khi đó tồn tại duy nhất một điểm M sao cho OM a. Gọi (x, y. z) là toạ độ của điểm M. Khi đó bộ ba (x, y, z) gọi là toạ độ của véc tơ a trên hệ trục Oxyz và ký hiệu là a = (x,y,z). Các phép tính véc tơ : Cho hai véc tơ a ( a1, a, a3) ; b ( b1, b, b3 ) và k là một số thực. Các phép tính vectơ như phép cộng, phép trừ, phép nhân một số với một vectơ, tích vô hướng, tích có hướng hai vectơ được xác định như sau: a b ( a1 b, a b ) a b ( a1 b1, a b ) k. a ( ka1, ka1) a. b a1b 1 ab a a3 a3 a1 a1 a a. b (,, ) b b b b b b 3 3 1 1 Các công thức về lượng : Cho hai vectơ a ( a1, a, a3) ; b ( b1, b, b3 ) và gọi là góc tạo bởi hai vectơ đó a. b a1. b1 a. b a3. b3 cos a b a1 a a3. b1 b b3 a. b a. b khi và chỉ khi a và b là hai vectơ cùng hướng Cho (d) là đường thẳng đi qua A và có vectơ chỉ phương a ( a1, a, a3) và điểm M. Giả sử ta tính được AM ( b1, b, b3 ) Khi đó khoảng cách từ điểm M đến đường thẳng (d) được tính là : 4

d( M, d) a a a a a a b b b b b b 3 3 1 1 3 3 1 1 a a a 1 3 Phương trình của mặt phẳng, đường thẳng và mặt cầu. a. Phương trình của mặt phẳng (P) đi qua điểm M(x 0,y 0, z 0 ) và có cặp vectơ chỉ phương a ( a1, a, a3) ; b ( b1, b, b3 ) là : b. Phương trình tham số của đường thẳng (d) đi qua điểm M(x 0,y 0,z 0 ) v à nhận vectơ a ( a1, a, a3) làm vectơ chỉ phương là: (t là tham số) c. Phương trình mặt cầu tâm I (a, b,c) và có bán kính R là : (x a) + (y b) + (z c) = R PHẦN II : CÁC BÀI TOÁN a a a a a a ( xx ) ( yy ) ( zz ) 0 b b b b bb 3 3 1 1 0 0 0 3 3 1 1 x x0 a1t y y0 at z z0 a3t III. CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG: CÁC BÀI TOÁN ĐẠI SỐ: Bài 1: Cho 4 số thực x 1, x, x 3, x 4. Chứng minh rằng (x 1 +y 1 )(x +y ) (x 1 x + y 1 y ) : Trên mặt phẳng toạ độ xét vectơ : a ( x1, y1); b ( x, y) Ta có a b a. b a b ( a. b) 5

vậy (x 1 +y 1 ) (x +y ) (x 1 x + y 1 y ) đẳng thức xảy ra a // b x1 y x y1 Bài : Chứng minh rằng nếu x, y, z > 0 thì x xy y x xz z y yz z Bất đẳng thức cần chứng minh tương đương với: y 3 z 3 y z 3 3 ( x ) ( y) ( x ) ( z) ( ) ( y z) (1) Xét 3 điểm A( x y, z) ; B(0, y z) ; C( y z,0) 3 3 3 (1) AB + AC > BC Ta có AB AC BC với 3 điểm A, B, C bất kỳ ở đây y 3 AB ( x, y) z 3 AC ( x, z) Hai véctơ này không thể ngược hướng (vì hoành độ cùng âm) do đó không thể xãy ra đẳng thức AB + AC > BC. Vậy bất đẳng thức (1) được chứng minh. Bài 3 bất phương trình: x x x x 1 3 ( 3) (1) Điều kiện x 1 Xét mặt phẳng toạ độ Oxy các vectơ: u ( x 3, x 1) v (1,1) u x x v 3 u. v x 1 x 3 ( 3) 1 6

x 6x 9 x 1 Suy ra bất phương trình (1) tương đương x 3 u. v u. v x 7x 10 0 Vậy x=5 là nghiệm duy nhất. x 3 x 5 x x 3 x 5 Bài 4 Chứng minh rằng: 4 cos x 1 4 sin x 1 cos x, x R Trong mặt phẳng toạ độ Oxy, các vectơ: a (cos x,1) a b (cos x,0) b (sin x,1) Khi đó, từ a b a b u v x 3 x 1 4 4 cos x 1 sin x 1 cos x ( dpcm) Bài 5 Tìm giá trị nhỏ nhất của hàm số y f ( x) cos x cos x 5 cos x 4cos x 8 Trong mặt phẳng toạ độ xét các véctơ: a (1 cos x,) b ( cos x,) Khi đó từ : 7

a (1 cos x) cos x cos x 5 b ( cos x) cos x 4cos x 8 a b 3 4 5 a b a b <=> y 5 Dấu = xảy ra (chẳng hạn) tại x 3 Vậy miny=5 Bài 6 : Tìm giá trị nhỏ nhất của biểu thức y x px p x qx q ( p q) Gi ải Ta c ó y ( x p) p ( x q) q Trên mp toạ độ lấy hai điểm A(p, q) : B(q,q). Bài toán trở thành: Tìm M(x,0) thuộc Ox sao cho (MA +MB) đạt giá trị nhỏ nhất. Xét hai trường hợp: - Nếu pq <0 thì A hoặc B trùng O, hoặc A,B nằm về hai phía đối với O.Khi đó (MA + MB) nhỏ nhất M trùng O, tức là ymin p q ( p q ) đạt được khi x = 0 - Nếu pq >0 thì A, B nằm cùng phía đối với O (đồng thời nằm cùng phía đối với Ox). Lấy A đối xứng với A qua Ox ta có A (p, -p), đồng thời : MA MB MA' MB A' B Đẳng thức xảy ra A, M, B thẳng hàng x p k( q p) A' M k A' B p k( q p) min k x p p q pq p q y A' B ( p q) ( p q) ( p q ) đạt được khi x = pq/(p+q) 8

y B A x O A M Bài 7 phương trình: x x x x x x 4 1 5 9 1 9 Trong mặt phẳng toạ độ Oxy xét các vectơ: u ( x 1,1) u v (3x,5) v (x 3, 4) u x x v 4x 1x 5 u v x x 9 19 Suy ra phương trình (1) tương đương: 9

u kv( k 0) x 1 k(x 3) 1 k.4 1 k 4 1 x 1 (x 3) 4 1 k 4 4x 4 x 3 1 k 4 7 x u v u v Vậy phương trình 7 x (1) có nghiệm duy nhất Bài 8:Tìm m để phương trình sau có nghiệm 3 x 6 x (3 x)(6 x) m Đặt u 3 x ; v 6 x Phương trình đã cho trở thành - u v uv m u v 1 10 m(1) u v 9 u v 9 () u 0, v 0 u 0, v 0 (3) Phương trình (1) biểu thị 1 đường thẳng thay đổi song song với đường phân giác thứ hai, phương trình () biểu diễn 1 đường tròn có tâm tại góc toạ độ và bán kính = 3 Hệ có nghiệm khi và chỉ khi đường thẳng (1) và đường tròn () có điểm chung thoả điều kiện (3). Vậy Pt có nghiệm khi Bài 9: Chứng minh rằng: 3 1 10 m 3 6 9 m 3 a a 1 a a 1, a R (Hướng dẫn) 10

1 3 Xét hai vectơ x a, 1 cos x 1 sin x m 1 3 y a, Bài 10: Tìm giá trị nhỏ nhất của hàm số : y f ( x) cos x 6cos x 13 cos x cos x (Hướng dẫn) Xét hai vectơ a (3 cos x, ) b (1 cos x,1) CÁC BÀI TOÁN HÌNH HỌC : trên 004, 006 Bài 1: Cho tam giác ABC vuông tại A, các cạnh góc vuông là bvà c, M là một điểm trên cạnh BC sao cho góc BAM =. Chứng minh rằng: AM = bc c.cos bsin Chọn hệ trục toạ độ như hình vẽ. Khi đó A(0,0), B(b,0), C(0,c), M9x,y) Từ định nghĩa: x = AM cos, y = AM sin. Nên M(AM cos, AM sin ) AM cos AM sin 0 y b c c AM ( ccos bsin ) bc bc M AM c cos b sin y Do M thuộc BC CM cùng phương với CB B O x X Bài : Cho tam giác ABC có độ dài các trung tuyến và độ dài bán kính đường tròn ngoại tiếp lần lượt là ma, mb, mc, R 11

Chứng minh: m m m a b c 9R A c O b B a C Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.Ta có: ( OA OB OC) 0 OA OB OC OA OB OB OC OC OA 3R R (cos A cos B cos C) 0 3 (3 sin A sin B sin C) 0 sin A sin B sin C Bunhiacopski: (... ) 0 9 4 Do đó theo bất đẳng thức m m m m m m a b c 3( a b c ) 9 m m m R 9 ( a b c ) 4 9(sin A sin B sin C). R a b c 9 9 9.. R. R 4 Dấu = xảy ra khi tam giác ABC đều. Bài 3: Cho tam giác ABC cân tại A. Gọi H là trung điểm của BC, D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD. Chọn hệ trục toạ độ như hình vẽ Khi đó: H(0,0), A(0,a), B(-c,0), D(x,y) 1

Y A Ta có : D M B x a c 0 cx a y O=H C a c a x cy a c c a y DH AC ( a x, yc )( c, a) 0 AD cung phuong AC x y a 0 c a a c c a D(, ) a c a c Vậy, M là trung điểm của HD nên: a c c a M(, ) ( a c ) ( a c ) 3 3 a c c c a a c -c a a BD. AM (, )(, ) a c a c ( a c ) ( a c ) 4 4 4 4 a c a c -c a a c 0 ( a c ) ( a c ) Vậy BD vuông góc AM (đpcm) Bài 4 Điểm M nằm trên đường tròn ngoại tiếp tam giác đều ABC. Chứng minh giá trị của MA 4 + MB 4 + MC 4 không phụ thuộc vào vị trí của M. Gọi I,R là tâm và bán kính của đường tròn (c) ngoại tiếp tam giác đều ABC. Dựng hệ trục như hình vẽ, ta có M ( x, y) ( C) MI R MI R x y Rx 3R R 3 3R R 3 A(0,0); B(, ); C(, ); I( R,0) 13

Ta có 3R R 3 MA MB MC ( x y ) ( x ) ( y ) 4 4 4 3R R 3 ( x ) ( y ) ( Rx) (3R Rx R 3 y) (3R Rx R 3 y) 4 3 6R x 6R y 18R 1R x 4 3 6 R ( x y ) 18R 1R x 4 3 4 6R Rx 18R 1R x 18R Vậy giá trị MA 4 + MB 4 + MC 4 không phụ thuộc vào vị trí M Bài 5 Cho tam giác ABC cân tại A. D là trung điểm cạnh AB, I là tâm đường tròn ngoại tiếp tam giác ABC, E là trọng tâm của tam giác ACD. Chứng minh IE vuông góc CD. Gi ải y Vậy Chọn hệ trục như hình vẽ (O là trung điểm của BC) Khi đó : O(0,0); A(0,a); B(-c,0); C(c,0); D(-c/, a/); E(c/6,a/),(a,c>0) Gọi I(x, y) Giả thiết c a DI BA ( x, y ).( c, a) 0 OI BC ( x, y).( c, o) 0 x 0 a c y a c a I(0, ) a suy ra c c 3c a c c IE. DC (, )(, ) 0 6 a 4 4 IE DC( dpcm) B D I O E A C x 14

IV. CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP TOẠ ĐỘ TRONG KHÔNG GIAN. 1. CÁC BÀI ĐẠI SỐ: Bài 1: hệ phương trình x y z 1 x y z 1 3 3 3 x y z 1 Xét hai véc tơ u ( x0, y0, z0) ; v ( x0, y0, z0 ) trong đó u ( x0, y0, z0) Là nghiệm tuỳ ý (nếu có) của hệ đã cho. 3 3 3 Ta có u. v x0 y0 z0 1 Ngoài ra tính được u 1 ; v 1 ( x0 y0 y0 z0 z0 x0 1 Vậy u. v 1 u. v Dođó u. v u. v x0 y0 1 y0z0 1 Dấu bằng xảy ra z0x0 1 x0 y0 z0 1 Từ đó suy ra x0 1 x0 0 x0 0 y0 0 ; y0 1 ; y0 0 z0 0 z0 0 z0 1 Thử lại ta được hệ đã cho có 3 nghiệm (1,0,0) ; (0,1,0) : (0,0,1) Bài : bất phương trình: Điều kiện: x 1 x 3 50 3x 1 x 1 3 3 50 x x 3 50 x 3 15

Trong mặt phẳng Oxy xét các vectơ: u (1,1,1) v ( x 1, x 3, 50 3 x) u 3 u x 1 x 3 50 3x 48 4. 3 u. v x 1 x 3 50 3x Suy ra(1) u. v u. v Đẳng thức này luôn đúng Vậy nghiệm bất phương trình đã cho là: Bài 3 hệ: xyz3 xyz 3(1) x3 y3z3 3 Xét trong Không gian Oxyz các vectơ: u ( x, y, z) v (1,1,1) 3 50 x 3 u x y z u 3 u. v x y z 3 u. v u. v u v x y z 0 1 1 1 x y z 1 3 16

(Thoả (1) Vậy: x=y=z=1 là nghiệm duy nhất của hệ (1). Bài 4 : Cho a, b là hai số thực tuỳ ý. Chứng minh rằng Trong không gian với hệ trục toạ độ Đề - các vuông góc Oxyz, đặt u (1, a,0) v (1, b,0) 1 ab cos( u, v) 1 a 1b a b sin( u, v) 1 a 1b Ta có 1 ( a b)(1 ab) 1 (1 a )(1 b ) (1 ab)( a b) sin ( u, v) sin( u, v).cos( u, v) 1 1 ( a b)(1 ab) 1 (1 a )(1 b ) CÁC BÀI TOÁN HÌNH HỌC KHÔNG GIAN Bài 1Cho tam diện oxyz. A, B, C lần lượt là các điểm di động trên ox, oy, oz sao cho: 1 1 1 1 OA OB OC 005 Chứng minh rằng: (ABC)luôn luôn đi qua một điểm cố định. Chọn hệ trục toạ độ vuông góc oxyz (như hình vẽ ) z (1 a )(1 b ) x B y 17

Sao cho: A(a,0,0),B(0,b,0),C(0,0,c)(với OA=a,OB=b,OC=c) Khi đó phương trình mặt phẳng (ABC) là: x y z 1 a b c 1 1 1 1 Hơn nữa: a b c 005 (Do giả thiết) M (005,005,005) mp( ABC) =>mp(abc)luôn đi qua điểm cố định M(005,005,005). Bài :Cho hình hộp chữ nhật ABCD.A B C D với AB = a, BC = b, AA = c. a/ Tính diện tích của tam giác ACD theo a, b, c b/ Giả sử M và N lần lượt là trung điểm của AB và BC. Hãy tính thể tích của tứ diện D DMN theo a, b, c. a/ Ta lập hệ trục toạ độ vuông góc có gốc trùng với đỉnh A, các trục có phương trùng với AB ; AD ; AA' Khi đó : A(0,0,0), C(a,b,0), D (0,b,c). AC ( a, b,0); AD ' (0, b, c);[ AC, AD] ( bc, ca, ab) 1 S [ AC, AD ] ACD' 1 b c c a a b b/ Dễ dàng tính được 3ab S DMN 8 1 abc V S DD' 3 DMN 8 Bài 3:Cho hai nửa mp (P) và (Q) vuông góc với nhau theo giao tuyến (d). Trên (d) lấy AB = a (a là độ dài cho trước). Trên nửa đường thẳng Ax vuông góc với (d) và ở trong (Q) lấy điểm N sao cho BN = a b 18

a/ Tính khoảng cách từ A đến mặt phẳng (BMN) theo a, b. b/ Tính MN theo a, b. Với giá trị nào của b thì MN có độ dài cực tiểu. Tính độ dài cực tiểu đó. a/ Chọn hệ trục toạ độ Oxyz sao cho A trùng với gốc toạ độ (A(0,0,0)): B có toạ độ (0,a,0); N có toạ độ( a, a,0 ). Ta có b BM (0, a, b) a BN (,0,0) b b 0 a b a b [ BM, BN] (,, ) (0, a, a ) 0 0 a a 0 0 b b a (0,1, 1) Do đó mp(bmn) qua B(0,a,0) và có VTPT là v (0,1, 1) Phương trình của mặt phẳng này là: (y a).1 (z 0) = 0 hay y z - a = 0 Khoảng cách từ A(0,0,0,) đến mặt phẳng đó là : M z b/ Ta có a a 11 4 a a MN (, a, b) MN a b 4 b b MN a a (bất đẳng thức Côsi) 4 a a 3 b b a MN có độ dài cực tiểu b MinMN a 3 khi b a Bài 4: Cho một góc tam diện ba mặt vuông góc Oxyz. Lấy lần lượt trên Ox, Oy,Oz các điểm P, Q, R khác điểm O. Gọi A, B, C lần lượt là trung điểm của PQ, x b A b B N Y 19

QR, RP. Chứng minh rằng nếu góc nhị diện cạnh OA của tứ` diện OABC là góc nhị diện vuông thì hai góc B và C của tam giác ABC thoả hệ thức tgb.tgc =. Chọn hệ trục toạ độ Đề-Các vuông góc Oxyz sao cho P(a,0,0) ; Q(0,b,0) ;R(0,0,c). Khi đó: A(a,b,0) ; B(0,b,c) ; C(a,0,c) Pháp véc tơ của mặt phẳng (OAB) và (OAC) lần lượt là: n1 ( bc, ac, ab) n ( bc, ac, ab) Góc nhị diện cạnh OA vuông khi và chỉ khi: n1. n 0 b c a c a b Trong tam giác ABC ta có: b c a c a b tgb a b c a c a b tgc b Vậy b c a c a b a b tgb. tgc ( dpcm) a b a b Bài 5: Cho tam giác vuông goc ở A.tìm quỹ tích các điểm M trong không gian thoả mãn : MB MC MA z A,O x B C y 0

Chọn hệ trục toạ độ Đề các Oxyz sao cho A trùng O, B(b,0,.0),C(0,c,0) ( Với AB =b>0,ac=c>0) Khi đó M(x, y, z) thoả : MB MC MA ( x b) y z ( y c) z x y z ( x b) ( y c) z 0 x b y c z 0 M ( b, c,0) Vậy quỹ tích cần tìm chỉ có một điểm duy nhất M(b,c,0) C. KẾT LUẬN Trên đây là một số bài toán đại số và hình học trong mặt phẳng cũng như trong không gian. Nếu khéo léo chọn hệ trục toạ độ phù hợp, vận dụng phương pháp vectơ và toạ độ thì có thể chuyển thành bài toán đại số hoặc giải tích và tìm ra lời giải ngắn gọn, phần nào làm sáng tỏ vấn đề mà tôi đưa ra. Trong quá trình viết, do thời gian và kinh nghiệm giảng dạy có hạn nên chắc không tránh khỏi nhiều thiếu sót, mong các thầy cô góp ý. Tôi xin chân thành cảm ơn. 1

TÀI LIỆU THAM KHẢO: 1. SGK, sách bài tập toán lớp 10, 11, 1. Các loại sách tham khảo, bồi dưỡng toán học sinh về sử dụng phương pháp vectơ và tọa độ trong giải toán 3. Bài tập trong các đề thi 4. Khóa luận cùng đề tài 5. Tài liệu trên các trang web