Kap. 5 Egenverdier og egenvektorer



Like dokumenter
Kap. 5 Egenverdier og egenvektorer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Kap. 5 og Notat 2 Oppsummering

Øving 5 Diagonalisering

Øving 4 Egenverdier og egenvektorer

6.4 Gram-Schmidt prosessen

Utkast til løsningsforslag til eksamen i emnet MAT Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Diagonalisering. Kapittel 10

MAT1120 Oppgaver til plenumsregningen torsdag 25/9

Lineær algebra-oppsummering

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 6 Ortogonalitet og minste kvadraters problemer

5.8 Iterative estimater på egenverdier

4.4 Koordinatsystemer

UNIVERSITETET I OSLO

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MA1201/MA6201 Høsten 2016

MAT1120 Notat 2 Tillegg til avsnitt 5.4

Lineær algebra. 0.1 Vektorrom

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

UNIVERSITETET I OSLO

Egenverdier og egenvektorer

UNIVERSITETET I OSLO

16 Ortogonal diagonalisering

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

UNIVERSITETET I OSLO

5.5 Komplekse egenverdier

4.2 Nullrom, kolonnerom og lineære transformasjoner

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

4.4 Koordinatsystemer

Kap. 6 Ortogonalitet og minste kvadrater

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

7.1 forts. Schur triangularisering og spektralteoremet

Matriser og Kvadratiske Former

7 Egenverdier og egenvektorer TMA4110 høsten 2018

3.9 Teori og praksis for Minste kvadraters metode.

4.1 Vektorrom og underrom

5.6 Diskrete dynamiske systemer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

Emne 9. Egenverdier og egenvektorer

MAT Prøveeksamen 29. mai - Løsningsforslag

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

MAT1120 Notat 1 Tillegg til avsnitt 4.4

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

6.5 Minste kvadraters problemer

Forelesning 22 MA0003, Mandag 5/ Invertible matriser Lay: 2.2

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.

4.1 Vektorrom og underrom

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

= 3 11 = = 6 4 = 1.

Lineærtransformasjoner

Forelesning 14 Systemer av dierensiallikninger

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

UNIVERSITET I BERGEN

MAT UiO. 10. mai Våren 2010 MAT 1012

7.4 Singulærverdi dekomposisjonen

15 Hovedprinsippet for vektorrom med et indre produkt

MAT1120 Notat 1 Tillegg til avsnitt 4.4

Egenverdier for 2 2 matriser

MAT1120 Repetisjon Kap. 1

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

4.1 Vektorrom og underrom

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT1120 Repetisjon Kap. 1, 2 og 3

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU

4.1 Vektorrom og underrom

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

Repetisjon: Om avsn og kap. 3 i Lay

OBLIG 2 - MAT 1120 Høsten 2005

MAT-1004 Vårsemester 2017 Prøveeksamen

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MA1202/MA S løsningsskisse

TMA4110 Matematikk 3 Haust 2011

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Mer om likninger og ulikheter

9 Lineærtransformasjoner TMA4110 høsten 2018

6.4 (og 6.7) Gram-Schmidt prosessen

MAT UiO mai Våren 2010 MAT 1012

Repetisjon: om avsn og kap. 3 i Lay

8 Vektorrom TMA4110 høsten 2018

Minste kvadraters løsning, Symmetriske matriser

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.

MAT 1110 V-06: Løsningsforslag til Oblig 1

Forelesning 10 Cramers regel med anvendelser

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Oppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene:

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Transkript:

Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen med basiser og basisskifte skal vi se nærmere vi på i avsnitt 5.4 og i Notat 2. Anvendelser til dynamiske systemer og systemer av differensiallikninger kommer på slutten av kapitlet. Vil også si litt om numerisk approksimasjon av egenverdier og egenvektorer. 1 / 18

5.1 Egenverdier og egenvektorer En egenvektor for en n n matrise A er en vektor x i R n slik at x 0 og A x = λ x for en skalar λ. Skalaren λ kalles en egenverdi for A, og vi sier at x er en egenvektor tilhørende egenverdien λ. Eksempel. La P være en stokastisk matrise og la q være en likevektsvektor for P. Vi har da P q = q = 1 q. Så q er en egenvektor for P tilhørende egenverdien 1. Anta at A er en n n matrise og at λ er en skalar. Vi setter E A λ = { x R n A x = λ x } Merk at Eλ A = Nul (A λ I ). Spesielt er E λ A et underrom av Rn. Videre: λ er en egenverdi for A Eλ A {0}. Når λ er en egenverdi for A sier vi at Eλ A er egenrommet til A assosiert med λ. 2 / 18

Merk: Skal snart se at en n n matrise A har høyst n forskjellige egenverdier. Men A trenger ikke å ha noen egenvektor og egenverdi. Eksempel: en 2 2 rotasjonsmatrise med en vinkel forskjellig fra 0 og π. Derimot vil A alltid ha komplekse egenverdier med tilhørende komplekse egenvektorer hvis slike tillates; se avsn. 5.5. Matlab-kommandoen eig(a) angir egenverdiene til en kvadratisk matrise A. Kommandoen [V, D] = eig(a), gir egenvektorene (kolonner i V ) og diagonal matrise D med egenverdiene på diagonalen. Det finnes effektive numeriske metoder for å beregne egenverdier og egenvektorer, bl.a. den såkalte QR-algoritmen, som vi ser litt på senere. 3 / 18

Litt om poenget med egenverdier og egenvektorer Betrakt en n n matrise A og x 0 R n. Definer en følge {x k } i R n iterativt ved x k+1 = A x k (k = 0, 1, 2,...) Dermed: x k = A k x 0, k = 0, 1, 2,... Anta nå at x 0 er en egenvektor for A, tilhørende egenverdien λ. Da blir A k x 0 = λ k x 0, k = 0, 1, 2,... Så x k = A k x 0 = λ k x 0, k 0 4 / 18

La A være en n n matrise og λ være en skalar. Følgende utsagn er ekvivalente: (i) λ er en egenverdi for A, (ii) Nul (A λ I ) {0}, (iii) A λ I er ikke invertibel, og (iv) det(a λ I ) = 0. Spesielt: 0 er en egenverdi for A A er ikke invertibel det(a) = 0. TEOREM 1: Egenverdiene til en triangulær kvadratisk matrise er dens diagonalelementer. Eksempel: egenverdiene til en diagonalmatrise er diagonalelementene. TEOREM 2: La A være en n n matrise og anta at v 1, v 2,..., v p er egenvektorer som tilhører forskjellige egenverdier λ 1, λ 2,..., λ p. Da er v 1, v 2,..., v p lineært uavhengige. 5 / 18

5.2 Den karakteristiske likningen Det karakteristiske polynomet til en n n matrise A er polynomet p A gitt ved p A (λ) = det(a λi ). Den karakteristiske likningen til A er likningen p A (λ) = 0. p A (λ) er et polynom i variabelen λ av grad n, med ledende koeff. lik ( 1) n. Siden λ er en egenverdi for A det (A λi ) = 0, har vi at λ er en egenverdi for A p A (λ) = 0 Dermed kan A ha høyst n forskjellige egenverdier. Komplekse røtter i p A kalles komplekse egenverdier til A. [ ] 0.95 0.1 Eksempel. La A = (stokastisk matrise). Da er 0.05 0.9 p A (λ) =... = λ 2 1.85λ + 0.85 = (λ 1)(λ 0.85). Egenverdiene til A er dermed 1 og 0.85. 6 / 18

Matlab: Betrakt polynomet p(λ) = λ 2 6λ + 5. Kommandoen p = [1 6 5] definerer polynomet i Matlab. Finner røttene til p ved kommandoen roots(p) Her får vi: ans = 5 1. Hvis A er en n n matrise, vil kommandoen poly(a) regne ut koeffisientene til polynomet q A (λ) = det(λi A). Merk at q A (λ) = det( (A λi )) = ( 1) n p A (λ). Eksempel. La A = 1 2 3 4 5 6 7 8 9. Kommandoen poly(a) gir : 1.0000-15.0000-18.0000-0.0000 Det betyr at p A (λ) = ( 1) 3 q A (λ) = λ 3 + 15λ 2 + 18λ = λ (λ 2 15λ 18) Kommandoen roots([1-15 -18 0]) gir at røttene i q A (og p A ), og dermed egenverdiene til A, er tilnærmet lik 0, 16.12 og -1.12. Vi får det samme med kommandoen eig(a). 7 / 18

Definisjon. Den (algebraiske) multiplisiteten til en egenverdi λ for en kvadratisk matrise A er multiplisiteten av λ som en rot i p A. Eksempler. I forrige eksempel har alle tre egenverdiene mult. lik 1. Anta at p A (λ) = λ 3 (λ + 1) (λ 2) 4 Egenverdien 0 har da mult. 3, 1 har mult. 1 og 2 har mult. 4. Merk: Det kan vises at dim (Eλ A ) multiplisiteten til λ Det gir ofte nyttig informasjon. Similaritet To n n matriser A og B kalles similære hvis det fins en invertibel n n matrise P slik at P 1 AP = B. (Dette er ekvivalent med at A = PBP 1 ). Avbildningen A P 1 AP kalles en similaritetstransformasjon. TEOREM 4: Similære matriser har samme determinant og samme karakteristiske polynom; spesielt har de samme egenverdier (med samme multiplisitet). 8 / 18

Sluttkommentarer: For store matriser er det vanligvis ikke å anbefale å prøve å finne egenverdiene ved å beregne røttene til det karakteristiske polynomet. Det å finne røtter i polynomer av høy grad er nemlig numerisk vanskelig. Matlab gjør faktisk om problemet til det å bestemme egenverdiene til en passende matrise! Det finnes egenverdi-algoritmer som baserer seg på gjentatte similaritetstransformasjoner; da bevares egenverdiene (ved Teorem 4). Idéen er å omforme A ved similaritet til en triangulær matrise; klarer vi det står jo egenverdiene på diagonalen! Dette er strategien bak QR-algoritmen. 9 / 18

5.3 Diagonalisering Hvis en matrise A er similær med en diagonalmatrise D, så har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Vi skal se på dette, og senere bruke resultatene til dekople dynamiske systemer. Anta at P 1 AP = D der P er invertibel og D er en diagonalmatrise. Da er altså A og D similære og egenverdiene til A må være diagonalelementene til D. Hvordan finne A k på en smart måte: har A = PDP 1 og derfor og ved induksjon får vi A 2 = PDP 1 PDP 1 = PD 2 P 1 A k = PD k P 1. Hvis D = diag (λ 1, λ 2,..., λ n ), så er D k = diag (λ k 1, λk 2,..., λk n). Lett å beregne A k ut fra dette. Ser at A k og D k er similære. Så egenverdiene til A k er λ k i der λ i (i n) er egenverdiene til A. 10 / 18

Definisjon. Vi sier at en kvadratisk matrise A er diagonaliserbar dersom A = PDP 1 for en invertibel matrise P og en diagonalmatrise D. TEOREM 5 En n n-matrise A er diagonaliserbar hvis og bare hvis den har n lineært uavhengige egenvektorer. Dersom A = PDP 1, der P er invertibel og D diagonalmatrise, så er kolonnevektorene til P n lineært uavhengige egenvektorer for A. Bevis: A = PDP 1 er ekvivalent med AP = PD. Og dette betyr at Ax j = λ j x j der x j er j te kolonne i P og D = diag (λ 1, λ 2,..., λ n ). Resultatet følger direkte fra dette. Følgende matrise kan ikke diagonaliseres: [ ] 0 1 A = 0 0 Teorem 5 leder til en metode for å diagonalisere en matrise (dvs. finne P og D som over). Metoden er egnet for håndregning på svært små matriser, eller hvis matrisen har en passende enkel struktur. 11 / 18

Minimetode for diagonalisering av en matrise A: 1. Finn egenverdiene til A: bestem røttene til det karakteristiske polynomet p A. 2. Finn for hver egenverdi en tilhørende egenvektor: løs det tilhørende lineære likningssystemet (finn alle løsninger). Velg ut, om mulig, n lineært uavhengige slike egenvektorer. 3. La P være matrisen med disse egenvektorene som kolonner, og la D være diagonalmatrisen med egenverdiene på diagonalen. TEOREM 6: Hvis en n n-matrise A har n distinkte egenverdier, så er A diagonaliserbar. Eks. A triangulær med distinkte diagonalelementer, f.eks. A = 1 6 7 0 2 1 0 0 7 12 / 18

A kan ha færre enn n distinkte egenverdier, og vi har følgende: TEOREM 7: La A være en n n matrise med distinkte egenverdier λ 1, λ 2,..., λ p. 1. For k p er dimensjonen til egenrommet for λ k mindre enn eller lik multiplisiteten til egenverdien λ k. (Vi sier: geometrisk multiplisitet er mindre enn eller lik algebraisk multiplisitet.) 2. A er diagonaliserbar hvis og bare hvis summen av dimensjonene til de distinkte egenrommene er lik n, og dette skjer hvis og bare hvis geometrisk og algebraisk multiplisitet er den samme for hver egenverdi. 3. Hvis A er diagonaliserbar og B k er en basis for egenrommet for λ k (k p), så er k B k en egenvektor basis for IR n. 13 / 18

Kan ut fra Teorem 7 utvide minimetoden til å diagonalisere (små) matriser. Hvis f.eks. en egenverdi λ har algebraisk multiplisitet 2, så må vi bestemme det tilhørende egenrommet og finne 2 lineært uavhengige basisvektorer for dette. Hvis dimensjonen er 1, så vet vi fra teoremet at A ikke er diagonaliserbar. Betrakt matrisen A = [ 1 2 0 1 A er ikke diagonaliserbar! Fordi: Skriv ut Ax = λx; gir at eneste egenverdi er λ = 1 med alg.mult. 2, og tilhørende egenrom Span {e 1 }. Så A har ikke to lin. uavh. egenvektorer. ] 14 / 18

5.4 Egenvektorer og lineære avbildninger Målet her er å forstå sammenhengen mellom diagonalisering av en matrise og egenskaper ved den tilhørende lineær avbildningen. Husk: Enhver lineær avbildning T kan representeres ved en matrise straks vi har valgt en basis for hvert vektorrom. T svarer da til matrisemultiplikasjon. Matrisen til en lineær avbildning La V og W være vektorrom av dimensjon hhv. n og m, og la hhv. B = {b 1, b 2,..., b n } og C = {c 1, c 2,..., c m } være ordnede basiser for disse to rommene. For hver x V har vi koordinatvektoren [x] B IR n, si [x] B = (r 1, r 2,..., r n ). Så x = n j=1 r jb j. [T (x)] C = [T ( n j=1 r jb j )] C = [ n j=1 r jt (b j )] C = n j=1 r j[t (b j )] C = M[x] B. der M er matrisen for T relativt til basisene B og C: M = [ [T (b 1 )] C [T (b 2 )] C [T (b n )] C ] IR m n. 15 / 18

Lineær avbildninger fra V til V Anta nå at W = V og C = B. Da kalles matrisen M for matrisen for T relativt til B, eller bare B-matrisen for T. Den betegnes med [T ] B. Denne matrisen avhenger av valg av basis B. Skal nå se en viktig situasjon der B-matrisen blir spesielt enkel! Lineære avbildninger på IR n TEOREM 8: (Diagonal matrise repr.) La A = PDP 1 der D er en diagonalmatrise og P er invertibel. La B være den ordnede basisen bestående av kolonnene i P. Da er D lik B-matrisen for lineær avbildningen T : x Ax. Her er kolonnene i P egenvektorer for A og diagonalelementene i D er tilhørende egenverdier. 16 / 18

Eks. Betrakt A = Da er A = PDP 1 der 1 1 1 P = 1 2 3, P 1 = 1 3 6 7 4 1 3 2 1 0 6 2. 3 3 1 3 5 2 1 2 1, D = 4 0 0 0 2 0 0 0 1 Så B-matrisen for A, der B er kolonnene i P, er diagonalmatrisen D.. 17 / 18

Similaritet Så hvis A er similær med C, dvs. A = PCP 1 for en invertibel matrise P, og B er basisen som består av kolonnene i P, så er C lik B-matrisen for avbildningen x Ax. Og, omvendt, enhver B-matrise for x Ax vil være similær med A. Så matriser som er similære med A er nettopp de matrisene som er matriserepresentasjoner av den tilhørende lineær avbildningen i ulike basiser. 18 / 18