EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark)



Like dokumenter
EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark)

Difflikninger med løsningsforslag.

Sammendrag kapittel 1 - Aritmetikk og algebra

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. ANTALL SIDER UTLEVERT: 6 (innkl. forside og 2 sider formelark)

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

MAT 100A: Mappeeksamen 4

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π

R2 - Heldagsprøve våren 2013

Matematikk 1 Første deleksamen. Løsningsforslag

I løpet av uken blir løsningsforslag lagt ut på emnesiden

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

EKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside.

Oppfriskningskurs Sommer 2019

TMA4100 Matematikk1 Høst 2008

UNIVERSITETET I OSLO

Repetisjon i Matematikk 1, 4. desember 2013: Komplekse tall og Derivasjon 1

Formelsamling i matematikk

Differensialligninger

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

Oppfriskningskurs i matematikk 2007

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.

MA1101 Grunnkurs Analyse I Høst 2017

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

a 2πf(x) 1 + (f (x)) 2 dx.

M2, vår 2008 Funksjonslære Integrasjon

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA desember 2004 UTDANNINGSDIREKTORATET

UNIVERSITETET I OSLO

I løpet av uken blir løsningsforslag lagt ut på emnesiden Delvis integrasjon må brukes to ganger.

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Repetisjon i Matematikk 1: Derivasjon 2,

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen

Fasit, Kap : Derivasjon 2.

UNIVERSITETET I OSLO

Sammendrag R mai 2009

Formelsamling i matematikk

Eksamen i MAT1100 H14: Løsningsforslag

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II

Lineære differensiallikninger.

Kapittel 2. Antiderivering. 2.1 Derivasjon

Separable differensiallikninger.

Løsningsforslag til utvalgte oppgaver i kapittel 10

1 Mandag 25. januar 2010

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

OPPGAVE 1 LØSNINGSFORSLAG

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

1 Mandag 1. mars 2010

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

UNIVERSITETET I OSLO

Forkurs, Avdeling for Ingeniørutdanning

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Løsningsforslag Kollokvium 1

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

- KALKULATOR (Som ikke kan kommunisere med andre) - SKRIVE- og TEGNESAKER

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5.

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

1 Mandag 18. januar 2010

UNIVERSITETET I OSLO

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

1 Mandag 8. mars 2010

Eksamen R2, Va ren 2014, løsning

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer

TMA4100 Matematikk1 Høst 2009

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Matematikk 1 (TMA4100)

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

Den deriverte og derivasjonsregler

Løsningsforslag til Eksamen i MAT111

Løsningsskisser - Kapittel 6 - Differensialligninger

UNIVERSITETET I OSLO

Løsningsforslag. og B =

UNIVERSITETET I OSLO

y = x y, y 2 x 2 = c,

Løsningsforslag eksamen 18/ MA1102

Transkript:

KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO: 9. desember 0 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: HnsPetterHornæsogLrsNilsBkken ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelrk) TILLATTE HJELPEMIDLER: Kun skrivesker. INNFØRING MED PENN. Ved innlevering skilles hvit og gul besvrelse og legges i hvert sitt omslg. Oppgvetekst, kldd og blå kopi beholder kndidten. Husk kndidtnummer på lle rk.

Eksmen i Mtemtikk 9. desember 0 Hvert v de bokstvpunktene teller likt. Oppgver uten bokstvpunkter regnes som et bokstvpunkt. Oppgve ) Regn ut det komplekse tllet z som oppfyller likningen z +=i(z ). b ) der i er den imginære enheten. Svret skl gies på normlform (formen z = + bi). L det komplekse tllet z være gitt på normlform, og z på trigonometrisk form som z =+i og z = (cos(π/) + i sin(π/)). Regn ut produktet z z. Svret skl gis på normlform. Oppgve Regn ut grenseverdien lim x π sin(x) cos(x/) Oppgve 3 Bensinforbruket B til en bil (i liter/km) er en funksjon v bilens hstighet v (i km/time) gitt ved B(v) = e v 80 v Finn den mest økonomiske hstigheten når v>0 Oppgve 4 L K være kurven i xy-plnet gitt ved likningen (x y) =6(y ) Bestem koordintene til det punktet på kurve K der kurven hr horisontl tngentlinje (dvs. dy/dx= 0) Oppgve 5 ) Finn llmenn løsning v differensillikning y +6y +5y =0. b ) Løs initilverdiproblemet y +6y +5y = 00e x med initilbetingelser y(0) = 5 og y (0) = 3.

Eksmen i Mtemtikk 9. desember 0 Oppgve 6 ) Vis ved integrsjon t xe x / dx = e x / + C. b ) Finn llmenn løsning v den lineære differensillikning y + xy = x Oppgve 7 Den vektorvluerte funksjonen r er gitt ved [ ] 4t r(t) = t 3 +, t,t (0, ) Vis t r(t) r (t) når r(t) =[, ] Oppgve 8 Funksjonen f, definert på intervllet ( π 4, π ), er gitt ved differensillikningen ( cos x +sinx cos x ) (f (x) cos x)+f(x) = 0 og betingelsen f(0) = 7 L Γ være kurven i xy-plnet gitt ved likningen y = f(x) Sett opp likningen for tngenten til kurve Γ i punktet der x =0 Skriv svret på formeny = x + b Hint: Oppgven kn løses uten å kjenne funksjonsuttrykket til f på eksplisitt form Lykke til.

Eksmen i Mtemtikk 9. desember 0 3 Formelrk til eksmen i Mtemtikk Algebr Løsningsformel for x + bx + c =0: Trigonometri (cos(θ), sin(θ)) - sin - Noen ekskte verdier: Komplekse tll Den imginære enhet: i =. θ b ± b 4c. cos tn(θ) = sin(θ) cos(θ) Den trigonometriske identiteten: sin (x)+cos (x) = Summeformel for sinus: sin(x ± y) =sin(x)cos(y) ± cos(x)sin(y) Summeformel for cosinus: cos(x ± y) =cos(x)cos(y) sin(x)sin(y) Symmetrier: sin( x) = sin(x) ogcos( x) =cos(x) Den trigonometriske grensen: lim x 0 sin(x) x = x 0 π/6 π/4 π/3 π/ π 3π/ π cos(x) 3/ / / 0 0 sin(x) 0 / / 3/ 0 0 Komplekse tll på normlform: z = + bi, R, b R. Multipliksjon på normlform: ( + bi)(c + di) =(c bd)+(d + bc)i. Polrform: z = r (cos(θ)+i sin(θ)) der = r cos(θ), b = r sin(θ). r = + b. Multipliksjon på polrform: r (cos(θ )+i sin(θ )) r (cos(θ )+i sin(θ )) = r r (cos(θ + θ )+i sin(θ + θ )) De Moivres formel: (cos(θ)+i sin(θ)) n =cos(nθ)+i sin(nθ) Eulers formel: e iθ =cos(θ)+i sin(θ) Eksponentil og logritmefunksjonen e.7... e ln(x) = x e 0 = e = e e u+v = e u e v (e u ) v = e uv ln(e x )=x ln() = 0 ln(e) = ln( b) =ln()+ln(b) ln( b )=b ln() Hyperbolske funksjoner Hyperbolsk cosinus: cosh(x) = ( e x + e x) Hyperbolsk sinus: sinh(x) = cosh (x) sinh (x) =. ( e x e x)

Eksmen i Mtemtikk 9. desember 0 4 Derivsjonsregler f og g er deriverbre funksjoner., b og r er konstnter. Generelle derivsjonsregler f f f + bg f + bg Lineritet f g f g + f g Produktregelen 3 f g f g f g g Kvotienttregelen 4 f(u(x)) f (u) u (x) Kjerneregelen Den deriverte v spesielle funksjoner f(x) f (x) 5 x + b Spesielt f(x) =0x + b: b =0 6 x r rx r Også omr er negtiv eller en brøk 7 sin(x) cos(x) 8 cos(x) sin(x) 9 tn(x) +tn (x) Alterntiv: tn(x) =/ cos (x) 0 e x e x ln(x) x Mer generelt: ln( x ) =/x rcsin(x) x 3 rctn(x) +x 4 cosh(x) sinh(x) 5 sinh(x) cosh(x)

Eksmen i Mtemtikk 9. desember 0 5 Integrsjonsregler Generelle integrsjonsregler f + bg dx = fdx+ b gdx f g dx = fg f gdx 4 f(u(x)) u (x) dx = f(u) du Lineritet Delvis integrsjon Substitusjon Integrlet v spesielle funksjoner 5 6 7 8 0 3 4 5 dx = x + C Integrsjon v konstnt x r dx = r+ xr+ + C r (Se for r = ) cos(x) dx = sin(x) +C sin(x) dx = cos(x) +C e x dx = e x + C x dx = ln( x )+C dx = rcsin(x)+c x dx = rctn(x)+c +x sinh(x) dx = cosh(x) +C cosh(x) dx = sinh(x) +C Bestemte integrler 4) Hvis f(x) er kontinuerlig og F (x) =f(x) er b f(x) dx =[F (x)] b = F (b) F (). 5) Integrsjon over smmenstt område, A er disjunkt union v intervllene [, c] og[d, b]: c b b c b f(x) dx = f(x) dx + f(x) dx. Spesielt f(x) dx = f(x) dx + f(x) dx. A 6) Ombytting v grenser: 7) Substitusjon: b d b f(x) dx = f(u(x))u (x) dx = b f(x) dx. u(b) u() f(u) du. c

Eksmen i Mtemtikk 9. desember 0 6 Linerisering Linerisering v kontinuerlig deriverbr f ved x = : f(x) =f()+f ()(x )+ɛ(x) der lim x ɛ(x)/(x ) =0. Buedifferensil Buedifferensil, y = f(x): ds = +(y ) dx. Buedifferensil, prmetrisert pln kurve: ds = ẋ +ẏ dt. Buelengde: s = I ds. Differensillikninger Seprbele differensillikninger Kn omfortmes til: F (y) y = G(x). Løsningsstrtegi: F (y) dy = G(x) dx. Første ordens lineære differensillikninger Kn omformes til y + P (x)y = Q(x). Eksistens/Entydighet Hvis P (x) ogq(x) er kontinuerlige påetintervlli, og tilleggsbetingelsen y(x 0 )=y 0 er gitt for en x 0 I, finnes entydig løsning y(x). Løsningsstrtegi: Multipliser med integrerende fktor ρ(x) P (x) dx =e. ( ) Løsningsformel: y = ρ(x) Q(x) dx /ρ(x). Andre ordens lineære differensillikninger y + by + c = Q(x). Eksistens/Entydighet Hvis Q(x) er kontinuerlig på etintervlli, og tilleggsbetingelsene y(x 0 )=y 0 og y (x 0 )=y er gitt for en x 0 I, finnes entydig løsning y(x) på I. Homogene: Q(x) = 0. Krkteristisk polynom λ + bλ + c. To reelle røtter α og β, α β: y h = C e αx + C e βx. To komplekse røtter α ± βi: y h = e αx (C cos(βx)+c sin(βx)). Dobbel rot α: y h = C e αx + C xe αx. Inhomogene : Q(x) 0forminstenx. Allmenn løsning: y = y h + y p der y p er en prtikulær løsning. 3. 0, Hns Petter Hornæs

Løsning, eksmen i Mtemtikk 9. desember 0 Oppgve ) z +=i(z ) z iz = i ( i)z = i z = i i z = ( i)( + i) ( i)( + i) z = ( ) ( ) +( +( ) )i 3i + = z = 3 i b) Det enkleste er å gjøre om lt til trigomometrisk form først. For z er modulen r = + =. Siden + i peker 45 oppover mot høyre i det komplekse tllpln er rgumentet θ = π/4. Dermed er z = (cos(π/4) + i sin(π/4)) og z z = ( ( π ) ( π )) cos + i sin ( ( π ( π cos + i sin = 4 4 ) )) Oppgve ( ( π cos 4 ) + π ( π + i sin 4 )) + π ( = cos ( ( π ) ( π )) cos + i sin 3 3 D cos(π/3) = / ogsin(π/3) = 3/ erd ( ) 3 z z = + i =+ 3i ( ) ( )) 3π + π 3π + π + i sin Oppgve 3 lim x π sin(x) cos(x/) = ( ) 0 L Hôpitl 0 = lim x π cos(x) /sin(x/) = 4 B(v) = e v 80 v B (v) = 80 e v 80 v e v 80 v = 40 e v 80 v (v 80) = e 80 (v 80) 40v v B (v) < 0 når v<80 B (v) =0 når v =80 B (v) > 0 når v>80 B hr globlt minimlpunkt i v =80 Den mest økonomiske hstigheten er 80 km/t. (Bensinforbruket er d 0,068 liter/km)

Løsning, eksmen i Mtemtikk 9. desember 0 Oppgve 4 (x y) =6(y ) d dx (x y) = d dx ( (x y) dy ) =6 dy dx dx dy dx = dy dx =0 x y =0 x y =0 (x y) =6(y ) Punktet med horisontl tngentlinje hr koordinter (x, y) =(4, ) Oppgve 5 ) 6 (y ) x y 8+(x y) x =4 y = Krkteristisk polynom er λ +6λ + 5 med røtter { } { } { } 6 ± 36 4 5 6 ± 64 6 ± 8 = = = { 3 ± 4i} Allmenn løsning er derfor y = e 3x (C cos(4x)+c sin(4x)) b) Når høyresiden er e x prøver vi med prtikulære løsninger på formeny p = Ke x. D er y p = Ke x og y p = Ke x, som settes inn i likningens venstre side: Ke x 6Ke x +5Ke x =0Ke x Vi får venstresiden 0Ke x lik høyresiden 00e x ved åvelgek = 5, som gir den prtikulære løsningen y p =5e x. Allmenn løsning er d y = y h + y p = e 3x (C cos(4x)+c sin(4x)) + 5e x Setter inn x = 0 i den llemenne lkøsning: e 0 (C cos(0) + C sin(0)) + 5e 0 = C+5 y(0)=5 = 5 C =0 Dermed er C -leddet forenklet bort før vi deriverer med produkt- og kjerneregelen: y (x) = ( 3e 3x sin(4x)+e 3x 4cos(4x) ) C 5e x Innsetting v x =0girnå y (0) = ( 3e 0 sin(0) + e 0 4cos(0) ) C 5e 0 =4C 5=3 C = Innsetting v C =0ogC = i den llmenne løsning gir y =sin(4x)e 3x +5e x

Løsning, eksmen i Mtemtikk 9. desember 0 3 Oppgve 6 ) Substituer med u = x /. D er du/dx = x så du = xdx,somstår ferdig i integrnden. xe x / dx = e u du = e u + C = e x / + C b ) Integrerende fktor er e F (x) er F (x) =P (x) =x, såviknvelgef (x) = x. Den integrerende fktoren er dermed e x /, som multipliseres inn i hvert ledd i likningen: e x / y + xe x / x / y = xe ( ) e x / y = xe x / Integrerer såforåfå bort den deriverte på venstre side: e x / y = xe x / dx e x / y = e x / + C Oppgve 7 Multipliserer til slutt begge sider med e x / så y blir stående igjen lene på venstresiden: ( ) y = e x / + C e x / y =+Ce x / r(t) = [ ] 4t t 3 +, t r (t) = [ 4 8t 3 ] (t 3 +), t r(t) =[, ] t = t = r() r () = [, ] [, ] = 0 r(t) r (t) når r(t) =[, ] Oppgve 8 ( cos x +sinx cos x )( f (x) cos x ) + f(x) =0 f f(x) (x) = cos x +sinx cos x +cosx Tngent : y y = (x x ) x =0 og y = f(0) = 7 y 7= 6(x 0) y = 6x +7 = f (0) = 7 +0 += 6