Z L Z o Z L Z Z nl + 1 = = =

Størrelse: px
Begynne med side:

Download "Z L Z o Z L Z Z nl + 1 = = ="

Transkript

1 SMITHDIAGRAM Bilineær transformasjon fra Zplanet (impedans) til Γplanet (refleksjonsfaktor) Γ Z L Z o Z L Z 0 1 Z L Z 0 Z L Z 0 1 Z nl 1 Z nl 1 Zplanet Im Γplanet Im Re Re AO 00V 1

2 SMITHDIAGRAM Γplanet Induktiv Z 0 Γ 1 Γ 0 2 ZOO R C Z 0 Z 1 Γ 1 f 0 : ZOO Kapasitiv f OO : Z R j /ωc R j0 AO 00V 2

3 SMITHDIAGRAM To like perioder av standbølgen pr signalbølgelenge 2 ω mot belastning ω min ω mot generator U maks maks z mot generator mot belastning L AO 00V 3 min

4 SMITHDIAGRAM Standbølgeforholdet: S V maks V min V i V r 1 V r V i V i V r 1 V r V i 1 Γ 1 Γ ω mot belastning min 0 λ/2 λ/2 0 Innsatt for Γ: mot generator S Z L Z L Z 0 Z 0 λ/10 U 0 S Z 0 Z L Z 0 Z L λ/8 3λ/8 λ/8 3λ/8 λ/10 mot generator Z L mot belastning λ/4 maks Fasevinkel for Γ 0 AO 00V 4

5 SPARAMETRE Parametersett angir forholdet mellom strømmer og spenninger Impedans, Zparametre: Strømmer er uavhengige variable I 1 I 2 2port V 1 V 2 V 1 Z 11 I 1 Z 12 I 2 V 2 Z 21 I 1 Z 22 I 2 Admittans, Yparametre: Spenninger er uavhengige variable Parametere finnes ved f.eks Åpen utgang: I 1 Y 11 V 1 Y 12 V 2 I 2 Y 21 V 1 Y 22 V 2 Hybrid, Hparametre: Blanding av Z og Y parametre V 1 h 11 I 1 h 12 I 2 I 2 h 21 V 1 h 22 V 2 V h 11 1 I 1 Åpen inngang: V h 1 12 I 2 I 2 0 I 1 0 AO 00V 4.5

6 SPARAMETRE Ved høye frekvenser er brudd og kortslutninger mer diffust Derfor benyttes bølger som variable: Innkommende og reflektert relatert til effekt: E i1 E r1 2port E i2 E r2 a 1 b 1 E i1 E a 2 i2 Z 0 Z 0 E r1 E b 2 r2 Z 0 Z 0 S (scattering) parameters: b 1 s 11 a 1 s 12 a 2 b 2 s 21 a 1 s 22 a 2 Terminering av utgangen til Z 0 absorberer signaler inn til utgangen: b S 1 11 a 1 b S 2 21 a 1 a 2 0 a 2 0 Terminering av inngangen til Z 0 absorberer signaler inn til inngangen: S 11 : Γ 1, Refleksjonsfaktor inngangen S 22 : Γ 2, Refleksjonsfaktor utgangen S 12 : Bakovertransmisjon (utgang til inngang) S 21 : Forovertransmisjon (inngang til utgang) forsterkning/dempning b S 2 22 a 2 b S 1 12 a 2 a 1 0 a 2 0 AO 00V 4.6

7 Φ MS (V FB ) Φ F Likevekt V gb 0 Gate Sub Φ Fgate Φ Fsub 2ΦF Inversjon V gb >V th Gate Sub Akkumulasjon Φ Fgate Φ Fsub V gb <V FB Gate Sub AO 00V 4.7

8 Q B qn A x d dq qn A dx d Gate SiO 2 Inversjonslag Deplesjonssone dφ s x d de dq x d ε si qn A x d dx d ε si n x d Q B p dq Overflatepotensialet: 2 qn Φ A x d s Φ 2ε B si 2ε x si Φ s Φ B d qn A dx d Q B 2qN A ε si Φ s Φ B Sterk inversjon for Φ s Φ B 2Φ F : Q B 2qN A ε si 2Φ F AO 00V 4.8

9 Gate n Q ox Inversjonslag x d Q B p Faste ladninger i oksydet, i grenseflaten mellom SiO 2 og Si modifiserer flatbåndspenningen V FB.: Q V FB Φ ox MS C ox Q B Q ox V GB Φ ox Φ s Φ MS Φ C s ox Terskelspenning for sterk inversjon: V GB Φ ox Q B Q V th0 Φ ox 2Φ F Φ ox MS 2Φ C F V FB γ 2Φ F 2Φ F ox Φ s γ 2qN A ε si C ox x AO 00V 4.9

10 Drain Sourcebulk spenningen V sb påvirker Q B. Resulterende terskelspenning kan skrives: V T V T0 γ( 2Φ F V sb 2Φ F ) Gate Bulk Ladning i kanalen y Q I ( y) C ox [ V gs vy ( ) V T ] Source I D WQy ( ) WQ( y )µe WQ( y )µe dv t dy Q I (y) L I d µc W ox V L gs V 1 T V 2 ds V ds ( 1 λv ds ) V ds < V gs V T W I d µc ox W 2 V [ L gs V T ] 2 ( 1 λv ds ) V ds V gs V T λ er parameter for kanallengde modulasjon AO 00V 4.10

11 Transconductans med konstant V sb : g m di d W 2µC dv ox I gs L d Transconductans fra bulk med konstant V gs : g mb di d dv sb γ gm 2 2Φ F V sb Utgangskonduktans: g d di d µc W dv ox V ds L gs V 1 T V 2 ds V ds < V gs V T g d di d gm ε si d ox V dv ds 2 ε ox L ds V gs V T AO 00V 4.11

12 Substrat transkonduktans: gm b γ gm 2 2Φ F V SB (Tsividis) AO 00V 4.12

13 V ds < V gs V T : C gc C ox WL 2C ovl L W, L 0 C cb ε WL si x d V ds < V gs V T : 2 C gs C 3 ox WL C gd C ovl W Source Drain junction kapasitans (SPICE level3): V C j Areal C J 1 j PB MJ V Perimeter CJSW 1 j PB MJSW AO 00V 4.13

14 L Felles Source Småsignalekvivalent r g C gd V gs gm W C gs V gs V sb gm b g ds C db 2 C gs C 3 ox WL C gsovl C gd C gdovl C db Junction Source C ch_g C gs_ovl Gate C gd_ovl Drain gm di d 2µC W dv ox I gs L d Csb C ch_bulk C db gm b di d W 2µC dv chbulk I sb L d g ds di d λi dv d ds AO 00V 4.14

15 Source C gs C gc C gs_ovl Gate C gd C gd_ovl Drain Csb C cb V ds V ds,sat C db Småsignal ekvivalentskjema C gd Z L G r g C gd D C db C gs V gs gmv gs gm b (V sb ) g d S C db V g C gs V sb C sb C sb B V gs V g V sb AO 00V 4.15

16 Begrensning i driftshastighet: V ds E y Empirisk: E v d v y E c dmax 1 E y E c I d, sat E c µc ox WV ( gs V T ) v d v d µ E y gm E c µc ox W v d,max µ E c ω T gm C gs 3 µe c 2 L (Lee: E sat 2E c ) E c Effekten av transversalt felt: I I d d, tr θ 1 θ( V gs V T ) t ox 1 V AO 00V 4.16

17 Begrensning i driftshastighet (Tsividis) AO 00V 4.17

18 Transittid Påtrykk Ladningstetthet langs kanalen med tid som parameter τ L 2 0 µ ( V GS V T ) τ d 0,38τ 0 Korte kanaler med hasighetsbegrensning: L τ d v d max AO 00V 4.18

19 Kortkanaleffekter reduserer terskelspenningen V ds E Q E Felt fra Drain påvirker potensialet i kanalen Drain og Source bidrar til å øke ladningen i deplesjonssonen assosiert med kanalen: Q V T 1 B γ 2ΦF V (Tsividis) Q SB B AO 00V 4.19

20 Hot carrier effekt V ds Oppladning av oksydet gir skifte i terskelspenning E Lightly doped drain, LDD, reduserer feltet Inoisering gir øket substratstrøm AO 00V 4.20

21 Temperatureffekter (Tsividis) V T ( T) V T ( T rom ) k T ( T T rom ) 0,5< k T < 4 mv K T µ ( T) µt room k µ T rom 1,5< k µ < 2 AO 00V 4.21

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver uke 36

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver uke 36 IN 41 VLI-konstruksjon Løsningsforslag til ukeoppgaver uke 36 1) Beregn forsterknings faktoren ß for en nmofet fabrikkert i en prosess med: µ = 600cm/V s (Elektronmobilitet for n-dopet materiale) ε = 5

Detaljer

Formelsamling INF3400 Våren 2014 Del 1 til 8 YNGVAR BERG

Formelsamling INF3400 Våren 2014 Del 1 til 8 YNGVAR BERG 1 Formelsamling INF3400 Våren 014 Del 1 til 8 YNGVAR BERG I. MOS TRANSISTORER, TABELLENE I - X Formelsamlingen inneholder de mest aktuelle konstanter Tabell II, prosessparametre Tabell III og elektriske

Detaljer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer Fys2210 Halvlederkomponenter Kapittel 6 Felteffekt transistorer MOSFET I en n-kanals MOSFET (enhancement-type) lager man en n-type kanal mellom Source og Drain ved å lage et inversjonslag i et p-type substrat

Detaljer

PASSIVE KOMPONENTER. Realisering av Resistans - Passive løsninger

PASSIVE KOMPONENTER. Realisering av Resistans - Passive løsninger Realisering av Resistans - Passive løsninger L W R ρ N, Resitivitiet: ρ resistans / N Antall Hjørne 0.56 Brønn Metall / Polysilisium SiO 2 Diffusjon Polysilisium Metall Substrat AO 0V. Realiseringer med

Detaljer

Fys2210 Halvlederkomponenter. Forelesning 9 Kapittel 6 - Felteffekttransistoren

Fys2210 Halvlederkomponenter. Forelesning 9 Kapittel 6 - Felteffekttransistoren Fys2210 Halvlederkomponenter Forelesning 9 Kapittel 6 - Felteffekttransistoren Repetisjon Unipolar Kapittel 6 Felt-effekt transistorer JFET Partikkelfluks S D (alltid) V G styrer ledningskanalen mellom

Detaljer

INF L4: Utfordringer ved RF kretsdesign

INF L4: Utfordringer ved RF kretsdesign INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer

Detaljer

Tips og triks til INF3400

Tips og triks til INF3400 Tips og triks til INF3400 Joakim S. Hovlandsvåg 11. desember 2008 1 Opp- og nedtrekk - kap1 Ved inverterte formlar gjeld følgande: i nedtrekk blir ei seriekobling, opptrekk får parallellkobling

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

PENSUM INF spring 2013

PENSUM INF spring 2013 PENSUM INF3400 - spring 2013 Contents 1 Kjede med porter 2 1.1 Logisk effort for portene....................................... 2 1.2 Kritisk signalvei........................................... 2 1.3

Detaljer

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold Vi ser på CMOS inverter DC karakteristikker og hvordan transistorstørrelser påvirker karakteristikken.

Detaljer

CMOS inverter DC karakteristikker og hvordan transistorstørrelser

CMOS inverter DC karakteristikker og hvordan transistorstørrelser Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold CMOS inverter DC karakteristikker og hvordan transistorstørrelser påvirker karakteristikken. Definisjon

Detaljer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer Fys2210 Halvlederkomponenter Kapittel 6 Felteffekt transistorer 1 Eksamensdatoer: 11. OG 12. DESEMBER Repetisjon Felteffekttransistoren 3 forskjellige typer: - Junction FET - MESFET - MOSFET JFET MESFET

Detaljer

Forelesning nr.5 IN 1080 Mekatronikk. RC-kretser

Forelesning nr.5 IN 1080 Mekatronikk. RC-kretser Forelesning nr.5 IN 080 Mekatronikk R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Ulike typer respons R-kretser Impedans og fasevinkler Serielle R-kretser

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: Løsningsforslag Digital mikroelektronikk Ingen Alle trykte

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 4; løysing Oppgave R R 3 R 6 E R 2 R 5 E 2 R 4 Figuren over viser et likestrømsnettverk med ideelle spenningskilder og resistanser. Verdiene er: E = 40,0

Detaljer

EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler)

EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 (elektromagnetisme) Dato: 9. juni 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt

Detaljer

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver 25/ uke 39

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver 25/ uke 39 IN 4 VLSI-konstruksjon Løsningsforslag til ukeoppgaver 5/9-00 uke 39 ) Skisser en standard CMOS inverter. Anta ßnßp. Tegn opp noen drain-source karakteristikker for begge transistorene. Bytt ut Vds og

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og

Detaljer

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut. I. Innhold

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut. I. Innhold Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold CMOS INVERTER DC karakteristikker og hvordan transistorstørrelser påvirker karakteristikken. Definisjon

Detaljer

En del utregninger/betraktninger fra lab 8:

En del utregninger/betraktninger fra lab 8: En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling.

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: Mandag 4. juni, 2018 Klokkeslett: 9:00 13:00 Sted: ADM B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. Eksamenoppgaven

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Dagens temaer er hentet fra

Detaljer

Del 4: Moderne MOS transistor modell, transient simulering og enkle utleggsregler

Del 4: Moderne MOS transistor modell, transient simulering og enkle utleggsregler Del 4: Moderne MOS transistor modell, transient simulering og enkle utleggsregler NGVA BEG I. Innhold Enkle modeller for MOS transistor kapasitanser gjennomgås, herunder gate- og diffusjonskapasitanser.

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

GJ ennomgang av CMOS prosess, tversnitt av nmos- og

GJ ennomgang av CMOS prosess, tversnitt av nmos- og Del : Enkel elektrisk transistor modell og introduksjon til CMOS rosess YNGVAR BERG I. Innhold GJ ennomgang av CMOS rosess, tversnitt av nmos og MOS og tverrsnitt av CMOS inverter. Enkel forklaring å begreer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og Del : Enkel elektrisk transistor modell og introduksjon til CMOS rosess YNGVAR BERG I. Innhold GJ ennomgang av CMOS rosess, tverrsnitt av nmos og MOS transistor og tverrsnitt av CMOS inverter. Enkel forklaring

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer

Forelesning nr.5 INF 1411 Elektroniske systemer Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler

Detaljer

EKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING

EKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING NTNU Norges teknisk-naturvitenskapelige universitet Side 1 av 8 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

EN kle modeller for MOS transistor kapasitanser gjennomgås,

EN kle modeller for MOS transistor kapasitanser gjennomgås, Del 4: Moderne MOS transistor modell, transient simulering og enkle utleggsregler NGVA BEG I. Innhold EN kle modeller for MOS transistor kapasitanser gjennomgås, herunder gate- og diffusjonskapasitanser.

Detaljer

EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling

EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator

Detaljer

Formelsamling Bølgefysikk Desember 2006

Formelsamling Bølgefysikk Desember 2006 Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk

Detaljer

Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon

Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon Øyvind Hagen Institutt for informatikk Universitetet i Oslo 23. oktober 2001 1 Innhold 1 Prelab 4 1.1 Implementasjon av Vittoz modellen.................

Detaljer

EN kle modeller for MOS transistor kapasitanser gjennomgås,

EN kle modeller for MOS transistor kapasitanser gjennomgås, Del 4: Moderne MOS transistor modell, transient simulering og enkle utleggsregler NGVA BEG I. Innhold EN kle modeller for MOS transistor kapasitanser gjennomgås, herunder gate- og diffudjonskapasitanser.

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

Onsdag og fredag

Onsdag og fredag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 4 Onsdag 21.01.09 og fredag 23.01.09 Elektrisk felt fra punktladning [FGT 22.1; YF 21.4; TM 21.4; AF 21.6; LHL 19.5;

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold CM OS inverter DC karakteristikker og hvordan transistorstørrelser påvirker karakteristiken. Definsisjon

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG Side av 8 NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG Side av 8 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

Ny/Utsatt eksamen i Elektronikk 2. August Løsningsforslag Knut Harald Nygaard

Ny/Utsatt eksamen i Elektronikk 2. August Løsningsforslag Knut Harald Nygaard Ny/Utsatt eksamen i Elektronikk 2. August 2017 Løsningsforslag Knut Harald Nygaard Oppgave 1 Operasjonsforsterkeren i kretsløpet i figuren nedenfor kan regnes som ideell. v inn v ut C a) Overføringsfunksjonen

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer

Forelesning nr.10 INF 1411 Elektroniske systemer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer 1 Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Feedback-oscillatorer Dagens

Detaljer

Onsdag isolator => I=0

Onsdag isolator => I=0 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de

Detaljer

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk Formelsamling Side 7 av 15 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember

Detaljer

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003

Detaljer

Institutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00

Institutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Johan S. Høye/Professor Asle Sudbø Telefon: 91839082/40485727 Eksamen i TFY4106 FYSIKK Torsdag 6. august 2009 09:00 13:00 Tillatte

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde

Detaljer

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og Del : Enkel elektrisk transistor modell og introduksjon til CMOS rosess YNGVAR BERG I. Innhold GJ ennomgang av CMOS rosess, tverrsnitt av nmos og MOS transistor og tverrsnitt av CMOS inverter. Enkel forklaring

Detaljer

Løsningsforslag DEL1 og 2 INF3400/4400

Løsningsforslag DEL1 og 2 INF3400/4400 Løsningsforslag L1 og 2 INF3400/4400 NGVR RG I. Oppgaver. Oppgave 1.3 Tegn en MOS 4-inngangs NOR port på transistor nivå..1 Løsningsforslag 0 0 1 0 1 0 11 0 1 0 0 Fig. 2. NOR port med fire innganger. Fig.

Detaljer

Løsning eks Oppgave 1

Løsning eks Oppgave 1 Løsning eks.2011 Oppgave 1 a) 3) å minske forvrengningen b) 2) 93 db c) 3) 20 d) 2) 100 e) 2) høy Q-verdi f) 2) 0,02 ms g) 1) 75 kω h) 4) redusere størrelsen på R1 i) 1) 19 ma j) 2) minsker inngangs- og

Detaljer

Forslag til løsning på eksamen FYS1210 våren 2010

Forslag til løsning på eksamen FYS1210 våren 2010 Forslag til løsning på eksamen FYS1210 våren 2010 Oppgave 1 n seriekopling av solceller forsyner ubest med elektrisk energi. Ubelastet måler vi en spenning på 5 volt over solcellene (Vi måler mellom og

Detaljer

Løsningsforslag til eksamen i FYS1000, 12/6 2017

Løsningsforslag til eksamen i FYS1000, 12/6 2017 Løsningsforslag til eksamen i FYS000, 2/6 207 Oppgave a) Vi kaller energien til fotoner fra overgangen fra nivå 5 til nivå 2 for E og fra nivå 2 til nivå for E 2, og de tilsvarende bølgelengdene er λ og

Detaljer

Lab 3: AC og filtere - Del 1

Lab 3: AC og filtere - Del 1 Lab 3: AC og filtere - Del 1 Lab 3 er på mange måter en fortsettelse av Lab 2 hvor det skal simuleres og måles på en krets bestående av motstander og kondensatorer. Vi skal se på hvordan en kondensator

Detaljer

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett

Detaljer

Obligatorisk oppgave 2 i INF4400 for Jan Erik Ramstad

Obligatorisk oppgave 2 i INF4400 for Jan Erik Ramstad Obligatorisk oppgave i INF44 for Jan Erik Ramstad Jan Erik Ramstad Institutt for Informatikk Universitetet i Oslo janera@fys.uio.no 5. februar 6.5 DC karakteristikk for en inverter.5 Vut (V).5 4 Bakgrunn

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål

EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME

Detaljer

Kondensator. Symbol. Lindem 22. jan. 2012

Kondensator. Symbol. Lindem 22. jan. 2012 UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator

Detaljer

Forelesning nr.8 INF 1410

Forelesning nr.8 INF 1410 Forelesning nr.8 INF 4 C og kretser 2.3. INF 4 Oversikt dagens temaer inearitet Opampkretser i C- og -kretser med kondensatorer Naturlig respons for - og C-kretser Eksponensiell respons 2.3. INF 4 2 Node

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1 FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

Maxwell s ligninger og elektromagnetiske bølger

Maxwell s ligninger og elektromagnetiske bølger Maxwell s ligninger og elektromagnetiske bølger I forelesningene og i læreboken er Coulombs lov for the elektriske felt E formulert på følgende form: v da E = Q/ε 0 (1) Integralet til venstre går over

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan

Detaljer

De viktigste formlene i KJ1042

De viktigste formlene i KJ1042 De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 10.juni 2016 Klokkeslett: 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne ü Rottmann:

Detaljer

Forslag til løsning på Eksamen FYS1210 våren 2008

Forslag til løsning på Eksamen FYS1210 våren 2008 Oppgave 1 Forslag til løsning på Eksamen FYS1210 våren 2008 1a) Hvor stor er strømmen gjennom? 12 ma 1b) Hvor stor er strømmen gjennom? 6 ma 1c) Hva er spenningen i punktene AA og BB målt i forhold til

Detaljer

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

Mot 6: Støy i felteffekttransistorer

Mot 6: Støy i felteffekttransistorer / Mot 6: Støy i felteffekttransistorer To typer av felteffekttransistorer: MOSFET: Kapasitiv kontroll av kanal JFET: Variasjon av bredden på en reversforspent diode hvor deplesjonssonen besteer bredden

Detaljer

10 6 (for λ 500 nm); minste størrelse av

10 6 (for λ 500 nm); minste størrelse av Sensorveiledning Eksamen FYS130 Oppgave 1 ( poeng) a) Brytningdeksen er forholdet mellom lyshastigheten i vakuum og lyshastigheten i mediet; siden lyshastigheten i et medium er alltid mindre enn i vakuum,

Detaljer

Løsningsforslag DEL1 og 2 INF3400/4400

Løsningsforslag DEL1 og 2 INF3400/4400 Løsningsforslag L og 2 INF3400/4400 NGVR RG. Oppgave.3 I. Oppgaver Tegn en MOS 4-inngangs NOR port på transistor nivå.. Løsningsforslag 0 0 0 0 0 0 0 Fig. 2. NOR port med fire innganger. Fig.. To-inngangs

Detaljer

Midtsemesterprøve fredag 10. mars kl

Midtsemesterprøve fredag 10. mars kl Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det

Detaljer

INF 5460 Elektrisk støy beregning og mottiltak

INF 5460 Elektrisk støy beregning og mottiltak INF 5460 Elektrisk støy beregning og mottiltak Obligatorisk oppgave nummer 3. Frist for levering: 30 April (kl 23:59). Vurderingsform: Godkjent/Ikke godkjent. Oppgavene leveres på individuell basis. Oppgavene

Detaljer

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00 Side 1 av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Kåre Olaussen Telefon: 9 36 52 Eksamen i fag 74327 RELATIVISTISK KVANTEMEKANIKK Fredag

Detaljer

Oppgave 1 INF3400. Løsning: 1a Gitt funksjonen Y = (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen.

Oppgave 1 INF3400. Løsning: 1a Gitt funksjonen Y = (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen. Eksamen Vår 2006 INF400 INF400 Eksamen vår 2006 0.06. /9 Oppgave a Gitt funksjonen Y (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen. INF400 Eksamen vår

Detaljer

Transistorforsterker

Transistorforsterker Oppsummering Spenningsforsterker klasse Med avkoplet emitter og uten Forsterkeren inverterer signalet faseskift 180o Transistoren er aktiv i hele signalperioden i b B i c C g m I V C T i c v i r π B1 B2

Detaljer

= 10 log{ } = 23 db. Lydtrykket avtar prop. med kvadratet av avstanden, dvs. endring ved øking fra 1 m til 16 m

= 10 log{ } = 23 db. Lydtrykket avtar prop. med kvadratet av avstanden, dvs. endring ved øking fra 1 m til 16 m Løsning eks.2012 Oppgave 1 a) 3) 28 V rms b) 2) 2V c) 2) 95 db. Beregning av SPL i 16 m avstand ved P o = 200 W når 1 W gir 96 db i 1 m avstand: Økning i db SPL når tilført effekt til høyttaleren økes

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side av 7 NORGES TEKNISKNATURITENSKAPLIGE UNIERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 7 59 2 2 / 92 87 72 Bjørn B. Larsen 7 59 44 9 Eksamen i emne

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Figur 1 viser et nettverk med et batteri på 18 volt, 2 silisiumdioder og 4 motstander.

Figur 1 viser et nettverk med et batteri på 18 volt, 2 silisiumdioder og 4 motstander. Forslag til løsning på eksamen i FYS 20 våren 2006 (rev 4) Oppgave. Figur Figur viser et nettverk med et batteri på 8 volt, 2 silisiumdioder og 4 motstander. a) Hva er spenningen i punktene AA og BB målt

Detaljer

Forslag til løsning på eksamen FYS1210 våren Oppgave 1

Forslag til løsning på eksamen FYS1210 våren Oppgave 1 Forslag til løsning på eksamen FYS1210 våren 201 Oppgave 1 Nettverksanalyse. Legg spesielt merke til diodenes plassering. Figur 1 viser et nettverk bestående av en NPN silisium transistor Q1 ( β = 200

Detaljer

INF5490 RF MEMS. L8: RF MEMS resonatorer II

INF5490 RF MEMS. L8: RF MEMS resonatorer II INF5490 RF MEMS L8: RF MEMS resonatorer II 1 Dagens forelesning Lateralt vibrerende resonator: Kam-resonatoren Virkemåte Detaljert modellering A) phasor-modellering B) modellering ved konvertering mellom

Detaljer

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk Formelsamling Side 7 av 16 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne

Detaljer

Kap. 24 Kapasitans og dielektrika

Kap. 24 Kapasitans og dielektrika Kap. 24 Kapasitans og dielektrika Grunnleggende forståelse for HVA en kondensator er, HVORFOR den virker som den gjør, hvilke BEGRENSINGER den har og hvorfor et DIELEKTRIKUM er påkrevd i en kondensator.

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform

Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.

Detaljer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer Fys2210 Halvlederkomponenter Kapittel 6 Felteffekt transistorer 1 Repetisjon Kap. 5 Kontaktpotensial V 0 = kt q ln Deplesjonssone W = Diodeligningen N an d n i 2 2ε(V 0 V) N a + N d q N a N d I = I o e

Detaljer

Nå er det på tide å se hvordan dette fungerer i praksis. Vi skal beregne et par Laplacetransformer som vi får mye bruk for senere.

Nå er det på tide å se hvordan dette fungerer i praksis. Vi skal beregne et par Laplacetransformer som vi får mye bruk for senere. Laplace-transform: Et nyttig hjelpemiddel Side - Laplace-transformen et nyttig hjelpemiddel Hva er Laplace-transformen? Vi starter med å definere Laplace-transformen: Definisjon : La f t være en funksjon

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 2k5 )

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 2k5 ) Forslag til løsning på eksamensoppgavene i FYS0 vår 0 8.6 Oppgave Figure viser en enkel transistorforsterker med en NPNtransistor N Transistoren har en oppgitt strømforsterkning β = 50. Kondensatoren C

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155

Detaljer