122 C6 DIMENSJONERING AV FORBINDELSER

Størrelse: px
Begynne med side:

Download "122 C6 DIMENSJONERING AV FORBINDELSER"

Transkript

1 122 C6 DIMENSJONERING AV FORBINDELSER Tabell C 6.1. Senteravstand på festemidler som gir kapasitet 20 kn/m. Kamstål (bind B, tabell B ) B500NC Ø (mm): N Rd,s = f yd A s (kn): Senteravstand c (m): 1,10 1,70 2,45 4,35 6,85 10,65 Gjengestang K 4.8 M (mm): N Rd,s = f sd2 A sp (kn): Senteravstand c (m): 1,20 2,25 3,55 5,10 8,10 10,00 Gjengestang K 8.8 M (mm): N Rd,s = f sd1 A sp (kn): Senteravstand c (m): 2,40 4,50 7,05 10,15 Gjengehylse (Bind B, tabell B ) Bitek 6300S (mm): N Rd,s (kn): Senteravstand c (m): 2,60 4,25 5,30 7,65 10,40 Horisontalkrefter i oppleggsforbindelser Det understrekes at alle oppleggsforbindelser for dekker, bjelker o.l., overfører horisontalkrefter, og at disse horisontalkreftene som regel har vesentlig betydning i dimensjonering av forbindelsen. Horisontalkraften bør beregnes (se bind B, del 1). Det anbefales likevel at alle oppleggsforbindelser dimensjoneres for en minimum horisontalkraft \5\, \6\: H min = 0,2 N Ed,g 0,15 N Ed N Ed,g = vertikallast fra egenlast N Ed = dimensjonerende vertikallast fra samlet last I en del tilfeller kan horisontalkraften enkelt anslås ved hjelp av friksjonskoeffisienter som angitt i bind B, punkt Friksjonen, for eksempel på opplegg, antas alltid å virke med ugunstig verdi i uguns - tig retning Stålspenninger og miljøpåvirkninger (eksponeringsklasser) Man kan ikke uten videre anvende de samme armeringsspenningene i forbindelser som man gjør i vanlige bøyningspåkjente konstruksjoner. Bruddspenninger De formlene man benytter for å beskrive virkemåten av forbindelser baserer seg på forsøk som er utført under idealiserte betingelser og som bare undersøker noen få parametere. Dimensjoneringsmodellene er såpass usikre at det ikke anbefales å gå utenfor det som faktisk er utprøvet, eller konkret anvendt i relevante standarder se også punkt De fleste tidligere forsøk av forbindelser ble utført med stålkvalitet K400 (med flytegrensen 400 MPa). Det brukes i dag vanligvis armeringsstål av B500NC kvalitet, og

2 C6 DIMENSJONERING AV FORBINDELSER 123 gjengestenger i K8.8. Det er ikke uten videre gitt at forbindelsen får så store tøyninger at slike høye stålkvaliteter kan utnyttes. Grensetilstander Generelt skal alle betongkonstruksjoner kontrolleres både i bruksgrense- og bruddgrensetilstanden. Det vil være en betydelig bespar - else dersom man kan klare seg med å kontrollere i bare en grense - tilstand. Det er derfor ønskelig å gjøre en bruddgrensekontroll som også ivaretar bruksgrensekontrollen (risskontroll). Riss Vurdering av riss i forbindelser er vanskelig. Følgende momenter hører med: Riss kan være uakseptable av estetiske grunner. Visse typer synlige riss, først og fremst i oppleggsområder (konsoll, søyletopp, bjelkenese etc.) kan skape en følelse av tvil om konstruksjonens sikkerhet som er uakseptabel for brukeren. Normalt vil rissvidder mindre enn 0,15 mm ikke skape noen reaksjon. Riss kan markere en mulig avskalling. Avskallinger er uakseptable, uansett synlighet. Konstruksjonens motstandsdyktighet mot miljøpåkjenning skal formelt kontrolleres i henhold til EC2-1-1 \2\, punkt 7.3. Man må vurdere rissenes betydning for bestandigheten. I elementkonstruksjoner vil eventuelle riss ofte støpes inn eller beskyttes på annen måte, for eksempel ved fuging. Rissviddekravene i EC2-1-1 er da ikke direkte relevante, og kan vurderes. Miljøkrav og beskyttelse av knutepunkter er grundig behandlet i bind D, punkt Dimensjonering av armering i knutepunkter med hensyn til miljøpåvirkning Dimensjoneringen foretas bare i bruddgrensetilstanden, men dimen - sjonerende armeringsspenning graderes med hensyn til miljø påvirk - ninger (eksponeringsklasser) og forbindelsestype. Rissviddekontroll for bøyningspåkjente konstruksjoner utføres som vist i EC2-1-1, punkt Med en del vurderinger og tilpasninger kan en slik kontroll også gjøres for stavmodeller. Disse kontrollene vil i praksis kreve bruk av spesialtilpassede dataprogrammer. Rissviddekontrollen kan også gjøres med bruk av EC2-1-1, tabell 7.3N se tabell C 6.2. Tabell C 6.2. Største senteravstand for begrensning av rissvidde (kamstål). Største senteravstand mellom Stålspenning σ s armerings stenger (mm) (brukslast) (MPa) w k = 0,4 mm w k = 0,3 mm w k = 0,2 mm Kravene til w k avhengig av eksponeringsklasse er gitt i EC2-1-1, tabellene 7.1N og NA7.1N. Sammenhengen forenkles dersom man

3 124 C6 DIMENSJONERING AV FORBINDELSER klassifiserer kravene som for armeringsoverdekning. Tabell C 6.3 er således en mer konservativ inndeling: Tabell C 6.3. Anbefalte verdier for rissvidder (kamstål). Eksponeringsklasse w k (mm) Innendørs, tørt 0,4 Fuktig, karbonatisering 0,3 Klorider etc. 0,25 For å finne den dimensjonerende stålspenningen f yd (f sd ) må stålspenningen σ s i tabell C 6.2 multipliseres med den gjennomsnittlige lastfaktoren. Gjennomsnittlig dimensjonerende armeringsspenning f yd eller f sd : f yd = σ s (γ g g + γ p p) / (g + Ψ p) p = nyttelast, vind, bruksgrensetilstanden g = egenlast, bruksgrensetilstanden γ p = lastfaktor for nyttelast γ g = lastfaktor for egenlast f yd = dimensjonerende armeringsspenning i bruddgrensetilstanden σ s = strekkspenning i armering i bruksgrensetilstanden Ψ = faktor for kombinasjonsverdi for variabel påvirkning. For trykkspenninger settes f yd = f y / γ s i alle eksponeringsklasser. Brukslasten skal være i lastkombinasjon «Tilnærmet permanent», det vil si Ψ = Ψ 2 = 0,3 til 0,8. Velger man Ψ 2 = 0,8 (lagerbygg) og lastkombinasjon ligning 6.10.b, som er den mest vanlige i oppleggsforbindelser (se bind B, punkt 2.3), får man: f yd = σ s (1,2 g + 1,5 p) / (g + 0,8 p) Dette gir følgende gjennomsnittlige lastfaktor γ l for risskontroll: Tabell C 6.4. Gjennomsnittlige lastfaktorer for risskontroll. p / (g + p) 0,3 0,4 0,5 0,6 γ l 1,37 1,43 1,50 1,57 Setter man sammen tabellene C 6.2, C 6.3 og C 6.4 får man dimensjonerende stålspenninger som vist i tabell C 6.5 (det er brukt interpolasjon): Tabell C 6.5. Dimensjonerende stålspenninger f yd 435 MPa (armeringsstål B500NC). Eksponeringsklasse Senteravstand Risskontroll f yd (MPa) armerings- σ s (MPa) p / (g + p) stenger 0,3 0,4 0,5 0,6 Innendørs, tørt, w k = 0, Fuktig, karbonatisering w k = 0, Klorider etc, w k = 0,

4 C6 DIMENSJONERING AV FORBINDELSER 125 Tabell C 6.5 er normalt på den sikre siden. En detaljert beregning i henhold til EC2-1-1, punkt viser at f yd = 435 MPa også vil være tilfredsstillende for w k = 0,3 samt for de fleste normale tilfeller med w k = 0,25. I det følgende gis anvisninger for hvordan dette skal anvendes på aktuelle forbindelser, og det gis også en del unntak fra stålspenning - ene ovenfor. Det er disse anvisningene som er videreført i alle tabeller og beregningseksempler i dette bind C. Begrensningene gjelder også for profilstål, skruer, hylser, skinner og liknende når de medregnes som armering. Profilstål, skruer, hylser, skinner og liknende vil normalt ha lavere flytespenning enn armeringen, og dermed er rissbegrensningene «automatisk» ivaretatt. For skrueklasse K 8.8 (brukt som armering) må spenningene eventuelt begrenses som anvist. Dette vil bli belyst med en del eksempler. Åpne oppleggforbindelser I figur C 6.21 er vist noen typiske oppleggspunkter. Riss vil normalt ikke beskyttes av utstøping eller fuging i denne type forbindelser. Eksponeringsklassen må vurderes og spenninger beregnes etter reglene over. Med vanlige laster og bygningskonstruksjoner vil det normalt være på den sikre siden dersom man bruker verdiene i tabell C 6.5. Forankring over opplegg Figur C Oppleggssoner med konsentrerte laster. Spalte- og tverrstrekk på opplegg Skråarmering Horisontalarmering over opplegg Konsollens hovedarmering Opphengs- armering Utstøpte oppleggsforbindelser Figur C 6.22 viser et typisk hulldekkeelement på hylle med utstøping av fugen. Riss i overkant hylle vil være beskyttet av utstøping og fuging. Figur C Hyllebjelke som opplegg for hulldekker.

5 126 C6 DIMENSJONERING AV FORBINDELSER Kravet til hyllearmeringen vil derfor bli redusert sammenlignet med konstruksjonen for øvrig: Armering B500NC: Alle eksponeringsklasser: f yd = f y / γ s = 435 MPa I figur C 6.23 er den viste armeringen innlagt for å ta opp horisontale skivekrefter (vind). Riss vil normalt være beskyttet av utstøping og fuging, og kravet til forbindelsen er derfor redusert sammenlignet med konstruksjonen for øvrig: Armering B500NC: Alle eksponeringsklasser: f yd = f y / γ s = 435 MPa I figur C 6.24 kan gjengestang og hylse være dimensjonert for horisontale skivekrefter, eller det er en vridningsforhindrende forbindelse. I praksis vil som regel gjengehylsen begrense utnyttelsen tilsvarende skrueklasse K5.6. Forbindelsen er beskyttet av utstøping og fuging. Kravet til forbindelsen er derfor redusert sammenlignet med konstruksjonen for øvrig: Alle eksponeringsklasser: Gjengehylse: f sd = f y / γ M0 Gjengestang: f sd = 0,9 f u / γ Μ2 Avstivende forbindelser I horisontale skiver, som vist i figur C 6.25, utnyttes B500NC. Forbindelsene er beskyttet av utstøping og fuging. Kravet til forbindelsene er derfor redusert i forhold til konstruksjonen for øvrig: Alle eksponeringsklasser: f sd = f y / γ s Se for øvrig figurene C 6.23 og C Figur C Eksempel på strekkbånd i horisontal skive. Gjengehylse Gjengestang Figur C Eksempel på forankring mellom dekke og bjelke. Figur C Strekkbånd i horisontal skive Figurene C 6.26 og C 6.27 viser horisontalfuger i søyler og skiver. Dette er tilfeller hvor det er aktuelt å utnytte høye stålspenninger, for eksempel skrueklasse K8.8 eller spennstål, for å kunne oppta de store krefter som ofte skal overføres i avstivende konstruksjoner. Skal disse utnyttes, må det kontrolleres at det ikke opptrer store og synlige riss, og at 2. ordens effekter er ivaretatt. Dersom disse strekkspenningene skyldes vindlaster, settes f sd = f y / γ s (evt. 0,9 f u / γ M2 ) uten nærmere vurdering i alle eksponer - ings klasser. Dersom spenningene skyldes egenvekter og nyttelaster og forbindelsene er eksponerte, bør anbefalingene i tabell C 6.5 følges. I tabellene og beregningseksemplene som følger i dette bind C er det derfor brukt eksponer ings klasse XC3 (fuktig, karbonatisering) og ordinære dimensjonerende spenninger uten reduksjon med hensyn til risskontroll. a) Liming b) Fotplate Figur C Innspenning av søyler.

6 C6 DIMENSJONERING AV FORBINDELSER 127 Figur C Vertikalforbindelser i vertikale skiver dimensjonerende spenninger oversikt Materialfaktorer Tabell C 6.6 omhandler anbefalte materialfaktorer, og er en gjengi - velse av tabell B 2.3. Tabell C 6.6. Materialfaktorer. Materialfaktor γ m Materiale, aktivitet I fabrikk Montasjearbeid (byggeplass) Betong: Generelt 1,50 (γ c ) 1,50 (γ c ) Fuger 1,80 (γ c ) Heft 1,80 (γ c ) Heft i trange fuger (Se bind B, del 3) 1,80 3,60 (γ c ) Liming (Se bind B, del 3) Faktorer basert på prøving Armering: Generelt 1,15 (γ s ) 1,15 (γ s ) Sveising 1,25 (γ M2 ) 1,50 (γ M2 ) Konstruksjonsstål: Generelt 1,05 (γ M0, γ M1 ) 1,05 (γ M0, γ M1 ) Sveising 1,25 (γ M2 ) 1,50 (γ M2 ) Skruer, gjengehylser 1,25 (γ M2 ) 1,25 (γ M2 ) Verdiene for arbeid i fabrikk er de verdiene EC2-1-1 \2\ og EC3-1-8 \7\ setter som normale verdier. For utførelse på byggeplass er materialfaktoren anbefalt økt med 20 %. Det er de viste verdiene som er brukt i alle beregnings eksemplene.

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll.

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll. 168 C7 SØYLER Figur C 7.42. Komplett fagverksmodell ved konsoller. a) Sentrisk last over konsoll b) Eksentrisk last over konsoll Typiske prefabrikkerte søyler vil vanligvis ikke være maksimalt utnyttet

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

5.1.2 Dimensjonering av knutepunkter

5.1.2 Dimensjonering av knutepunkter 80 H5 DIMENSJONERINGSEKSEMPLER V (kn) og M (knm) 500 0 500 1000 5 10 15 20 25 30 35 40 45 50 x (m) 1500 Snitt 4 (33,7 m < x < 50,8 m): F y = 0; det vil si: V f + h fy x H y2 H y5 H y4 = 0 V f = 10,1 x

Detaljer

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense.

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. C13 SKIER 275 Tabell C 13.12. Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. Rd (kn/m) Fuge- B25, γ c = 1,8 B30, γ c = 1,8 B35, γ c = 1,8 bredde f cd = 11,8 MPa f cd = 14,2

Detaljer

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 207 9.1 TO-SKIPS INDUSTRIHALL Dette beregningseksemplet viser praktisk beregning av knutepunk t - ene i en to-skips industrihall, ved hjelp av tabellene

Detaljer

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket C11 RIBBEPLATER 231 Lask a) Strekkbånd i bjelken b) Strekkbånd på opplegget c) Strekkbånd på dekket d) Armering og utstøping e) Innstøpt flattstål i plate res dette ofte med at den samme forbindelsen også

Detaljer

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM igur B 8.10. Kombinasjon av skiver og rammer. a) Utkraget skive b) Momentramme ) Kombinasjon igur B 8.11. Eksempel på ramme/ skivekombinasjon Hovedramme igur B 8.12. (Lengst t.h.) Kombinasjon av rammer.

Detaljer

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet C11 RIBBEPLATER 225 I det følgende behandles typiske opplegg for ribbeplater, samt noen typiske sveiseforbindelser. Beregning av ribbeplater som horisontalskiver er behandlet i kapittel C13. Generell beregning

Detaljer

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering 180 I det følgende behandles typiske opplegg for bjelker. Dessuten gjennomgås dimensjonering av hylle for opplegg av dekker, mens dimensjonering av forbindelsen er vist i kapittel C11 for ribbeplater og

Detaljer

Statiske Beregninger for BCC 250

Statiske Beregninger for BCC 250 Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt C7 SØYLER 159 Evt. shims Utstikkende søylejern Sentrisk gjengestang Utsparing (rør) gyses ved søylemontasje Figur C 7.28. Vanlig limeløsning. Illustrasjon til tabell C 7.6. u u a s Bjelke Korrugert rør

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

5.2.2 Dimensjonering av knutepunkter

5.2.2 Dimensjonering av knutepunkter 92 Det er derfor tilstrekkelig å kontrollere hver av lastene sine hovedretninger. Se også punkt 2.1.4 her. E Edx + 0 E Edy 0 E Edx + E Edy 5.2.1.8 Kraftfordeling til veggskivene Tar utgangspunkt i taket

Detaljer

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle 118 5.5.5 Kombinasjon av ortogonale lastretninger Da bygget er regulært i planet samt at det kun er søylene som er avstivende, kan det forutsettes at den seismiske påvirkningen virker separat og ikke behøver

Detaljer

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste 328 14.4 FASADEOPPLEGG PÅ SØYLER OG DEKKER I figurene C 14.14 og C 14.15 er vist noen vanlige løsninger. Disse dimensjoneres som plant opplegg på grunnmur. Elementene settes vanligvis på innstøpte ankerplater

Detaljer

B19 FORANKRING AV STÅL 297

B19 FORANKRING AV STÅL 297 B19 FORANKRING AV STÅL 297 19.11 FORANKRING AV ARMERING I denne sammenhengen betyr «armering» kamstål B500NC som støpes inn i elementer eller støpes inn i fuger på byggeplass. Sveising eller liming av

Detaljer

B10 ENKELT SØYLE BJELKE SYSTEM

B10 ENKELT SØYLE BJELKE SYSTEM 0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt

Detaljer

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6.

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6. 248 C12 HULLDEKKER Det er som regel bare vridningsforbindelser som kan kreve så store strekk-krefter som N maks2, se figur C 12.9.a. Dersom forbindelsen skal overføre skjærkrefter mellom hulldekke og vegg

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

Strekkforankring av stenger med fot

Strekkforankring av stenger med fot 236 B19 FORAKRIG AV STÅL 19.3.2 Strekkforankring av stenger med fot 19.3.2.1 Generelt kjeglebrudd Anvisningene her baserer seg delvis på J. Hisdal, Masteroppgave \10\. Masteroppgaven analyserer hovedsakelig

Detaljer

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4.

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4. 254 C13 SKIER I det følgende behandles typiske knutepunkter for skiver. All generell informasjon finnes i bind B. Beregning av minimumskrefter på forbindelser er spesielt viktig for skiver, og grunnlaget

Detaljer

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19.

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19. B19 FORAKRIG AV STÅL 231 uttrykk i en lav verdi på sikkerhetsfaktoren. Er SF oppgitt til 3 eller mindre (for betongbrudd), kan det tyde på at det er denne modellen som er brukt. Det innebærer at: x d =

Detaljer

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer.

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer. 12 KIEYTEM 125 Figur 12.53 viser plan av et stort dekke med tre felt (vindsug på gavl er ikke vist). Kreftene og spenningene som virker på elementene, og C er vist under planen av dekket. Trykkgurten er

Detaljer

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning. 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed

Detaljer

9 Spesielle påkjenninger Gjennomgås ikke her. Normalt vil kontroll av brannmotstand og varmeisolasjonsevne

9 Spesielle påkjenninger Gjennomgås ikke her. Normalt vil kontroll av brannmotstand og varmeisolasjonsevne C13 SKIVER 293 V Rd,N = 0,5 N Ed = 0,5 77 = 38,5 kn > H Ed = 23,37 kn, det vil si at ak siallasten kan ta hele skjærkraften alene. Minste anbefalt tverrarmering: S min = 0,25 V Ed / 0,5 = 0,5 V Ed = 0,5

Detaljer

0,5 ν f cd [Tabell B 16.5, svært glatt, urisset]

0,5 ν f cd [Tabell B 16.5, svært glatt, urisset] 12 KIVEYTEM kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten μ N Ed er

Detaljer

B18 TRYKKOVERFØRING I FORBINDELSER

B18 TRYKKOVERFØRING I FORBINDELSER B18 TRYKKOVERFØRIG I FORBIDELSER 201 18.1 VALG AV MELLOMLEGG Bjelker : t = 6 10 mm (enkelt) Stål: t = 6 10 mm (enkelt) Plast: t = 4 mm (dobbelt) Brutto oppleggslengde (betongmål): av stål: l 150 mm Andre:

Detaljer

Eksempel D 14.1. Kontorbygg i innlandsstrøk D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE

Eksempel D 14.1. Kontorbygg i innlandsstrøk D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE 108 D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE 14.3 EKSEMPLER PÅ UTFØRELSE Her gjennomgås noen typiske bygningskonstruksjoner med hensyn til miljøklassifisering og prosjektering

Detaljer

C14 FASADEFORBINDELSER 323

C14 FASADEFORBINDELSER 323 C14 FASADEFORBINDELSER 323 Elementet Når mellomlegget har tilnærmet samme bredde som bærende elementvange i et veggelement, blir spaltestrekk på tvers av elementet ubetydelig. Spaltestrekk i lengderetningen

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER C13 SKIVER

13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER C13 SKIVER 282 C13 SKIVER 13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER beregningseksempel med SKIVEfORbINdELSER 1 Generelt I dette eksemplet gjøres en praktisk gjennomføring av beregning med bruk av anbefalinger,

Detaljer

H5 DIMENSJONERINGSEKSEMPLER

H5 DIMENSJONERINGSEKSEMPLER H5 DIMENSJONERINGSEKSEMPLER 69 I dette kapittelet tar en praktisk i bruk de regler og anbefalinger som er omtalt i kapitlene H1 til H4. Eksemplene tar kun for seg dimensjonering for seismiske laster. Det

Detaljer

19.3.3 Strekkforankring av kamstål

19.3.3 Strekkforankring av kamstål 242 19.3.2.6 Armert betong Svært ofte vil senteravstander og kantavstander være så små at bruddkjeglene ikke gir nok utrivingskapasitet. Formlene her gir ingen addisjonseffekt av tilleggsarmering, så løsningen

Detaljer

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING

Detaljer

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1.

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1. H V v g 1 g 2 En-etasjes skive som deles i to (stadium 2). Hvordan finne vertikal skjærkraft i delingsfugen? Beregningen viser at horisontalfugen i underkant får strekkraften S og trykkresultanten N c.

Detaljer

Seismisk dimensjonering av prefab. konstruksjoner

Seismisk dimensjonering av prefab. konstruksjoner Seismisk dimensjonering av prefab. konstruksjoner Geir Udahl Konstruksjonssjef Contiga Agenda DCL/DCM Modellering Resultater DCL vs DCM Vurdering mhp. prefab DCL Duktiltetsfaktoren q settes til 1,5 slik

Detaljer

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET 9.2.5 Slankhet og slankhetsgrenser Den geometriske slankheten defineres som λ = l 0 / i = l 0 / (I /A), det vil si l 0 = λ (I /A) der i er treghetsradien for urisset betongtverrsnitt (lineært elastisk).

Detaljer

BSF EN KORT INNFØRING

BSF EN KORT INNFØRING Dato: 11.09.2014 Sign.: sss BSF EN KORT INNFØRING Siste rev.: 16.11.2018 Sign.: sss Dok. nr.: K4-10/551 Kontr.: ps PROSJEKTERING BSF EN KORT INNFØRING Denne innføringen er ment å gi en liten oversikt over

Detaljer

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER 21 4.1 HULLDEKKER Hulldekker er enveis dekkekonstruksjoner, normalt med fritt dreibare opplegg. Slakkarmeringen som legges i fugene bidrar til å sikre dekkekonstruksjonens

Detaljer

Forankring av antennemast. Tore Valstad NGI

Forankring av antennemast. Tore Valstad NGI Forankring av antennemast Tore Valstad NGI 40 Antennemast på 3960 berggrunn 1400 1400 1400 2800 0 40 Antennemast på 3960 jordgrunn 1400 1400 1400 2800 0 BRUDD I KRAFTLINJEMAT BRUDD I KRAFTLINJEMAT FUNDAMENTERING

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

Prosjektering MEMO 551 EN KORT INNFØRING

Prosjektering MEMO 551 EN KORT INNFØRING Side 1 av 7 Denne innføringen er ment å gi en liten oversikt over bruk og design av forbindelsene, uten å gå inn i alle detaljene. er et alternativ til f.eks faste eller boltede søylekonsoller. enhetene

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET

Detaljer

N 0 Rd,c > > > >44

N 0 Rd,c > > > >44 2.2.3 Dimensjonering av stagboltene Aktuelle bolter er Hilti HSA Ekspansjonsanker (kvikkbolt, stikkanker. stud anchor) i M16 og M20 og HSL3 Sikkerhetsanker (heavy duty anchor) i M20. I tillegg er HCA fjæranker

Detaljer

7.1.4 Hylsefundament C7 SØYLER

7.1.4 Hylsefundament C7 SØYLER 148 C7 SØYLER Tabell C 7.5. Forankring av limte stenger uten forankringsfot. Forutsetninger: Kamstål B500NC: f yd = 500 / 1,15 = 435 MPa l bd = nødvendig forankringslengde for oppgitt strekkapasitet l

Detaljer

Jernbaneverket BRUER Kap.: 8

Jernbaneverket BRUER Kap.: 8 Stål- og samvirkekonstruksjoner Side: 1 av 12 1 HENSIKT OG OMFANG... 2 2 DIMENSJONERENDE MATERIALFASTHET... 3 2.1 Betongkonstruksjonsdelen... 3 2.1.1 Konstruksjonsfasthet...3 2.2 Stålkonstruksjonsdelen...

Detaljer

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71 32 C2 BJELKER 2.1.3 Dimensjonering for skjærkraft For å sikre bestandigheten bør spenningen f yd i armeringen ved ut - sparinger begrenses i henhold til tabell C 6.5. Små utsparinger Når utsparingen Ø

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 744 Dato: 1.01.016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.: 3.05.016 K5-10-744 Sign.: Kontr.: sss nb EKSEMPEL INNHOLD EKSEMPEL... 1 GRUNNLEGGENDE

Detaljer

Håndbok 185 Eurokodeutgave

Håndbok 185 Eurokodeutgave Håndbok 185 Eurokodeutgave Kapittel 5 Generelle konstruksjonskrav Kapittel 5.3 Betongkonstruksjoner Foredragsholder: Thomas Reed Thomas Reed Født i 1982 Utdannet sivilingeniør Begynte i Svv i 2007 Bruseksjonen

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål)

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål) EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 23.05.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 13.06.2019 Antall oppgavesider (inkludert forside): 5 Antall vedleggsider: 4 Faglærer:

Detaljer

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109 A7 ELEMENTTYPER OG TEKNISKE DATA 19 7.2 RIBBEPLATER Generelt DT-elementer har lav egenlast og stor bæreevne, med spennvidder inntil 24 m. Elementene brukes til tak, dekker, bruer, kaier og enkelte fasadeløsninger.

Detaljer

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes.

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes. 133 Konklusjon Man ser at det er en rekke variable faktorer som inngår. Dette kompliserer beregningene og gjør dem noe usikre. Etter en samlet vurdering av regler, praksis og erfaring anbefales det å regne

Detaljer

3T-MR - H over E1-32,8 kn 1. SiV - 5. btr - E2 Christiansen og Roberg AS BER

3T-MR - H over E1-32,8 kn 1. SiV - 5. btr - E2 Christiansen og Roberg AS BER 3T-MR - H40-1-2 over E1-32,8 kn 1 Dataprogram: E-BJELKE versjon 6.5 Laget av Sletten Byggdata Beregningene er basert på NS-EN 1992-1-1 og NS-EN 1990:2002 + NA:2008 Data er lagret på fil: G:\SiV 5 - E2

Detaljer

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning 66 C3 DEKKER 3.2 DImENSjONERING Den generelle effekten av spennarmering i ribbeplater, forskalings - plater og hulldekker er beskrevet i innledningen til kapittel C3. 3.2.1 Ribbeplater Dimensjonering for

Detaljer

Brukonferansen Innføring av Eurokoder av Gunnar Egset, Johs. Holt as

Brukonferansen Innføring av Eurokoder av Gunnar Egset, Johs. Holt as Innføring av Eurokoder av Gunnar Egset, Johs. Holt as 08.11.2011 Innføring av Eurokoder Eurokodene ble offisielt innført 31 mars 2010. I 2010 og fram til ca sommeren 2011 er det relativt få bruer som er

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 74a Dato: 09.03.0 Sign.: sss BWC 80-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/3 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 02.01.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 23.01.2019 Antall oppgavesider: 4 Antall vedleggsider: 4 (inkl vedlegg for innlevering)

Detaljer

Vedlegg 1.5 SPENNBETONG SPENNBETONG 1

Vedlegg 1.5 SPENNBETONG SPENNBETONG 1 Vedlegg 1.5 1 HVA ER FORSPENNING? SPENNARMERT BETONG/ Armert betong hvor all eller deler av armeringen av armeringen er forspent og dermed er gitt en strekktøyning i forhold til betongen. Kreftene som

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

4.3. Statikk. Dimensjonerende kapasitet mot tverrlast og aksialkraft. 436 Gyproc Håndbok Gyproc Teknikk. Kapasiteten for Gyproc Duronomic

4.3. Statikk. Dimensjonerende kapasitet mot tverrlast og aksialkraft. 436 Gyproc Håndbok Gyproc Teknikk. Kapasiteten for Gyproc Duronomic Kapasiteten for Gyproc Duronomic Dimensjonerende kapasitet mot tverrlast og aksialkraft Forsterkningsstendere kan ta opp både tverrlaster og aksialkrefter. Dimensjoneringen er basert på partialkoeffisientmetoden.

Detaljer

6. og 7. januar PRAKTISK BETONGDIMENSJONERING

6. og 7. januar PRAKTISK BETONGDIMENSJONERING 6. og 7. januar PRAKTISK BETONGDIMENSJONERING (9) Fundamentering- pelehoder www.betong.net Øystein Løset, Torgeir Steen, Dr. Techn Olav Olsen 2 KORT OM MEG SELV > 1974 NTH Bygg, betong og statikk > ->1988

Detaljer

POK utvekslingsjern for hulldekker

POK utvekslingsjern for hulldekker norge as POK utvekslingsjern for hulldekker SFS127 www.bb-artikler.no www..com POK Innholdsfortegnelse 1. FUNKSJONSMÅTE... 3 2. MÅL OG KAPASITETER... 3 3. PRODUKSJON 3.1 PRODUKSJONSANVISNINGER... 4 3.2

Detaljer

Dimensjonering Memo 37. Standard armering av bjelke ender BCC

Dimensjonering Memo 37. Standard armering av bjelke ender BCC Side 1 av 7 Standard armering for BCC 250 (NB! Dette er den totale armeringen i bjelke enden) For oversiktens skyld er bjelkens hovedarmering ikke tegnet inn på opprisset. Mellom de angitte bøyler i hver

Detaljer

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS (8) Geometriske toleranser Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS Kursdagene 2011 Ny norsk standard NS-EN 13670: Utførelse av betongkonstruksjoner - konsekvenser og bruk av nytt regelverk

Detaljer

Eurokode 5 en utfordring for treindustrien

Eurokode 5 en utfordring for treindustrien Eurokode 5 en utfordring for treindustrien Bruk av Eurokode 5- generell gjennomgang Treteknisk 2013.10.15 Sigurd Eide Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering INNHOLD BWC 50 240 Dato: 07.06.12 sss Side 1 av 6 FORUTSETNINGER... 2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERØR BRUKT I KOMBINASJON MED TSS... 2 STÅL, BETONG OG

Detaljer

HRC T-Hodet armering Fordeler for brukerne

HRC T-Hodet armering Fordeler for brukerne HIGH PERFORMANCE REINFORCEMENT PRODUCTS HRC T-Hodet armering Fordeler for brukerne HRC T-hodet armering har spesielle egenskaper som skiller den fra konvensjonell armering. HRC T-hoder forankrer den fulle

Detaljer

Høgskolen 1Østfold 1 Avdeling for ingeniørfag

Høgskolen 1Østfold 1 Avdeling for ingeniørfag Høgskolen 1Østfold 1 EKSAMENSOPPGAVE Emne: IRB22013 Konstruksjonsteknikk 2 Lærer/telefon: Geir Flote Gru er: 2. B Dato: 04.01.2016 Tid: 09.00 13.00 Antall o avesider: 5 Antall vedle sider: 1 Sensurfrist:

Detaljer

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft - eksempler betongbjelker INNHOLDSFORTEGNELSE 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft 1.1. Dimensjonering for bøyning i bruddgrensetilstand 1.2. Dimensjonering mot skjærbrudd 2.

Detaljer

Vedlegg 1.9 NS 3473 PROSJEKTERING AV BETONGKOPNSTRUKSJOENR

Vedlegg 1.9 NS 3473 PROSJEKTERING AV BETONGKOPNSTRUKSJOENR Vedlegg 1.9 NS 3473 PROSJEKTERING AV BETONGKOPNSTRUKSJOENR Beregnings- og konstruksjonsregler Siri Fause Høgskolen i Østfold 1 NS 3473 Prosjektering av betongkonstruksjoner 6.utgave september 2003 Revisjonen

Detaljer

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg:

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg: -~ ~ høgskolen i oslo IEmne I Gruppe(r): I Eksamensoppgav en består av: Dimensjonering 2BA 288! Antall sider (inkl. 'forsiden): 4 I I! Emne~ode: LO 222 B I Faglig veileder:! F E Nilsen / H P Hoel j Dato:

Detaljer

1 v.li. cl54- ecc,vec-3

1 v.li. cl54- ecc,vec-3 2 tect,ves-5, (4 280 HEA L = 6,00 meter TRE-DIM Versjon 9.0 BJELKE Bjelkens : 0,0 111,7 kn 17 mm L/350 6000 111,7 kn t EINAR BREKSTAD AS AU1 ENTREPRENØR 7130 BREKSTAD NYTTELAST : EGENLAST 15,140 kn/m 37,239

Detaljer

Jernbaneverket BRUER Kap.: 8 Hovedkontoret Regler for prosjektering og bygging Utgitt: 01.01.98

Jernbaneverket BRUER Kap.: 8 Hovedkontoret Regler for prosjektering og bygging Utgitt: 01.01.98 Stål- og samvirkekonstruksjoner Side: 1 av 14 1 HENSIKT OG OMFANG...2 2 DIMENSJONERENDE MATERIALFASTHET...3 2.1 Betongkonstruksjonsdelen...3 2.1.1 Konstruksjonsfasthet... 3 2.2 Stålkonstruksjonsdelen...3

Detaljer

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter.

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter. 57 600 50 Figur C.1. Skjæroverføring mellom ribbeplater. punktlaster og linjelaster som overføres til naboelementene avhenger av konstruksjonens stivhet i tverretningen. Dette må beregnes basert på påstøpens

Detaljer

Limtre Bjelkelags- og sperretabeller

Limtre Bjelkelags- og sperretabeller Pb 142 2391 Moelv www.limtre.no pr juni 2005 Forutsetninger for bjelkelags- og sperretabeller Tabellene bygger på følgende norske standarder og kvaliteter: NS 3470-1, 5.utg. 1999, Prosjektering av trekonstruksjoner

Detaljer

C1 GENERELT 15. Tilslag. Relativ fuktighet. Miljø. Temperatur. Svinn. Spennkraft Forspenningstap Kryp. Belastning Spennvidde

C1 GENERELT 15. Tilslag. Relativ fuktighet. Miljø. Temperatur. Svinn. Spennkraft Forspenningstap Kryp. Belastning Spennvidde C1 GENERELT 15 Langtidsdeformasjonene vil fortsette i konstruksjonens levetid, men endringene blir relativt raskt av ubetydelig størrelse. Figur C 1.4 illu - strerer tidsavhengigheten av langtidsdeformasjonene,

Detaljer

Dimensjonering MEMO 54c Armering av TSS 41

Dimensjonering MEMO 54c Armering av TSS 41 Side av 9 INNHOLD GUNNLEGGENDE FOUTSETNINGE OG ANTAGELSE... GENEELT... STANDADE... KVALITETE... 3 DIMENSJONE OG TVESNITTSVEDIE... 3 LASTE... 3 AMEINGSBEEGNING... 4 LIKEVEKT... 4 Side av 9 GUNNLEGGENDE

Detaljer

D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER MILJØKRAV OG UTFØRELSE

D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER MILJØKRAV OG UTFØRELSE 96 D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER MILJØKRAV OG UTFØRELSE Den prosjekterende har et klart ansvar for å beregne og konstruere bygningskonstruksjonene slik at offentlige krav til personsikkerhet

Detaljer

etter Norsk Standard

etter Norsk Standard etter Norsk Standard Siri Fause siri.fause@hiof.no Høgskolen i Østfold, avdeling for ingeniørfag 21. november 2007 etter Norsk Standard 1 Innhold Sikkerhet, krav til pålitelighet, lastfaktorer og lastkombinasjoner

Detaljer

Eurokode 5. Kurs Beregning med Eurokode 5. Deformasjon av drager. Treteknisk Sigurd Eide (Utarb SEi)

Eurokode 5. Kurs Beregning med Eurokode 5. Deformasjon av drager. Treteknisk Sigurd Eide (Utarb SEi) Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner Del 1-1 Allmenne regler og regler for bygninger Kurs Beregning med Eurokode 5 Eksempel Bruksgrense Deformasjon

Detaljer

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel INNHOLD BWC 50-40 Side av GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... 4 BETONG OG ARMERING I BALKONG... 4 DEKKETYKKELSER... 4 STÅLSØYLE FOR INNFESTING BWC... 4 BEREGNINGER... 5

Detaljer

B19 FORANKRING AV STÅL

B19 FORANKRING AV STÅL 292 B19 FORAKRIG AV STÅL tabeller. Tabellene er basert på relevante forsøk som bør gå foran teoretiske beregninger. Husk at reglene for sikkerhetsvurdering angitt i punkt 19.2 skal følges! Tillatte brukslaster

Detaljer

Håndbok N400 Bruprosjektering

Håndbok N400 Bruprosjektering Håndbok N400 Bruprosjektering Kapittel 7: Betongkonstruksjoner Thomas Reed Grunnlag for prosjektering Generell henvisning til NS-EN 1992-1-1 og NS-EN 1992-2. Konstruksjoner i vann > det vises til Norsk

Detaljer

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen.

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen. I DIMENSJONERING I -~ ~ høgskolen i oslo Emne: Il ~Gruppe(r) 3BK Eksamensoppgaven Antall sider (inkl. består av: forsiden): _L Tillatte hjelpemidler Alle skriftlige kilder. Enkel ikkeprogrammerbar Emnekode:

Detaljer

KP-KONSOLL. Postboks 4160, Gulskogen, 3002 Drammen tlf. 32 88 08 50 - fax 32 88 08 51

KP-KONSOLL. Postboks 4160, Gulskogen, 3002 Drammen tlf. 32 88 08 50 - fax 32 88 08 51 KP-KONSOLL Postboks 4160, Gulskogen, 3002 Drammen tlf. 32 88 08 50 - fax 32 88 08 51 KP-konsoll INNHOLD 1. ALLMENT 1.1 Allmen beskrivelse side 3 1.2 Funksjonsprinsipp side 3 2. KONSOLLDELER 2.1 KPH-Søyleholk

Detaljer

14.2 MILJØKRAV OG KLASSIFISERING AV KNUTEPUNKTER

14.2 MILJØKRAV OG KLASSIFISERING AV KNUTEPUNKTER 102 D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE 14.2 MILJØKRAV OG KLASSIFISERING AV KNUTEPUNKTER Miljøklassifisering Det er upraktisk å ha forskjellige miljøklassifisering for

Detaljer

Dato: ps DIMENSJONERING

Dato: ps DIMENSJONERING MEMO 812 Dato: 16.08.2012 Sign.: sss BEREGNING AV ARMERING Siste rev.: 13.05.2016 Sign.: sss DTF150/DTS150 Dok. nr.: K6-10/12 Kontr.: ps DIMENSJONERING BEREGNING AV ARMERING DTF150/DTS150 INNHOLD GRUNNLEGGENDE

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 704 Dato: 8.0.0 Sign.: sss BWC 55-740 / BWC 55 LIGHT SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.:.09.06 K5-4/5 Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD GRUNNLEGGENDE

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 734 Dato: 07.06.0 Sign.: sss BWC 50-40 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/34 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

MEMO 812. Beregning av armering DTF/DTS150

MEMO 812. Beregning av armering DTF/DTS150 Side 1 av 7 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 2 LAST... 3 ARMERINGSBEREGNING... 3 YTRE LIKEVEKT... 3 NØDVENDIG FORANKRINGSARMERING...3

Detaljer

Focus 2D Konstruksjon

Focus 2D Konstruksjon Prosjekt: betongtal Beregning utført 01.04.2009 14:49:48 Focus 2D Konstruksjon BEREGNING AV PLANE KONSTRUKSJONER NTNU Student 3. Klasse 2008 14:49:48-01.04.2009 Side:1 1. KONSTRUKSJONSMODELL OG LASTER

Detaljer

Eurokoder Dimensjonering av trekonstruksjoner

Eurokoder Dimensjonering av trekonstruksjoner Eurokoder Dimensjonering av trekonstruksjoner NS-EN 1995 NS-EN 1990 NS-EN 338 NS-EN 1194 NS-EN 1991 Ved Ingvar Skarvang og Arnold Sagen 1 Beregningseksempel 1 -vi skal beregne sperrene på dette huset laster

Detaljer

Hva er en sammensatt konstruksjon?

Hva er en sammensatt konstruksjon? Kapittel 3 Hva er en sammensatt konstruksjon? 3.1 Grunnlag og prinsipp Utgangspunktet for å fremstille sammensatte konstruksjoner er at vi ønsker en konstruksjon som kan spenne fra A til B, og som samtidig

Detaljer

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING MEMO 732 Dato: 07.06.2012 Sign.: sss BWC 50-240 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG, BEREGNING AV SVEISEINNFESTNINGER Siste rev.: Dok. nr.: 18.05.2016 K5-10/32 Sign.: Kontr.: sss ps OG BALKONGARMERING

Detaljer

Tabell B 18.2 Oversikt over en del gummityper. Material- Målt Angitt betegnelse

Tabell B 18.2 Oversikt over en del gummityper. Material- Målt Angitt betegnelse 210 18.5.3 Uarmert gummi Anbefalingene i dette avsnittet baserer seg på \4\ og \5\. Anbefalingene begrenser seg til gummitypene som refereres i tabell B 18.2 (utprøvet ved NBI \6\). B18 TRYKKOVERFØRING

Detaljer

D12 SIKRING AV ARMERINGEN

D12 SIKRING AV ARMERINGEN D12 SIKRING AV ARMERINGEN 81 12.1 SIKRING AV ARMERINGSOVERDEKNING Som det fremgår av punkt 10.2 er en riktig armeringsoverdekning en av de viktigste faktorene for å sikre armerte betongkonstruksjoner den

Detaljer

Håndbok N400 Bruprosjektering

Håndbok N400 Bruprosjektering Håndbok N400 Bruprosjektering Kapittel 11. Fundamentering Gaute Nordbotten Disposisjon Hva er nytt? Generelt Frostsikring Erosjon - erosjonssikring Drenering og tilbakefylling Direkte fundamentering Peler

Detaljer

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator. l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):

Detaljer

Steni 2. b eff. Øvre flens Steg h H Nedre flens

Steni 2. b eff. Øvre flens Steg h H Nedre flens FiReCo AS Dimensjonerings-diagram for BEET vegg Lastberegninger basert på NBI tester. Jørn Lilleborge Testdokument 1998 FiReCo AS 714-N-1 Side: 2 av 17 Innhold 1. DIMENSJONERINGSDIAGRAM FOR BEET VEGG...

Detaljer