C1 GENERELT 15. Tilslag. Relativ fuktighet. Miljø. Temperatur. Svinn. Spennkraft Forspenningstap Kryp. Belastning Spennvidde

Størrelse: px
Begynne med side:

Download "C1 GENERELT 15. Tilslag. Relativ fuktighet. Miljø. Temperatur. Svinn. Spennkraft Forspenningstap Kryp. Belastning Spennvidde"

Transkript

1 C1 GENERELT 15 Langtidsdeformasjonene vil fortsette i konstruksjonens levetid, men endringene blir relativt raskt av ubetydelig størrelse. Figur C 1.4 illu - strerer tidsavhengigheten av langtidsdeformasjonene, og som det fremgår er mye unnagjort etter et års tid. Relaksasjon i spenntau følger noenlunde samme kurve som svinn. Tidsavhengigheten av svinn og kryp avhenger av mange parametere kurvene er å anse som veiledende. Prosent av sluttverdi, % Kryp pga. egenvekt, spennkraft Kryp pga. påstøp, last Alder i måneder Oppbøyning Nedbøyning Lagret med overheng Liten spennvidde, liten Stor spennvidde, stor Overhøyde i form Avforming langtidslast langtidslast Montasje Påføring av langtidslast Figur C 1.3. Deformasjonsforløp for slakk - armerte elementer. Figur C 1.4. Tidsavhengighet av svinn og kryp for normal betong. Tid Påvirkningsfaktorer Den totale deformasjon er summen av elastisk deformasjon, kryp - deformasjon og svinndeformasjon. Elastisk deformasjon er den momentane deformasjon betongelementet får når lastene og eventuell spennkraft påføres, og er direkte proporsjonal med disse. - og krypdeformasjonene bestemmes av svinn- og kryptøyningene. Imidlertid slik man normalt beregner betongelementkonstruksjoner har svinntøyningene ingen direkte innflytelse på deformasjonene, fordi man regner samme svinn over hele tverrsnittet. Innflytelsen blir dermed indirekte ved at svinntøyningen påvirker forspenningstapet. Kun i helt spesielle tilfeller må man ta hensyn til deformasjoner som skyldes svinngradienter i elementene. I tillegg er deformasjonene selvfølgelig avhengige av spennvidden og tverrsnittets geometri. Sammenhengen mellom de parametere som påvirker deformasjonene og hvorledes de påvirker hverandre er relativt komplisert, som det fremgår av de følgende tabeller. Tabell C 1.2 Parametere som påvirker elastiske deformasjoner. PARAMETER PÅVIRKES AV SOM PÅVIRKES AV SOM PÅVIRKES AV E-modul Spennkraft Forspenningstap Kryp Spenninger Relaksasjon Belastning Spennvidde

2 16 C1 GENERELT Tabell C 1.3 Parametere som påvirker svinntøyninger. PARAMETER PÅVIRKES AV SOM PÅVIRKES AV Grunnverdi for svinn Effektiv tykkelse Effektiv alder Tverrsnittets geometri Tabell C 1.4 Parametere som påvirker kryptøyninger. PARAMETER PÅVIRKES AV SOM PÅVIRKES AV SOM PÅVIRKES AV Spenninger Kryptall E-modul Spennkraft Forspenningstap Kryp Relaksasjon Permanent last Langtidsandel av nyttelast Spennvidde Normert kryptall Effektiv tykkelse Effektiv betongalder Effektiv belastningstid Tverrsnittets geometri Dette kan lett virke overveldende, spesielt når man også skal ta hensyn til at mange av disse parametrene varierer over tid, som illu strert for temperatur og relativ fuktighet i tabell C 1.1. Imidlertid er de hjelpemidler som er utviklet normalt gode nok til at det lar seg gjøre å beregne deformasjoner med tilstrekkelig nøyaktighet. I bind B, punkt 4.2 finnes hjelpemidler til å finne tallverdier på disse parametrene. Videre har elementbransjen den fordelen at det er forholdsvis enkelt for produsenter å måle opptredende deformasjoner i hvert fall så lenge element ene er på lager og sammenligne dem med de beregnede. Den stati stikk den enkelte produsent etterhvert kan skaffe seg på denne måten, kan benyttes til å kalibrere grunnverdiene for noen av de parametrene som inngår i deformasjonsberegningene. Parameterenes relative viktighet Størrelsen av den innflytelse som de forskjellige parametere har varierer noen er viktigere enn andre. Det er vanskelig og sette opp en generell rangeringsliste, fordi innflytelsen av enkelte påvirknings -

3 C1 GENERELT 17 faktorer er viktigere i enkelte tidsperioder enn i andre, og enkelte påvirkningsfaktorer har større innflytelse på enkelte parametere enn på andre. Imidlertid kan man se av tabellene C 1.2 til C 1.4 at temperatur og relativ fuktighet ligger i bunn som påvirkningsfaktor for de øvrige påvirkningsfaktorene, og har dermed direkte og indirekte innflytelse på de fleste parametere. : : sutvikling: : : : Relaksasjon: og kryp: Spennkraft: Spesielt viktig i herdefasen både med hensyn til fasthetsutvikling, kryp og svinn. Senere begrenset innflytelse på kryp, innflyt else på svinn er fortsatt betydelig. Spesielt viktig i herdefasen både med hensyn til fasthetsutvikling, kryp og svinn. Senere begrenset innflytelse, bortsett fra på effektiv betongalder. Moderat innflytelse på effektiv belastningstid. Ved temperaturer over ca. 35 C vil kryp øke sterkt. Spesielt viktig for E-modulen. Spesielt viktig for å oppnå ønsket fasthetsklasse, og dermed E-modulen. Høyt vanninnhold vil redusere fastheten og øke både kryp og svinn. Begrenset innflytelse på kryp, kryp reduseres noe med raskere sement. Begrenset innflytelse på E-modulen. Moderat innflytelse på forspenningstapet og dermed spennkraften. Middels innflytelse på forspenningstapet og dermed spennkraften. Stor innflytelse på deformasjonene. Geometrien (tverrsnitt, spennvidde) er selvfølgelig helt avgjørende i deformasjonsberegninger. Treghetsmomentet som benyttes har stor innflytelse på resultatet, det er direkte proporsjonalitet mellom feil i treghetsmomentet og feil i den beregnede deformasjon. Dette er diskutert noe nærmere under Stivhet i det følgende (siste avsnitt i dette punkt 1.3.2). Tidspunktet for påføring av langtidslaster som påstøp, tekking, permanente nyttelaster etc. har stor innflytelse på sluttverdien for deformasjonene. Usikkerhet i beregningene, veiledende størrelser Usikkerheten i bestemmelsen av de forskjellige parametrene er høyst forskjellig. Et klassisk usikkerhetsmoment som har stor innflytelse på resultatet, er nettopp de antagelser man må gjøre om størrelsen av de permanente laster, og om tidspunktet for påføring av disse lastene. E-modulen vil sjelden variere mye innenfor de respektive fasthetsklasser, spesielt kan denne fastlegges med en rimelig stor grad av sikkerhet dersom den kalibreres mot målinger hos den enkelte produsent. Med slike målinger tar man hensyn til tilslaget, sementen og den blanderesept som brukes, samt herdeforløpet slik det normalt gjennomføres på dette spesielle produksjonsstedet. Er ikke slike målinger gjennomført, må utgangspunktet for E-modulen være som angitt i EC2-1-1, punkt Deformasjonsberegningene foretas i bruksgrensetilstanden, og det er verdien for E cm (t) som skal anvendes. Vanskeligere er det med forspenningstapet, som er avhengig av nettopp de parametere man søker, nemlig svinn- og kryptøyningene.

4 18 C1 GENERELT Erfaringsmessig kan man som utgangspunkt for beregningene imidlertid anta følgende: lite anstrengt forspent bjelke forspenningstap 15 til 20 % normalt forspent bjelke forspenningstap 20 til 25 % hardt påkjent forspent bjelke forspenningstap 30 til 35 %. Dekkeelementer er spesielt følsomme, avhengig av oppspenningsgrad kan forspenningstapet variere fra i underkant av 15 % opp til ca. 35 %. Den forutsetning man i utgangspunktet gjør med hensyn til forspenningstapet må selvfølgelig kontrolleres i etterkant, dersom man ikke arbeider med et datamaskinprogram som korrigerer for dette. Med kjennskap til spennvidde, permanent last, oppspenning og forspenningstap samt en vurdert antagelse av langtidsandelen av nyttelasten kan spenningstilstanden i tverrsnittet nå beregnes. Det er nødvendig for å bestemme de krypgivende spenninger, som igjen er en del av grunnlaget for å bestemme kryptøyningene. Det må videre gjøres en del forutsetninger ofte på sviktende grunnlag om relativ fuktighet og temperatur i de forskjellige tids - perioder, som sammen med tverrsnittets geometri er grunnlaget for å fastsette normert kryptall, grunnverdi for svinn, effektiv tykkelse og effektiv alder. Dette er relativt omfattende behandlet i bind B, punkt 4.2, og vil ikke bli gjentatt her, bortsett fra følgende tabell (tabell B 4.5): Tabell C 1.5 Gjennomsnittsverdier for kryp og svinn for en del typiske horisontale betongelementer. Klima Spennkraft, Permanente, Element h 0 etter 56 ϕ laster, ϕ ε cs 10 3 døgn DT og SDT 90 5,12 3,47 1,65 0,13 0,64 Ute 4,01 2,38 0,45 IB og SIB 110 RB og LB 200 Hulldekke 360 4,89 3,33 1,56 0,11 0,64 Ute 3,89 2,31 0,45 4,28 2,96 1,32 0,06 0,64 Ute 3,58 2,13 0,45 3,78 2,67 1,11 0,03 0,64 Ute 3,33 1,98 0,45 I tabell C 1.5 er h 0 = effektiv tykkelse ϕ = kryptall ε cs = svinntøyning Se også tabellene B 4.9 og B 4.10 med tilhørende tekst. Stivhet Et viktig moment ved deformasjonsberegninger er hvorvidt tverrsnittet befinner seg i stadium 1 (urisset) eller stadium 2 (risset), noe som er viktig for å komme frem til den korrekte stivhet (EI) man skal benytte i beregningene. De krypgivende spenningene kan benyttes som grunnlag for en første vurdering. I stadium 1 gjelder de klassiske formler for tyngdepunkt, hoved - akser og treghetsmoment. Dersom elementet er i stadium 2, kan man i utgangspunktet anta at treghetsmomentet da er 70 % av treghetsmomentet i stadium 1. Denne forutsetningen må senere kontrolleres når man etter hvert sirkler inn den «reelt» opptredende spennings - tilstand i tverrsnittet, og den korrekte stivhet kan beregnes. Igjen finnes det en del datamaskinprogrammer som korrigerer for dette. Dersom en liten endring av lasten vil bringe tversnittet over fra stadium 1 til stadium 2 eller omvendt blir det spesielt viktig å

5 C1 GENERELT 19 foreta en nøyaktigere analyse, samt mer gjennomtenkt vurdering av hvilke laster man reelt kan forvente. Det blir også viktig å dele elementet opp i passende lengde for å få riktige forhold mellom tøyninger, spenninger og kryp. Ellers kan deformasjonsberegningene lett gi et helt annet resultat enn det man vil oppleve i praksis Begrensninger EC2-1-1, punktene 7.3 og 7.4 omhandler begrensning av rissvidder og de formasjoner. I praksis er deformasjoner eller nedbøyninger lettere å forholde seg til enn standardens teoretiske krav til maksimal rissvidde, som ikke engang nødvendigvis har noe sammenheng med reelle opptred - ende rissvidder. Rissviddekravene må selvfølgelig overholdes, men for praktisk dimensjonering kan det være fordelaktig å ha noen veiled - ende verdier for deformasjonene å rette seg etter. Erfaringsmessig vil rissviddekravene være overholdt i alle eksponeringsklasser unntatt XSA dersom de anbefalte maksimale deformasjoner i tabell C 1.6 er tilfredsstilt. Dersom deformasjonsberegningene skal være pålitelige, må de være nøyaktige og langtidslastene må være kjente se også bind B, punkt 2.3, underpunkt «Bruksgrensetilstand». Første skritt er å bli helt klar over hvilket tidspunkt som er det kritiske med hensyn til deformasjoner for den spesielle konstruksjonen man arbeider med. Dette må avklares med byggherren, fordi deformasjoner kan ha praktiske bruksmessige konsekvenser. Inndelingen og kravene i tabell C 1.6 koblet mot tabellene C 1.1 og C 1.5 vil normalt være tilfredsstillende. De avmerkede punktene i figur C 1.5 er følgende: 1 Oppbøyning ved montasje (δ 1 ) 2 Oppbøyning umiddelbart etter påføring av permanente laster, som påstøp, tekking, lettvegger etc. (δ 2 ) 3 Oppbøyning etter lang tid uten nyttelast (δ 3 ) 4 Nedbøyning etter lang tid med full nyttelast (δ 4 ) Man erkjenner at det er vanskelig å forutsi hvor stor del av nyttelasten som vil være permanent, dessuten vil det variere i forskjellige områder i et bygg (for eksempel arkiv kontra kontorlokale). Derfor er det valgt å gi veiledende anbefalinger for deformasjoner uten nyttelast og med full nyttelast. Virkeligheten vil være et sted imellom. Tabell C 1.6. Anbefalte maksimale deformasjoner (δ) for forspente elementer (nedbøyning under horisontalen er definert negativ). Punkt i Type deformasjonsbygg Bjelker Ribbeplater Selvutjevnende forløpet masse Hulldekker Påstøp Tekking Industri l/200 l/ l/ l/ l/ (δ 1 ) Kontor l/300 l/ l/ l/ l/ Bolig l/400 l/ l/ l/ l/ Industri 0 3 (δ 3 ) Kontor 0 δ 2 > 0 Bolig 0 δ 2 > 0 Industri l/ l/ (δ 4 ) Kontor l/ l/ l/ Bolig l/ Oppbøyning Nedbøyning 1 2 Figur C 1.5. Stadier i et deformasjonsforløp Tid

B4 TEMPERATUR, KRYP OG SVINN

B4 TEMPERATUR, KRYP OG SVINN 26 4.2 BEREGNING AV KRYP OG SVINN NS 3473, punkt A.9.3.2 \40\ er grunnlaget for det som følger i dette avsnittet. Kryptallet er sterkt avhengig av betongens alder ved belastning, men NS 3473, punkt A.9.3.2

Detaljer

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109 A7 ELEMENTTYPER OG TEKNISKE DATA 19 7.2 RIBBEPLATER Generelt DT-elementer har lav egenlast og stor bæreevne, med spennvidder inntil 24 m. Elementene brukes til tak, dekker, bruer, kaier og enkelte fasadeløsninger.

Detaljer

Vedlegg 1.5 SPENNBETONG SPENNBETONG 1

Vedlegg 1.5 SPENNBETONG SPENNBETONG 1 Vedlegg 1.5 1 HVA ER FORSPENNING? SPENNARMERT BETONG/ Armert betong hvor all eller deler av armeringen av armeringen er forspent og dermed er gitt en strekktøyning i forhold til betongen. Kreftene som

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

A7 ELEMENTTYPER OG TEKNISKE DATA

A7 ELEMENTTYPER OG TEKNISKE DATA A7 ELEMENTTYPER OG TEKNISKE DATA 103 I tabell A 2.1 er vist en oversikt over betongelementer til tak og dekker. I tillegg finnes på markedet betongelementer med lett tilslag som har modulbredde 0 mm og

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

3T-MR - H over E1-32,8 kn 1. SiV - 5. btr - E2 Christiansen og Roberg AS BER

3T-MR - H over E1-32,8 kn 1. SiV - 5. btr - E2 Christiansen og Roberg AS BER 3T-MR - H40-1-2 over E1-32,8 kn 1 Dataprogram: E-BJELKE versjon 6.5 Laget av Sletten Byggdata Beregningene er basert på NS-EN 1992-1-1 og NS-EN 1990:2002 + NA:2008 Data er lagret på fil: G:\SiV 5 - E2

Detaljer

FLISLAGTE BETONGELEMENTDEKKER

FLISLAGTE BETONGELEMENTDEKKER Tekst: Arne Nesje, intef/byggkeramikkforeningen og Ole H Krokstrand, Mur-entret FLILAGTE BETONGELEMENTDEKKER Unngå oppsprekking! 1 Konstruksjonsløsninger Hulldekker er i dag den mest vanlige dekketypen.

Detaljer

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning 66 C3 DEKKER 3.2 DImENSjONERING Den generelle effekten av spennarmering i ribbeplater, forskalings - plater og hulldekker er beskrevet i innledningen til kapittel C3. 3.2.1 Ribbeplater Dimensjonering for

Detaljer

Seismisk dimensjonering av prefab. konstruksjoner

Seismisk dimensjonering av prefab. konstruksjoner Seismisk dimensjonering av prefab. konstruksjoner Geir Udahl Konstruksjonssjef Contiga Agenda DCL/DCM Modellering Resultater DCL vs DCM Vurdering mhp. prefab DCL Duktiltetsfaktoren q settes til 1,5 slik

Detaljer

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71 32 C2 BJELKER 2.1.3 Dimensjonering for skjærkraft For å sikre bestandigheten bør spenningen f yd i armeringen ved ut - sparinger begrenses i henhold til tabell C 6.5. Små utsparinger Når utsparingen Ø

Detaljer

Eksempel D 14.1. Kontorbygg i innlandsstrøk D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE

Eksempel D 14.1. Kontorbygg i innlandsstrøk D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE 108 D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE 14.3 EKSEMPLER PÅ UTFØRELSE Her gjennomgås noen typiske bygningskonstruksjoner med hensyn til miljøklassifisering og prosjektering

Detaljer

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM igur B 8.10. Kombinasjon av skiver og rammer. a) Utkraget skive b) Momentramme ) Kombinasjon igur B 8.11. Eksempel på ramme/ skivekombinasjon Hovedramme igur B 8.12. (Lengst t.h.) Kombinasjon av rammer.

Detaljer

8.2.6 Supplerende informasjon

8.2.6 Supplerende informasjon 128 A8 PROSJEKTERING MED BETONGELEMENTER Lask a) Strekkbånd på dekket b) Strekkbånd i bjelken c) Utstøpninger ved elementender d) Strekkbånd på opplegget e) Forankring til gavl 8.2.5 Rassikkerhet Et bygg

Detaljer

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet C11 RIBBEPLATER 225 I det følgende behandles typiske opplegg for ribbeplater, samt noen typiske sveiseforbindelser. Beregning av ribbeplater som horisontalskiver er behandlet i kapittel C13. Generell beregning

Detaljer

122 C6 DIMENSJONERING AV FORBINDELSER

122 C6 DIMENSJONERING AV FORBINDELSER 122 C6 DIMENSJONERING AV FORBINDELSER Tabell C 6.1. Senteravstand på festemidler som gir kapasitet 20 kn/m. Kamstål (bind B, tabell B 19.11.2) B500NC Ø (mm): 8 10 12 16 20 25 N Rd,s = f yd A s (kn): 22

Detaljer

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter.

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter. 57 600 50 Figur C.1. Skjæroverføring mellom ribbeplater. punktlaster og linjelaster som overføres til naboelementene avhenger av konstruksjonens stivhet i tverretningen. Dette må beregnes basert på påstøpens

Detaljer

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1.

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1. H V v g 1 g 2 En-etasjes skive som deles i to (stadium 2). Hvordan finne vertikal skjærkraft i delingsfugen? Beregningen viser at horisontalfugen i underkant får strekkraften S og trykkresultanten N c.

Detaljer

Brandangersundbrua utfordrende design og montering

Brandangersundbrua utfordrende design og montering Brandangersundbrua utfordrende design og montering av dr. ing. Rolf Magne Larssen fra Dr. Ing. A. Aas-Jakobsen AS Presentasjon på Norsk Ståldag 2010 28. oktober 2010 Hva? Brukryssing med nettverksbue Hovedspenn

Detaljer

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 207 9.1 TO-SKIPS INDUSTRIHALL Dette beregningseksemplet viser praktisk beregning av knutepunk t - ene i en to-skips industrihall, ved hjelp av tabellene

Detaljer

Vedlegg 1.9 NS 3473 PROSJEKTERING AV BETONGKOPNSTRUKSJOENR

Vedlegg 1.9 NS 3473 PROSJEKTERING AV BETONGKOPNSTRUKSJOENR Vedlegg 1.9 NS 3473 PROSJEKTERING AV BETONGKOPNSTRUKSJOENR Beregnings- og konstruksjonsregler Siri Fause Høgskolen i Østfold 1 NS 3473 Prosjektering av betongkonstruksjoner 6.utgave september 2003 Revisjonen

Detaljer

Elisabeth Leite Skare og Terje Kanstad, NTNU, Institutt for konstruksjonsteknikk

Elisabeth Leite Skare og Terje Kanstad, NTNU, Institutt for konstruksjonsteknikk Riss i kantdragere -Observasjoner på bruer i Trondheimsområdet -Resultater fra laboratorieforsøk med fiberarmert betong -Forslag til beregningsmetodikk Elisabeth Leite Skare og Terje Kanstad, NTNU, Institutt

Detaljer

Håndbok 185 Eurokodeutgave

Håndbok 185 Eurokodeutgave Håndbok 185 Eurokodeutgave Kapittel 5 Generelle konstruksjonskrav Kapittel 5.3 Betongkonstruksjoner Foredragsholder: Thomas Reed Thomas Reed Født i 1982 Utdannet sivilingeniør Begynte i Svv i 2007 Bruseksjonen

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål)

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål) EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 23.05.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 13.06.2019 Antall oppgavesider (inkludert forside): 5 Antall vedleggsider: 4 Faglærer:

Detaljer

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER 21 4.1 HULLDEKKER Hulldekker er enveis dekkekonstruksjoner, normalt med fritt dreibare opplegg. Slakkarmeringen som legges i fugene bidrar til å sikre dekkekonstruksjonens

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste 328 14.4 FASADEOPPLEGG PÅ SØYLER OG DEKKER I figurene C 14.14 og C 14.15 er vist noen vanlige løsninger. Disse dimensjoneres som plant opplegg på grunnmur. Elementene settes vanligvis på innstøpte ankerplater

Detaljer

Limtre Bjelkelags- og sperretabeller

Limtre Bjelkelags- og sperretabeller Pb 142 2391 Moelv www.limtre.no pr juni 2005 Forutsetninger for bjelkelags- og sperretabeller Tabellene bygger på følgende norske standarder og kvaliteter: NS 3470-1, 5.utg. 1999, Prosjektering av trekonstruksjoner

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

H5 DIMENSJONERINGSEKSEMPLER

H5 DIMENSJONERINGSEKSEMPLER H5 DIMENSJONERINGSEKSEMPLER 69 I dette kapittelet tar en praktisk i bruk de regler og anbefalinger som er omtalt i kapitlene H1 til H4. Eksemplene tar kun for seg dimensjonering for seismiske laster. Det

Detaljer

Eurokode 5. Kurs Beregning med Eurokode 5. Deformasjon av drager. Treteknisk Sigurd Eide (Utarb SEi)

Eurokode 5. Kurs Beregning med Eurokode 5. Deformasjon av drager. Treteknisk Sigurd Eide (Utarb SEi) Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner Del 1-1 Allmenne regler og regler for bygninger Kurs Beregning med Eurokode 5 Eksempel Bruksgrense Deformasjon

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 02.01.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 23.01.2019 Antall oppgavesider: 4 Antall vedleggsider: 4 (inkl vedlegg for innlevering)

Detaljer

Størrelsen av sikkerhetsfaktoren Praktiske løsninger

Størrelsen av sikkerhetsfaktoren Praktiske løsninger 44 C2 BJELKER Størrelsen av sikkerhetsfaktoren Nødvendig sikkerhetsfaktor kan ikke regnes ut, men må baseres på erfaring. Det er arbeidskrevende å bestemme strekkspenningene i bjelkens overflens for biaksial

Detaljer

B4 TEMPERATURER, KRYP OG SVINN

B4 TEMPERATURER, KRYP OG SVINN 4.4 BEREGNING AV HORISONTAKREFTER I BJEKER OG DEKKER FRA TEMPERATUR, KRYP OG SVINN Summen av bevegeser fra temperaturendringer, kryp og svinn kaes kort for voumendringer. I dette kapitteet beregnes horisontae

Detaljer

14.2 MILJØKRAV OG KLASSIFISERING AV KNUTEPUNKTER

14.2 MILJØKRAV OG KLASSIFISERING AV KNUTEPUNKTER 102 D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE 14.2 MILJØKRAV OG KLASSIFISERING AV KNUTEPUNKTER Miljøklassifisering Det er upraktisk å ha forskjellige miljøklassifisering for

Detaljer

Dimensjonering av betongbruer i bruksgrensetilstand

Dimensjonering av betongbruer i bruksgrensetilstand Dimensjonering av betongbruer i bruksgrensetilstand Evaluering av beregningsgrunnlaget i Eurokode-systemet og norsk praksis Synne Aasrum Midtgarden Bygg- og miljøteknikk Innlevert: desember 2015 Hovedveileder:

Detaljer

Elastisitetens betydning for skader på skinner og hjul.ca.

Elastisitetens betydning for skader på skinner og hjul.ca. 2. ARENA Narvik, 26. -27. november 2013 Elastisitetens betydning for skader på skinner og hjul.ca. Foreleser: Kjell Arne Skoglund Seniorforsker, dr.ing. jernbaneteknikk, Infrastruktur Kontakt: Kjell.Arne.Skoglund@sintef.no,

Detaljer

Brukonferansen Innføring av Eurokoder av Gunnar Egset, Johs. Holt as

Brukonferansen Innføring av Eurokoder av Gunnar Egset, Johs. Holt as Innføring av Eurokoder av Gunnar Egset, Johs. Holt as 08.11.2011 Innføring av Eurokoder Eurokodene ble offisielt innført 31 mars 2010. I 2010 og fram til ca sommeren 2011 er det relativt få bruer som er

Detaljer

D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER MILJØKRAV OG UTFØRELSE

D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER MILJØKRAV OG UTFØRELSE 96 D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER MILJØKRAV OG UTFØRELSE Den prosjekterende har et klart ansvar for å beregne og konstruere bygningskonstruksjonene slik at offentlige krav til personsikkerhet

Detaljer

Steni 2. b eff. Øvre flens Steg h H Nedre flens

Steni 2. b eff. Øvre flens Steg h H Nedre flens FiReCo AS Dimensjonerings-diagram for BEET vegg Lastberegninger basert på NBI tester. Jørn Lilleborge Testdokument 1998 FiReCo AS 714-N-1 Side: 2 av 17 Innhold 1. DIMENSJONERINGSDIAGRAM FOR BEET VEGG...

Detaljer

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll.

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll. 168 C7 SØYLER Figur C 7.42. Komplett fagverksmodell ved konsoller. a) Sentrisk last over konsoll b) Eksentrisk last over konsoll Typiske prefabrikkerte søyler vil vanligvis ikke være maksimalt utnyttet

Detaljer

Eurokode 5 en utfordring for treindustrien

Eurokode 5 en utfordring for treindustrien Eurokode 5 en utfordring for treindustrien Bruk av Eurokode 5- generell gjennomgang Treteknisk 2013.10.15 Sigurd Eide Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner

Detaljer

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Frey Publishing 21.01.2014 1 Prøvemetoder for mekaniske egenskaper Strekkprøving Hardhetsmåling Slagseighetsprøving Sigeforsøket 21.01.2014

Detaljer

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning. 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed

Detaljer

0,5 ν f cd [Tabell B 16.5, svært glatt, urisset]

0,5 ν f cd [Tabell B 16.5, svært glatt, urisset] 12 KIVEYTEM kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten μ N Ed er

Detaljer

HRC T-Hodet armering Fordeler for brukerne

HRC T-Hodet armering Fordeler for brukerne HIGH PERFORMANCE REINFORCEMENT PRODUCTS HRC T-Hodet armering Fordeler for brukerne HRC T-hodet armering har spesielle egenskaper som skiller den fra konvensjonell armering. HRC T-hoder forankrer den fulle

Detaljer

Høgskolen 1Østfold 1 Avdeling for ingeniørfag

Høgskolen 1Østfold 1 Avdeling for ingeniørfag Høgskolen 1Østfold 1 EKSAMENSOPPGAVE Emne: IRB22013 Konstruksjonsteknikk 2 Lærer/telefon: Geir Flote Gru er: 2. B Dato: 04.01.2016 Tid: 09.00 13.00 Antall o avesider: 5 Antall vedle sider: 1 Sensurfrist:

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

B18 TRYKKOVERFØRING I FORBINDELSER

B18 TRYKKOVERFØRING I FORBINDELSER B18 TRYKKOVERFØRIG I FORBIDELSER 201 18.1 VALG AV MELLOMLEGG Bjelker : t = 6 10 mm (enkelt) Stål: t = 6 10 mm (enkelt) Plast: t = 4 mm (dobbelt) Brutto oppleggslengde (betongmål): av stål: l 150 mm Andre:

Detaljer

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle 118 5.5.5 Kombinasjon av ortogonale lastretninger Da bygget er regulært i planet samt at det kun er søylene som er avstivende, kan det forutsettes at den seismiske påvirkningen virker separat og ikke behøver

Detaljer

Varige konstruksjoner Konstruktive konsekvenser av alkalireaksjoner Fagdag 31 mai 2016

Varige konstruksjoner Konstruktive konsekvenser av alkalireaksjoner Fagdag 31 mai 2016 Varige konstruksjoner Konstruktive konsekvenser av alkalireaksjoner Fagdag 31 mai 2016 Hans Stemland SINTEF Hans Stemland, SINTEF Eva Rodum, SVV Håvard Johansen, SVV 1 Alkalireaksjoner Skademekanisme for

Detaljer

7 Rayleigh-Ritz metode

7 Rayleigh-Ritz metode 7 Rayleigh-Ritz metode Innhold: Diskretisering Rayleigh-Ritz metode Essensielle og naturlige randbetingelser Nøyaktighet Hermittiske polynomer Litteratur: Cook & Young, Advanced Mechanics of Materials,

Detaljer

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering 180 I det følgende behandles typiske opplegg for bjelker. Dessuten gjennomgås dimensjonering av hylle for opplegg av dekker, mens dimensjonering av forbindelsen er vist i kapittel C11 for ribbeplater og

Detaljer

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET

Detaljer

Schöck Isokorb type K

Schöck Isokorb type K Schöck Isokorb type Schöck Isokorb type Innhold Side Eksempler på elementoppsett/tverrsnitt 36 Produktbeskrivelse 37 Planvisninger 38 41 apasitetstabeller 42 47 Beregningseksempel 48 49 Ytterligere armering

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Konstruksjoner og materialer/ Byggkonstruksjoner Vår semesteret, 2017 Åpen Forfatter: Prasanth Parameswaran (signatur

Detaljer

B10 ENKELT SØYLE BJELKE SYSTEM

B10 ENKELT SØYLE BJELKE SYSTEM 0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt

Detaljer

5.1.2 Dimensjonering av knutepunkter

5.1.2 Dimensjonering av knutepunkter 80 H5 DIMENSJONERINGSEKSEMPLER V (kn) og M (knm) 500 0 500 1000 5 10 15 20 25 30 35 40 45 50 x (m) 1500 Snitt 4 (33,7 m < x < 50,8 m): F y = 0; det vil si: V f + h fy x H y2 H y5 H y4 = 0 V f = 10,1 x

Detaljer

(7) Betong under herding. Egenskapsutvikling, volumstabilitet, mekaniske egenskaper (basert på kap. 3.3 i rev NB29)

(7) Betong under herding. Egenskapsutvikling, volumstabilitet, mekaniske egenskaper (basert på kap. 3.3 i rev NB29) (7) Betong under herding Egenskapsutvikling, volumstabilitet, mekaniske egenskaper (basert på kap. 3.3 i rev NB29) Innledning Foredraget tar utgangspunkt i å belyse hvilken effekt de ulike tiltak som benyttes

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

Schöck Isokorb type Q, QP, Q+Q, QP+QP

Schöck Isokorb type Q, QP, Q+Q, QP+QP Schöck Isokorb type, P, +, P+P Schöck Isokorb type 10 Innhold Side Eksempler på elementoppsett/tverrsnitt 60 Produktbeskrivelse/Kapasitetstabeller og tverrsnitt type 61 Planvisninger type 62 63 Beregningseksempel

Detaljer

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET 9.2.5 Slankhet og slankhetsgrenser Den geometriske slankheten defineres som λ = l 0 / i = l 0 / (I /A), det vil si l 0 = λ (I /A) der i er treghetsradien for urisset betongtverrsnitt (lineært elastisk).

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

Seismisk dimensjonering av pelefundamenter

Seismisk dimensjonering av pelefundamenter Seismisk dimensjonering av pelefundamenter Amir M. Kaynia Oversikt Jordskjelvpåvirkning i peler og EC8s krav Jord konsktruksjon samvirke (SSI) Beregning av stivheter Ikke lineære stivheter lateral kapasitet

Detaljer

BETONGELEMENTBOKEN BIND I

BETONGELEMENTBOKEN BIND I BETONGELEMENTBOKEN BIND I A V S T I V I N G I M O N T A S J E F A S E N BETONGELEMENTBOKEN BIND I A V S T I V I N G I M O N T A S J E F A S E N FORORD Bruken av betongelementer i industriell bygging har

Detaljer

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER 26 Innstøpningsgods av ubrennbart materiale kan benyttes i steget, forutsatt at avstanden mellom innstøpningsgods og armeringen ikke er mindre enn krav til armeringsdybde. Innstøpningsgods og sveiseplater

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

Identifisering av grunntype etter Eurokode 8, og seismisk grunnresponsanalyser

Identifisering av grunntype etter Eurokode 8, og seismisk grunnresponsanalyser Identifisering av grunntype etter Eurokode 8, og seismisk grunnresponsanalyser Øyvind Torgersrud Innhold Del I Lokal jordskjelvrespons Definisjon responsspektrum Del II Grunntyper etter Eurokode 8 Definisjon

Detaljer

Jernbaneverket BRUER Kap.: 8

Jernbaneverket BRUER Kap.: 8 Stål- og samvirkekonstruksjoner Side: 1 av 12 1 HENSIKT OG OMFANG... 2 2 DIMENSJONERENDE MATERIALFASTHET... 3 2.1 Betongkonstruksjonsdelen... 3 2.1.1 Konstruksjonsfasthet...3 2.2 Stålkonstruksjonsdelen...

Detaljer

Strekkforankring av stenger med fot

Strekkforankring av stenger med fot 236 B19 FORAKRIG AV STÅL 19.3.2 Strekkforankring av stenger med fot 19.3.2.1 Generelt kjeglebrudd Anvisningene her baserer seg delvis på J. Hisdal, Masteroppgave \10\. Masteroppgaven analyserer hovedsakelig

Detaljer

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7 Innhold Forord Symboler og forkortelser v og vi xv 1. INNLEDNING 1 1.1 Hva er fasthetslære? 1 1.2 Motivasjon 5 1.3 Konvensjoner - koordinater og fortegn 7 1.4 Små forskyvninger og lineær teori 11 1.5 Omfang

Detaljer

Schöck Isokorb type K

Schöck Isokorb type K Schöck Isokorb type Schöck Isokorb type Innhold Side Eksempler på elementoppsett/tverrsnitt 36 Produktbeskrivelse 37 Planvisninger 38 41 apasitetstabeller 42 47 Beregningseksempel 48 49 Ytterligere armering

Detaljer

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt C7 SØYLER 159 Evt. shims Utstikkende søylejern Sentrisk gjengestang Utsparing (rør) gyses ved søylemontasje Figur C 7.28. Vanlig limeløsning. Illustrasjon til tabell C 7.6. u u a s Bjelke Korrugert rør

Detaljer

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft - eksempler betongbjelker INNHOLDSFORTEGNELSE 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft 1.1. Dimensjonering for bøyning i bruddgrensetilstand 1.2. Dimensjonering mot skjærbrudd 2.

Detaljer

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket C11 RIBBEPLATER 231 Lask a) Strekkbånd i bjelken b) Strekkbånd på opplegget c) Strekkbånd på dekket d) Armering og utstøping e) Innstøpt flattstål i plate res dette ofte med at den samme forbindelsen også

Detaljer

BETONGELEMENTBOKEN BIND B AVSTIVNING OG KRAFTOVERFØRING

BETONGELEMENTBOKEN BIND B AVSTIVNING OG KRAFTOVERFØRING BETONGELEMENTBOKEN BIND B AVSTIVNING OG KRAFTOVERFØRING BETONGELEMENTBOKEN BIND B AVSTIVNING OG KRAFTOVERFØRING DEL 1 DIMENSJONERINGSGRUNNLAG DEL 2 AVSTIVNINGSSYSTEMER DEL 3 FORBINDELSER FORORD Bruken

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 744 Dato: 1.01.016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.: 3.05.016 K5-10-744 Sign.: Kontr.: sss nb EKSEMPEL INNHOLD EKSEMPEL... 1 GRUNNLEGGENDE

Detaljer

5.2.2 Dimensjonering av knutepunkter

5.2.2 Dimensjonering av knutepunkter 92 Det er derfor tilstrekkelig å kontrollere hver av lastene sine hovedretninger. Se også punkt 2.1.4 her. E Edx + 0 E Edy 0 E Edx + E Edy 5.2.1.8 Kraftfordeling til veggskivene Tar utgangspunkt i taket

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NTURVITENSKPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 EKSMEN I EMNE TKT4116 MEKNIKK 1 Mandag 2. juni 2008

Detaljer

Eksamensoppgave i TKT4124 Mekanikk 3

Eksamensoppgave i TKT4124 Mekanikk 3 Institutt for konstruksjonsteknikk Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 14. desember 2015 Eksamenstid (fra-til): 09.00 13.00 Hjelpemiddelkode/

Detaljer

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS (8) Geometriske toleranser Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS Kursdagene 2011 Ny norsk standard NS-EN 13670: Utførelse av betongkonstruksjoner - konsekvenser og bruk av nytt regelverk

Detaljer

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel INNHOLD BWC 50-40 Side av GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... 4 BETONG OG ARMERING I BALKONG... 4 DEKKETYKKELSER... 4 STÅLSØYLE FOR INNFESTING BWC... 4 BEREGNINGER... 5

Detaljer

E9 FAKTORER SOM PÅVIRKER LYD- FORHOLDENE

E9 FAKTORER SOM PÅVIRKER LYD- FORHOLDENE 56 E9 FAKTORER SOM PÅVIRKER LYD- FORHOLDENE 9.1 KONSTRUKSJONSPRINSIPPER Valg av hovedbæresystem vil innvirke på lydisolasjon i ferdig bygg. I utgangspunktet kan hovedbæresystem deles i to typer: Skive-/dekkeløsning

Detaljer

Bjørvikatunnelen -Spenningsberegning og produksjonsplanlegging

Bjørvikatunnelen -Spenningsberegning og produksjonsplanlegging 1 Bjørvikatunnelen -Spenningsberegning og produksjonsplanlegging Sverre Smeplass Skanska Norge AS 2 Arbeidsfellesskap mellom Skanska Norge AS (60%) Bam Civiel (20%) Volker Stevin Construction Europe (20%)

Detaljer

informerer Nr 5-2008 Flislegging av slanke veggkonstruksjoner av betong. Hvordan unngå løse og sprukne fliser.

informerer Nr 5-2008 Flislegging av slanke veggkonstruksjoner av betong. Hvordan unngå løse og sprukne fliser. informerer Nr 5-2008 Flislegging av slanke veggkonstruksjoner av betong. Hvordan unngå løse og sprukne fliser. Av Arne Nesje, SINTEF Byggforsk Sekretariatsleder i Byggkeramikkforeningen Betong betraktes

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 704 Dato: 8.0.0 Sign.: sss BWC 55-740 / BWC 55 LIGHT SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.:.09.06 K5-4/5 Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD GRUNNLEGGENDE

Detaljer

Eksempel 3.3, Limtredrager, taksperrer og opplegg

Eksempel 3.3, Limtredrager, taksperrer og opplegg Eksempel 3.3, Limtredrager, taksperrer og opplegg I huset nedenfor skal du regne ut egenlast og snølast på Røa i Oslo 105 meter over havet. Regn med at takets helning er 35 o. Regn ut både B1 og B2. Huset

Detaljer

Prosjektering MEMO 551 EN KORT INNFØRING

Prosjektering MEMO 551 EN KORT INNFØRING Side 1 av 7 Denne innføringen er ment å gi en liten oversikt over bruk og design av forbindelsene, uten å gå inn i alle detaljene. er et alternativ til f.eks faste eller boltede søylekonsoller. enhetene

Detaljer

Versjon 4.8.1 april 2008. Programmet er utarbeidet og eiet av: Sivilingeniør Ove Sletten Saturnvegen 2B 7036 Trondheim. Tlf. 73968153 Fax.

Versjon 4.8.1 april 2008. Programmet er utarbeidet og eiet av: Sivilingeniør Ove Sletten Saturnvegen 2B 7036 Trondheim. Tlf. 73968153 Fax. 2 Innhold 1 FØR DU STARTER...4 1.1 Minimum systemkrav...4 1.2 Installasjon av programmet...4 1.3 Sikkerhetskopi...4 2 PROGRAMOVERSIKT...4 2.1 Hva kan programmet brukes til...4 2.2 Aksesystem og fortegnsregler...5

Detaljer

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6.

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6. 248 C12 HULLDEKKER Det er som regel bare vridningsforbindelser som kan kreve så store strekk-krefter som N maks2, se figur C 12.9.a. Dersom forbindelsen skal overføre skjærkrefter mellom hulldekke og vegg

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: BOKMÅL Førsteamanuensis Arild H. Clausen, 482 66 568 Førsteamanuensis Erling Nardo Dahl, 917 01 854 Førsteamanuensis Aase Reyes,

Detaljer

11 Elastisk materiallov

11 Elastisk materiallov lastisk materiallov Innhold: lastisk materialoppførsel Isotrope og anisotrope materialer Generalisert Hookes lov Initialtøninger Hookes lov i plan spenning og plan tøning Volumtøning og kompresjonsmodul

Detaljer

Mekanisk belastning av konstruksjonsmaterialer Typer av brudd. av Førstelektor Roar Andreassen Høgskolen i Narvik

Mekanisk belastning av konstruksjonsmaterialer Typer av brudd. av Førstelektor Roar Andreassen Høgskolen i Narvik Mekanisk belastning av konstruksjonsmaterialer Typer av brudd av Førstelektor Roar Andreassen Høgskolen i Narvik 1 KONSTRUKSJONSMATERIALENE Metaller Er oftest duktile = kan endre form uten å briste, dvs.

Detaljer

D11 SIKRING AV BETONGEN 65

D11 SIKRING AV BETONGEN 65 D11 SIKRING AV BETONGEN 65 Plastiserende (P-stoffer) og superplastiserende stoffer (SP-stoffer) De plastiserende stoffene får gjerne betegnelsen lignosulfonat-, naftalein- eller melaminbaserte. P-stoffene

Detaljer

ABC for krankjøpere 14.08.2015. Side 1

ABC for krankjøpere 14.08.2015. Side 1 Side 1 Sammenligning Når du skal kjøpe kran er det mange ting å vurdere og som du bør sammenligne dersom du har flere tilbud. Vi er ikke redde for å bli sammenlignet, og har utarbeidet et enkelt skjema

Detaljer

Håndbok N400 Bruprosjektering

Håndbok N400 Bruprosjektering Håndbok N400 Bruprosjektering Kapittel 8: Stålkonstruksjoner Kristian Berntsen Hva er nytt? Kapittelet er noe stokket om for å samsvare bedre med Eurokoden Mindre henvisninger til Eurokoden. Eurokodens

Detaljer

DERFOR LØSNER FLISER I BASSENGER. Seniorforsker Arne Nesje

DERFOR LØSNER FLISER I BASSENGER. Seniorforsker Arne Nesje DERFOR LØSNER FLISER I BASSENGER Seniorforsker Arne Nesje Foredragets innhold Slik opptrer skadene Årsakssammenhenger Dette forteller felttester om limkvaliteter. Har bassengvannets agressivitet innvirkning?

Detaljer