TEP Termodynamikk 1
|
|
- Jan Nilssen
- 7 år siden
- Visninger:
Transkript
1 Institutt for Energi og Prosessteknikk TEP Termodynamikk 1 Fagets Innhold og Læringsmål Termodynamiske Systemer, Egenskaper og Tilstander Begrepene Arbeid og Varme (og Energi generelt) Tilstandslikninger for Gassfase (Ideell Gass Modell) Termodynamiske Tabeller og Diagrammer Tilstandsendringer, Indre Energi, Entalpi og Entropi TD s Hovedsatser for Åpne og Lukkede Systemer Ulike Sirkelprosesser Carnot, Rankine, Otto, Diesel og Brayton Reversible og Irreversible Prosesser 3 Anvendelsesområder (Kapitlene 8, 9 og 10) Dampkraft, Gasskraft & Motorer, Varmepumper & Kjølekretser Introduksjon til Eksergi, Energikvalitet og Virkningsgrader Forkunnskapskrav: Ingen... J Truls Gundersen
2 Pensum i faget er u Institutt for Energi og Prosessteknikk TEP Termodynamikk 1 M. J. Moran, Shapiro et al.: Principles of Engineering Thermodynamics", 7 th ed. (SI), John Wiley & Sons, 2012 (5 th or 6 th ) Kap. 1 - Introduksjon, Konsepter & Definisjoner (ikke 1.4.2) Kap. 2 - Energi og Termodynamikkens 1. lov (ikke 2.2.4, 2.2.5) Kap. 3 - Termodynamiske Egenskaper Kap. 4 - Kontrollvolum for Strømmende Systemer Kap. 5 - Termodynamikkens 2. lov Kap. 6 - Introduksjon og Bruk av Entropikonseptet Kap. 7 - Flyttet til Termo-2, Eksergi Light (Notat på Hjemmeside) Kap. 8 - Kraftsystemer basert på Damp Kap. 9 - Forbrenningsmotorer og Kraftsystemer basert på Gass (ikke 9.9, ) Kap.10 - Kjølekretser og Varmepumper (ikke 10.5) Truls Gundersen
3 Institutt for Energi og Prosessteknikk Forelesninger (4F/uke Toveiskommunikasjon!?) Faglærer foreleser Kap. 1 6 (basis) og Kap. 8 (anvendt) Faglærer foreleser også Eksergi Light (6F) Topp Gjesteforelesere dekker Kap. 9 og 10 (anvendt) Øvinger (4Ø/uke minimum 8 av 12 må godkjennes) Vit.ass: Stipendiat Birgitte Johannessen 7 Stud.ass er (som kan Termodynamikk!!) Faglærer vil forsøke å være tilstede... Semesteroppgave (obligatorisk) Labsjef Morten Grønli organiserer gjennomføringen Kjøres i ukene xx & yy, innlevering av rapport innen zz.zz Basert på relativt nye Demo-anlegg i EPT s Lab. Referansegruppe 2 fra EoM, 2 fra Ind.Øk. Frivillige er velkomne, svært lite arbeid, 2 korte møter Hjemmeside: Truls Gundersen
4 Link til Hjemmeside
5 Assignment Number 4 Engng. Thermodynamics 1 Assignment Number 11 Engng. Thermodynamics 1 Hint: Use compressibility (Z), pseudoreduced spesific volum (v R ) and Figure A-1 in M&S.
6 Institutt for Energi og Prosessteknikk Termodynamikken er et viktig basisfag Fagenes naturlige Hierarki Fenomener: Varme/Masse-Transport Reaksjon, Strømning, etc. Naturlover: Fysikk, Mekanikk, Termodynamikk, etc. System-Fag Prosesser, Fabrikksteder, Samfunn Komponent-Fag Varmevekslere, kompressorer, turbiner, destillasjonstårn, etc. Fundamentale Fag Fenomener og Naturlover Truls Gundersen
7 Institutt for Energi og Prosessteknikk Termodynamikkens anvendelser er uendelige Vårt fokus er på Sykliske Prosesser Truls Gundersen
8 Termodynamikkens Las Vegas C.P. Snow formulerte termodynamikkens lover på en måte som gjør at de fleste kan huske dem: 1. You cannot win (that is, you cannot get something for nothing, because matter and energy are conserved). 2. You cannot break even (you cannot return to the same energy state, because there is always an increase in disorder; entropy always increases). 3. You cannot get out of the game (because absolute zero (Kelvin) is unattainable). Introduksjon og Motivasjon Intro 1
9 Termodynamikk - En farlig Teori? Conservative Christians protest the second law of thermodynamics on the steps of the Kansas Capitol Ralph Reed holds a textbook he claims is being used to teach physics in schools. Q: Hvis det er avvik mellom kartet og terrenget - Ville du endre kartet eller terrenget?? Introduksjon og Motivasjon Intro 2
10 Eks.: Stasjonært vs. Likevekt?? Rørsatsvarmeveksler (Shell & Tube) Introduksjon og Motivasjon Intro 3
11 Reversibel vs. Irreversibel Læreboka: Piston-Cylinder Assembly Gass Gass 1 W = mn g h= mtotal g h n n W 0 men... >0 Varmereservoar Varmereservoar Irreversibel Introduksjon og Motivasjon Intro 4
12 Typisk Flytskjema Olje/Gass-Separasjon Videre Tørking og Kompresjon Innledende Konsepter og Definisjoner 1-1
13 Vannets Trippelpunkt (0.01 C, atm) Trykk = Kraft dividert på Flate Systemet søker fasen med størst tetthet (vann) Innledende Konsepter og Definisjoner 1-2
14 Konstant Volum Gasstermometer Innledende Konsepter og Definisjoner 1-3
15 Temperaturskalaer Innledende Konsepter og Definisjoner 1-4
16 Fahrenheitskalaen På Fahrenheitskalaen er frysepunktet for vann 32 F (grader Fahrenheit), og kokepunktet for vann er 212 F. Det verserer ulike teorier om hvordan Fahrenheit valgte skalaens fikspunkter, og en av dem er at nullpunktet 0 F ( 17,8 C) er det kaldeste man kan få ved å blande riktige mengder salt og knust is, mens 100 F (37,8 C) er like over gjennomsnittlig kroppstemperatur hos mennesker (37 C) og kan ha vært Fahrenheits egen kroppstemperatur under intense arbeidsdager... (ref.: Wikipedia) Innledende Konsepter og Definisjoner 1-5
17 Oppsummering - Kap. 1 Innledende Konsepter og Definisjoner System, Systemgrenser og Omgivelser Åpent (Δm 0,Q 0,W 0), Lukket (Δm=0,Q 0,W 0), Adiabatisk (Δm=0,Q=0,W 0), Isolert (Δm=0,Q=0,W=0) Egenskaper, Tilstander og Prosesser Ekstensive (V, m, n) & Intensive (p, T, v, ρ) Egenskaper Et Systems Tilstand beskrives av dets Egenskaper Likevektstilstand og Stasjonær Tilstand Syklisk Prosess og Kvasi-likevektsprosess Klassisk Termodynamikk dreier seg i hovedsak om Likevektstilstander og Prosesser mellom disse Faser, Stoffer og Komponenter Gass, Væske og Fast Fase samt alle Kombinasjoner Ren Komponent, Rent Stoff og Blandinger Oppsummering Kap. 1 Oppsummering 1
18 Oppsummering - Kap. 1 Innledende Konsepter og Definisjoner Størrelser Primære: Masse, Lengde, Tid (Mek) & Temperatur (TD) Sekundære (Avledede): Kraft = Masse Lengde / (Tid) 2 [N] Trykk = Kraft / (Lengde) 2 [N/m 2 ] = [Pa] Energi = Kraft Lengde [Nm] = [J] Effekt = Energi / Tid [J/s] = [W] Enhetssystemer SI er vedtatt, men treg innføring internasjonalt Pascal er upraktisk (1 atm = Pa, 1 bar = 10 5 Pa) Kelvin er ubekvem, benytter Celcius Industrien benytter: SI + bar + C Oppsummering Kap. 1 Oppsummering 2
19 Oppsummering - Kap. 1 Innledende Konsepter og Definisjoner Temperaturskalaer T(K) = T( C) T( R) = 1.8 T(K) T( F) = T( R) T( F) = 1.8 T( C) + 32 Ulike tilstander for komponenten H 2 O Frysepunkt: 0 C ( K) og 1 atm Kokepunkt: 100 C ( K) og 1 atm Trippelpunkt: 0.01 C ( K) og atm Trykk og Temperatur i Naturlovene Absolutt Temperatur è Kelvin Absolutt Trykk è Pa, bar (ikke barg), psia (ikke psig) Oppsummering Kap. 1 Oppsummering 3
20 Oppsummering - Kap. 1 Innledende Konsepter og Definisjoner pvt system Det enkleste termodynamiske system som består av en gitt masse av et isotropt fluid (gass, væske) og som er upåvirket av kjemiske reaksjoner og eksterne felt Kan beskrives av 3 målbare størrelser (p, V og T) Termodynamikkens 0 te Lov Dersom Systemene A og C er i Termisk Likevekt, og Systemene B og C også er i Termisk Likevekt, så er også A og B i Termisk Likevekt (C kan være Termometer) Måling av Temperatur Stoffers Egenskaper endres med Temperatur Ønsker Stoff-uavhengig T-skala (termodynamisk; Kelvin) Oppsummering Kap. 1 Oppsummering 4
21 Legeme påvirket av en Kraft Arbeid og Kinetisk Energi Energi og Termodynamikkens 1.lov 2-1
22 Legeme påvirket av Krefter Kinetisk og Potensiell Energi Energi og Termodynamikkens 1.lov 2-2
23 Ulike former for Arbeid (2.2.4 og er ikke Pensum, men...) δw = p dv Kompresjon av gass δw = σ d(a x) Forlengelse av stolpe δw = τ da Strekking av overflatefilm o.s.v. for elektrisk arbeid, magnetisk arbeid, etc. δw = x dy Generalisert arbeid Arbeid = Intensiv differensialet av Ekstensiv Variabel Energi og Termodynamikkens 1.lov 2-3
24 Effekt - Tidsaspektet av Arbeid W = δw = F ds = F V dt dt W = F d V = (0.5 c d A ρ V 2 ) V V = 25 km/h c d = 0.9 A = 0.4 m 2 ρ = 1.2 kg/m 3 Effekten: W = 72.3 J/s = 0.07 kw Energi og Termodynamikkens 1.lov 2-4
25 Arbeid ved Ekspansjon / Kompresjon Energi og Termodynamikkens 1.lov 2-5
26 Arbeid for Polytropisk Prosess n V pv pv a) n= 1.5 p2 = p1 = 1.06 bar W = = kj V2 1 n n V 1 V 2 b) n= 1.0 p2 = p1 = 1.50 bar W = pv 1 1ln = kj V2 V1 pv pv 0 kj 1 n c) n= 0.0 p2 = p1 = 3.00 bar W = = 30.0 Energi og Termodynamikkens 1.lov 2-6
27 Varmeledning - Konduksjon Antagelser: 1. Stasjonære forhold 2. Konstant Varmeledningsevne (konduktivitet) - κ Varmeoverføring: Q x = κ A dt dx Energi og Termodynamikkens 1.lov 2-7
28 Shell & Tube Varmeveksler Arbeidshesten i Prosessindustrien Energi og Termodynamikkens 1.lov 2-8
29 Varmeoverføring ved Stråling Industrielle eksempler: Fyrte Ovner Kjemiske Reaktorer - Etylen-cracker - Primær-reformer - Sekundær-reformer Energi og Termodynamikkens 1.lov 2-9
30 Varmeoverføring - Oppsummering Konduksjon (Varmeledning) Stråling Q = κ A dt dx Q = ε σ A T b 4 Fourier s lov Stefan Boltzmann s lov Konveksjon Q = h A (T b T f ) Newton s Kjølelov Energi og Termodynamikkens 1.lov 2-10
31 Effekt av Systemgrensevalg ved beregning av Varmeoverføring p atm = 1 bar m piston = 45 kg A piston = 0.09 m 2 g = 9.81 m/s 2 m air = 0.27 kg V 2 V 1 = m 3 Δu air = 42 kj/kg Energi og Termodynamikkens 1.lov 2-11
32 Sykliske Prosesser Energi og Termodynamikkens 1.lov 2-12
33 Superheat og Reheat Dampkraftsystemer 8-10
34 Regenerative Rankine Syklus med Åpen Matevannsforvarmer Dampkraftsystemer 8-11
35 Regenerative Rankine Syklus med Lukket Matevannsforvarmer Dampkraftsystemer 8-12
36 Regenerative Rankine Syklus med Flere Matevannsforvarmere Dampkraftsystemer 8-13
37 Binære Rankine Sykluser Dampkraftsystemer 8-14
38 Basic Principle for Combined Cycle Plant 10% Ref.: Olav Bolland Air 100% 30% 20% 40% Dampkraftsystemer 8-15
39 Combined Cycle Power Plant Power Production only P 57 η = = = 57% E 100 Heat & Power Production P + Q η = = = E 100 P 48.5 η = = = 48.5% E % Ref.: Olav Bolland Dampkraftsystemer 8-16
40 Effekten av Regenerativ Matevannsforvarming s 8 Ex-10 Dampkraftsystemer 8-17
41 Effekten av Regenerativ Matevannsforvarming Først: Uten slik Matevannsforvarming Tilstand 1: p = 80 bar, T = 480ºC, altså overhetet damp, tabell A-4 h 1 = kj/kg, s 1 = kj/kgk Tilstand 8s: p = 0.08 bar, s 8s = s 1 = kj/kgk, tofase, tabell A-3 Interpolerer mellom s f = kj/kgk og s g = kj/kgk for å finne dampkvaliteten: x = Entalpien finnes da ved tilsvarende vekting mellom h f = kj/kg og h g = kj/kg, resultat: h 8s = kj/kg Tilstand 8: Benytter isentropisk virkningsgrad på 85% til å finne virkelig punkt 8 sin entalpi, resultat: h 8 = kj/kg Tilstand 4: p = 0.08 bar, mettet væske, tabell A-3 gir ved direkte avlesning: h 4 = h f = kj/kg og s 4 = s f = kj/kgk Dampkraftsystemer 8-18
42 Effekten av Regenerativ Matevannsforvarming Først: Uten slik Matevannsforvarming Tilstand 9: p = 80 bar, isentropisk pumpe som gir s 9 = s 4 = kj/kgk Interpolerer dobbelt ved å finne ut hvor s-verdien ligger for hhv. 75 bar og 100 bar i tabell A-5 (komprimert/underkjølt væske). Kan uttrykkes som fraksjoner mellom 40 og 80ºC som gir: Ved 75 bar: frac 1 = , ved 100 bar: frac 2 = Entalpiverdiene ved de to trykkene beregnes nå fra verdiene for entalpi ved hhv 40 og 80ºC til å være: h 75 = kj/kg og h 100 = kj/kg. Interpolerer til slutt mellom 75 og 100 bar for å finne entalpien ved 80 bar: h 9 = kj/kg. Spesifikt pumpearbeid: h 9 h 4 = = 8.4 kj/kg Spesifikt turbinarbeid: h 1 h 8 = = kj/kg Spesifikk varmetilførsel kjel: h 1 h 9 = = kj/kg Dampkraftsystemer 8-19
43 Effekten av Regenerativ Matevannsforvarming Sammenlikner nå virkningsgrader med/uten Uten Regenerativ Matevannsforvarming: = ( ) / = = 33.7% Med Regenerativ Matevannsforvarming: Detaljer i M&S, Eksempel 8.5, side (5. utgave): Spesifikt pumpearbeid (2 pumper): 8.7 kj/kg Spesifikt turbinarbeid: kj/kg Spesifikk varmetilførsel kjel: kj/kg = ( ) / = = 36.9% Dampkraftsystemer 8-20
44 An Introduction to The Concept of Exergy and Energy Quality by Truls Gundersen Department of Energy and Process Engineering Norwegian University of Science and Technology Trondheim, Norway Version 4 - Mars pages Exergy Light Eksergi 01
45 Definisjon av Eksergi (Ref.: J. Szargut, Energy, vol. 5, no. 8-9, pp , 1980) p, v, T, System u, h, s x T p 0 Omgivelser 0 = 1 atm ; 1 bar = 25 C ; 298 K x 0 difficult... Exergy is the (maximum - TG) amount of work obtainable when some matter is brought to a state of thermodynamic equilibrium with the common components of its surrounding nature by means of reversible processes, involving interaction only with the above mentioned components of nature = Exergy Light Eksergi 02
46 Klassifisering av Eksergi (Ref.: T.J. Kotas, The Exergy Method of Thermal Plant Analysis, 1995) Mechanical Kinetic Physical Potential Temperature based Exergy Thermomechanical Pressure based Mixing & Separation Chemical e x (tm) = (h h o ) T o (s s 0 ) = e x (T) + e x (p) Chemical Reaction Termomekanisk Eksergi kan dekomponeres i Temperatur basert og Trykk basert Eksergi Exergy Light Eksergi 03
47 η C Carnot-faktor s.f.a. T(ºC) T T 0 Ex = Q 1 T T 0 = 25ºC E x T = Q 1 T 0 Exergy Light Eksergi 04
48 Temperatur og Trykk basert Eksergi T = 1+ ln T (T) e Cp T T0 0 Exp ( p) ( T) ambient P k 1 P (P) e = T0Rln = CpT0ln P0 k P0 W& = m& ( Δ e +Δe ) Her: Uten Fortegns- Konvensjon W& = m& ( Δe Δe ) Exp ( p) ( T) Ex-11 Exergy Light Eksergi 05
49 Termodynamisk (Isentropisk) Virkninsgrad p1, T1 p2, T2 T C W & p2, T2 W & p1, T1 Exergy Light Eksergi 06
50 Energivirkningsgrad (som COP) vs. Termodynamisk Virkningsgrad COP Ex-12 ideal COP actual = Q& C 8000 W& = 3200 = cycle = TC 268 T T = = H C η = TD COP COP actual ideal 2.5 = = 25.2% Exergy Light Eksergi 07
51 Eksergivirkningsgrad Eksergi Material og Energi- Strømmer Prosess eller Utstyrskomponent Eksergi Material og Energi- Strømmer η = Ex Total eller Nyttbar Eksergi Ut Total Eksergi Inn Exergy Light Eksergi 08
52 Panelovn og Virkningsgrader Q out T out = 5C T = 20 C in Q in W el Omgivelsestemperatur (referanse for Eksergi): T 0 = 25 C 298 K Merk at T out T 0 Ex-13 Exergy Light Eksergi 09
53 Eksergitap ved Varmeoverføring T (K) T (K) Q & 380 Q & Q & (kw) Q & (kw) E W Q& T T & 0 x = & max = 1 Ex =?? ( T varierer) Ex-14 Exergy Light Eksergi 10
54 Eksergilikninger ikke Pensum, men... Eksergibalanse for Lukket System 2 T 0 Ex,2 Ex,1 = 1 Q [ W p0 ( V2 V1 )] T0 T δ σ 1 b Eksergi- Eksergi- Eksergi-overføring endring destruksjon Spesifikk Strømningseksergi 2 V ex, f = ( h h0) T0 ( s s0) + + g z 2 Dynamisk Eksergibalanse for Åpent System de T dv = 1 Q& W& p + m& e m& e E& dt T dt xcv, 0 cv j cv 0 i x, fi e x, fe x, d j j i e Exergy Light Eksergi 11
55 Eksergianalyse av Dampkraftanlegg Ex-15 Exergy Light Eksergi 12
56 Eksergitap i motstrøms Varmeveksler Ex-9 Opplysninger: Strømmer tilnærmes luft med ideell gass oppførsel Massestrømmen er 90 kg/s for alle strømmer (neglisjerer brenselet) Finn: (a) Utløpstemperatur T 4, (b) Endring i Strømningseksergi for hver strøm, (c) Eksergitap i Varmeveksler Exergy Light Eksergi 13
TEP Termodynamikk 1
Institutt for Energi og Prosessteknikk TEP 4120 - Termodynamikk 1 Fagets Innhold og Læringsmål Termodynamiske Systemer, Egenskaper og Tilstander Begrepene Arbeid og Varme (og Energi generelt) Tilstandslikninger
DetaljerInstitutt for Energi og Prosessteknikk
Institutt for Energi og Prosessteknikk TEP 4115/4120 - Termodynamikk 1 Fagets Innhold og Læringsmål Termodynamiske Systemer, Egenskaper og Tilstander Begrepene Arbeid og Varme (og Energi generelt) Tilstandslikninger
DetaljerVerdens Elektrisitetsproduksjon
Verdens Elektrisitetsproduksjon 2010: Kull: 42.2% Naturgass: 20.4% Fornybare: 19.4% Atomkraft: 13.6% Andre: 4.4% 8-1 Elektrisitetsproduksjon i andre Land Norge: 98-99% fra Vannkraft USA Frankrike 8-2 Den
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 9. desember 2008 Tid: kl. 09:00-13:00
Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 410 TERMODYNAMIKK 1 Tirsdag 9. desember 008 Tid: kl. 09:00-13:00
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 6. desember 2010 Tid: kl. 09:00-13:00
Side av 8 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK Mandag 6. desember 00 id: kl. 09:00 - :00 OPPGAVE (40%)
DetaljerSpesial-Oppsummering Høsten 2009 basert på Innspill fra Studenter
Spesial- Høsten 2009 basert på Innspill fra Studenter på Hjemmesiden (fra 2008) - formidler kvintessensen av TEP4120 - omhandler Kap. 1-6, Eksergi Light og Kap. 8-9 - mangler altså (fortsatt) Kap. 10 -
DetaljerRetningen til Spontane Prosesser. Prosessers Retning
Retningen til Spontane Prosesser T. Gundersen 5-1 Prosessers Retning Spontane Prosesser har en definert Retning Inverse Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr og Energi i en eller annen
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00
DetaljerSpørretime TEP Høsten 2012
Vi hadde noen spørsmål i forbindelse med eksergi og utledning av ΔS likningen Spørsmålene om Eksergi kom aldri? Ser derfor på utledningen av ΔS likningen Q (fra meg): Hvilken ΔS likning? u u Entropibalansen
DetaljerSIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/
SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/11-2001 Geir Owren November 25, 2001 Som avtalt med referansegruppen, er det
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerFaglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 14 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
DetaljerOppsummering av første del av kapitlet
Forelesningsnotater om eksergi Siste halvdel av kapittel 7 i Fundamentals of Engineering Thermodynamics, M.J. Moran & H.N. Shapiro Rune N. Kleiveland, oktober Notatene følger presentasjonen i læreboka,
DetaljerSpørretime TEP Høsten Spørretime TEP Høsten 2009
Spørsmål knyttet til en Kjølekrets (Oppgave 3 på Eksamen August 2005) T 44ºC 3 11.6 bar 4 4 bar 2 1 15ºC 12 bar pv 1.01 = k s 3 4 Kjølevann 20ºC 30ºC Kondenser R134a Q C Fordamper Q inn =35 kw 2 1 W C
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerSide 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK
Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
DetaljerFaglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 13 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
DetaljerTypisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. TEP 4120 Termodynamikk 1
Fasediagrammer & Projeksjoner p-v p-t T-v 3-1 Typisk T-v Diagram 3-2 T-v Diagram for H 2 O 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? TABLE A-4 (Continued) T v u h s C m 3 /kg kj/kg
DetaljerRetningen til Spontane Prosesser
Retningen til Spontane Prosesser Termodynamikkens 2. Lov 5-1 Prosessers Retning Spontane Prosesser har en definert Retning u Inverse motsatte Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 12 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerTypisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. Beregning av Egenskaper
Fasediagrammer & Projeksjoner p-v p-t T-v T. Gundersen 3-1 Typisk T-v Diagram T. Gundersen 3-2 T-v Diagram for H 2 O T. Gundersen 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? T. Gundersen
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 11 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerOppsummering - Kap. 5 Termodynamikkens 2. Lov
EP 410 ermodynamikk 1 Spontane Prosesser Varmeoverføring ( > omg ), Ekspansjon (P > P omg ), og Frigjort Masse i Gravitasjonsfelt er Eksempler Energibalanser kan ikke prediktere Retning Hva kan ermodynamikkens.
DetaljerOppsummering av TEP 4120
av TEP 410 Versjon: Nr. 1 Høsten 008 Formål: Metode: Fagweb: Formidle kvintessensen i faget Gi en kronologisk oversikt over sentrale definisjoner av størrelser, konsepter og likninger som utgjør hovedelementene
DetaljerT L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K
Side av 6 ΔL Termisk lengdeutvidelseskoeffisient α: α ΔT ------, eks. α Al 24 0-6 K - L Varmekapasitet C: Q mcδt eks. C vann 486 J/(kg K), (varmekapasitet kan oppgis pr. kg, eller pr. mol (ett mol er N
DetaljerDamp-prosessen / Rankine Cycle. Allerede de gamle Grekere...
Damp-prosessen / Rankine Cycle Ett av instituttene som ble slått sammen til EPT het engang Damp og Forbrenning Damp forbindes ofte med gammeldags teknologi dette er ikke tilfelle!! Men Damp har en lang
DetaljerSpørretime TEP Våren Spørretime TEP Våren 2011
Finnes det flere Eksamenssett i TEP4115? De 2 fagene TEP4120 (Høst) og TEP4115 (Vår) er identiske. På Hjemmesiden denne våren (TEP4115) har jeg lagt ut i hovedsak de eksamener som jeg har vært ansvarlig
DetaljerKJ1042 Øving 5: Entalpi og entropi
KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse
DetaljerKulde- og varmepumpetekniske prosesser Mandag 5. november 2012
TEP 4115 Termodynamikk I Kulde- og varmepumpetekniske prosesser Mandag 5. november 2012 Trygve M. Eikevik Professor Norges teknisk-naturvitenskapelige universitet (NTNU) trygve.m.eikevik@ntnu.no http://folk.ntnu.no/tme
DetaljerUtvidet Oppsummering - Kap. 7
TEP 45 Termdynamikk Hva mener vi med Eksergianalyse? Metdikk fr Design g Analyse av Termiske Systemer i Prsessanlegg sm benytter: Masse g Energibalanser Termdynamikkens. Lv Ppulærvitenskapelige Definisjner
DetaljerTermodynamikk ΔU = Q - W. 1. Hovedsetning = Energibevarelse: (endring indre energi) = (varme inn) (arbeid utført)
Termodynamikk 1. Hovedsetning = Energibevarelse: ΔU = Q - W (endring indre energi) = (varme inn) (arbeid utført) 2. Hovedsetning = Mulige prosesser: Varme kan ikke strømme fra kaldt til varmt legeme Prosesser
DetaljerMAS117 Termodynamikk. Vanndamp som arbeidsfluid. Kapittel 10 Dampkraftsykluser del
MAS7 ermodynamikk Kapittel 0 Dampkraftsykluser del Vanndamp som arbeidsfluid Vanndamp egner seg godt som arbeidsfluid fordi vann er billig og lett tilgjengelig er ikke giftig eller eksplosjonsfarlig har
DetaljerFuktig luft. Faseovergang under trippelpunktet < > 1/71
Fuktig luft 1/71 Faseovergang under trippelpunktet Fuktig luft som blanding at to gasser 2/71 Luft betraktes som en ren komponent Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser 3/71
DetaljerOppsummering av TEP 4115
av TEP 4115 Versjon: Nr. 3 Våren 011 Formål: Metode: Fagweb: Formidle kvintessensen i faget Gi en kronologisk oversikt over sentrale definisjoner av størrelser, konsepter og likninger som utgjør hovedelementene
DetaljerKJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov
KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER
DetaljerKap Termisk fysikk (varmelære, termodynamikk)
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Arbeid og energi (kap. 6+7) Bevegelsesmengde, kollisjoner (kap.
DetaljerDAMPTURBINER. - Introduksjon -
DAMPTURBINER TEP 4115 Termodynamiske s - Introduksjon - ystemer TEP 4 4115 Termodynamiske e systemer Bruk av damp har en lang historie: Hero(n) fra Alexandria (2000 år siden) Leketøy! Watt s Dampmaskin
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Lørdag 5. desember 2009 Tid: kl. 09:00-13:00
Side av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 0 TERMODYNAMIKK Lørda. desember 009 Tid: kl. 09:00 - :00 OPPGAVE
DetaljerDET TEKNISK-NATURVITENSKAPELIGE FAKULTET
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4115/4120 TERMODYNAMIKK 1 (KONT) Fredag 19. august 2005 Tid: kl. 09:00-13:00
Side v 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 45/40 TERMODYNAMIKK (KONT) Fredg 9. ugust 005 Tid: kl. 09:00
DetaljerKap. 1 Fysiske størrelser og enheter
Fysikk for Fagskolen, Ekern og Guldahl samling (kapitler 1, 2, 3, 4, 6) Kap. 1 Fysiske størrelser og enheter Størrelse Symbol SI-enhet Andre enheter masse m kg (kilogram) g (gram) mg (milligram) tid t
DetaljerMID-TERM EXAM IN TEP4125 THERMODYNAMICS 2 Friday 28 March 2014 Time: 10:30 11:30
1 (3) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ENERGY AND PROCESS ENGINEERING Contact during examination: Lars Nord MID-TERM EXAM IN TEP4125 THERMODYNAMICS 2 Friday 28 March 2014 Time:
Detaljera) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for ideelle gasser. Hvordan behandles dette?
LØSNINGSFORSLAG EKSAMEN 20086 SMN6194 VARMELÆRE DATO: 17. Okt. 2008 TID: KL. 09.00-12.00 Oppgave 1 (50%) a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for
Detaljervideell P T Z = 1 for ideelle gasser. For virkelige gasser kan Z være større eller mindre enn 1.
LØSNINGSFORSLAG EKSAMEN 5. OKOBER 00 SMN 64 VARMELÆRE Løsning til oppgave Grunnleggende termodynamikk (0%) a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for
DetaljerSemesteroppgave. Gassturbinprosess
Semesteroppgave Gassturbinprosess Sted: Varmeteknisk Laboratorium, Kolbjørn Hejes vei 1.A Målsetting: Etter å ha gjennomført semesteroppgaven skal studenten ha fått kjennskap til hvordan en jetmotor (Brayton
Detaljergass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:
NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN
DetaljerEKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 16. august 2010 Tid:
(Termo.2 16.8.2010) Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger
Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring
Detaljera) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1?
00000 11111 00000 11111 00000 11111 DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 900 1300 (4 timer). DATO: 22/5 2007 TILLATTE HJELPEMIDLER: Godkjent lommekalkulator
DetaljerLøsningsforslag eksamen TFY desember 2010.
Løsningsforslag eksamen TFY4115 10. desember 010. Oppgave 1 a) Kreftene på klossene er vist under: Siden trinsene og snorene er masseløse er det bare to ulike snordrag T 1 og T. b) For å finne snordraget
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMIKK 1 Lørdag 21. mai 2011 Tid: kl. 09:00-13:00
Side a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK OPPGAVE (3%) LØSNINGSFORSLAG EKSAMEN EP 45 ERMODYNAMIKK Lørdag. mai id: kl. 9: - 3: a) ermodynamikkens.
DetaljerEKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 17. august 2013 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål. EKSAMEN
DetaljerEKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 4. juni 2011 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål./ EKSAMEN
DetaljerA 252 kg B 287 kg C 322 kg D 357 kg E 392 kg. Velg ett alternativ
1 n sugekopp har tre sirkulære "skiver", hver med diameter 115 mm. Hva er sugekoppens maksimale (teoretiske) løfteevne ved normale betingelser (dvs lufttrykk 1 atm)? 252 kg 287 kg 322 kg 357 kg 392 kg
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET FAKULTET FOR MASKINTEKNIKK EKSAMEN I EMNE SIO 7030 ENERGI OG PROSESSTEKNIKK
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET FAKULTET FOR MASKINTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen Tlf.: 9371 / 9700 Språkform: Bokmål EKSAMEN I EMNE SIO 7030 ENERGI
DetaljerArbeid = kraft vei hvor kraft = masse akselerasjon. Hvis kraften F er konstant og virker i samme retning som forflytningen (θ = 0) får vi:
Klassisk mekanikk 1.1. rbeid rbeid som utføres kan observeres i mange former: Mekanisk arbeid, kjemisk arbeid, elektrisk arbeid o.l. rbeid (w) kan likevel alltid beskrives som: rbeid = kraft vei hvor kraft
Detaljer2) Finn entropiproduksjonsraten i blandeprosessen i oppgåve 1. (-rate= per tidseining)
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten nst også på bokmål. EKSAMEN
DetaljerReversible prosesser: Termisk likevekt under hele prosessen Langsomt og kontrollert. [H&S] Kap.11. (1. hovedsetning.) Kretsprosesser.
ka [H&S] Ka.. (. hovedsetning.) Kretsrosesser. Forelest tidligere:. Energibevarelse:. hovedsetning Y&F 9.-4. rbeid og (,V)-diagram Y&F 9.2.5 Gassers C og C V Y&F 9.7 Foreleses nå:.2 Reversible rosesser
DetaljerT 2. + RT 0 ln p 2 K + 0, K ln. kg K. 2) Først må vi nne massestraumen av luft frå energibalansen: 0 = ṁ 1 (h 1 h 2 ) + ṁ 3 (h 3 h 4 ) kg s
LØYSINGSFORSLAG, eksamen 4. mai 208 i fag TEP425 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, sist endra 5. mai 208. Dette er eit UTKAST. Det kan vere skrive- og reknefeil her. Endring i spesikk eksergi konstant
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2017 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 11. august
DetaljerSide 1 av 4/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2018 Tid:
Side 1 av 4/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten nst også på bokmål. EKSAMEN
DetaljerLøsningsforslag til ukeoppgave 7
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 7 Oppgave 11.35 Virkningsgraden er 63,1 % Oppgave 11.37 W = 16, 6 kj Q L = 9, 70 kj Q H = W + Q L = 16, 6 kj + 9, 70 kj = 26, 3 kj η = W Q H =
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger
Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk
DetaljerSide 3 av 3/nyn. Bruk van der Waals likning p = Vedlegg: 1: Opplysningar 2: Mollier h-x-diagram for fuktig luft
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Torsdag
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger
Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme
DetaljerØving 12 TKP
Øving 12 724144 3.5.13 i Innhold Oppgave 1 1 a) Simulering 1 b) Estimering av størrelse på varmevekslere og separator og kompressoreffekt 1 Estimering av størrelse på varmeveksler E-101 1 Estimering av
DetaljerTermisk fysikk består av:
Termisk fysikk består av: 1. Termodynamikk: (= varmens kraft ) Makroskopiske likevektslover ( slik vi ser det ) Temperatur. 1. og. hovedsetning. Kinetisk gassteori: Mekanikkens lover på mikrokosmos Uttrykk
DetaljerKretsprosesser. 2. hovedsetning
Ka0 Kretsrosesser.. hovedsetning Reversible og irreversible rosesser (0.) diabatisk rosess (9.8) Kretsrosesser: varmekraftmaskiner (0.+3) kjølemaskiner (0.4) Carnotsyklusen (0.6) Eks: Ottosyklus (0.3).
DetaljerSAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00
SAMMENDRAG A FORELESNING I TERMODYNAMIKK ONSDAG 3.0.00 Tema for forelesningen var termodynamikkens 1. hovedsetning. En konsekvens av denne loven er: Energien til et isolert system er konstant. Dette betyr
DetaljerEksamen TFY4165 Termisk fysikk kl torsdag 15. desember 2016 Bokmål
FY4165 15. desember 2016 Side 1 av 7 Eksamen FY4165 ermisk fysikk kl 09.00-13.00 torsdag 15. desember 2016 Bokmål Ogave 1. (armeledning. Poeng: 10+10+10=30) Kontinuitetsligningen for energitetthet u og
DetaljerOppsummering av TEP 4120
av TEP 4120 Versjon: Nr. 4 Høsten 2012 Formål: Formidle kvintessensen i faget Metode: Gi en kronologisk oversikt over sentrale definisjoner av størrelser, konsepter og likninger som utgjør hovedelementene
DetaljerEksergi, Eksergianalyse (kap.7)
Eksergi, eksergianalyse (kap.7) Termodynamikk for (ideelle) blandingar av ideelle gassar utan kjemisk reaksjon (kap.12) 1 Eksergi, Eksergianalyse (kap.7) Energi, varme, arbeid, eksergi Energibalanse og
DetaljerLØYSINGSFORSLAG, eksamen 20. mai 2015 i fag TEP4125 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 2015/sist revidert 9.juni 2015.
Termodyn. 2, 20.5.205, side LØYSINGSFORSLAG, eksamen 20. mai 205 i fag TEP425 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 205/sist revidert 9.juni 205. Les av i h-x-diagrammet: x = 0,05 kg/kg, T dogg, = 20
DetaljerFolkevandringstelling
Termisk fysikk består av: 1. Termodynamikk: (= varmens kraft ) Makroskopiske likevektslover ( slik vi ser det ) Temperatur. 1. og. hovedsetning. Kinetisk gassteori: Mekanikkens lover på mikrokosmos Uttrykk
DetaljerOppgave 1 V 1 V 4 V 2 V 3
Oppgave 1 Carnot-syklusen er den mest effektive sykliske prosessen som omdanner termisk energi til arbeid. I en maskin som anvender Carnot-syklusen vil arbeidssubstansen være i kontakt med et varmt reservoar
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2015 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 20. mai
DetaljerRepetisjonsoppgaver kapittel 5 løsningsforslag
Repetisjonsoppgaver kapittel løsningsforslag Termofysikk Oppgave 1 a) Fra brennkammeret overføres varme til fyrkjelen, i henhold til termofysikkens andre lov. Når vannet i kjelen koker, vil den varme dampen
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13.
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag
DetaljerTermodynamiske grunnbegreper
Termodynamiske grunnbegreper 1. Termodynamiske grunnbegreper. 1.1. Termodynamiske system. 1.. Termodynamiske tilstandsstørrelser. 1.3. Termodynamiske prosesser. 1.4. Varmekapasitet og latent varme. 1.5.
DetaljerEksamen TFY4165 Termisk fysikk kl august 2018 Nynorsk
TFY4165 9. august 2018 Side 1 av 7 Eksamen TFY4165 Termisk fysikk kl 09.00-13.00 9. august 2018 Nynorsk Oppgåve 1. Partiklar med tre diskrete energi-nivå. (Poeng: 6+6+8=20) Eit system består av N uavhengige
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 8. august 2009 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 8. august
DetaljerFlervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
DetaljerAST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1
AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke
DetaljerEKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 18. august 2012 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag
DetaljerEKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2
EKSAMENSOPPGAVE Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er
DetaljerSide 1 av 2/nyn. MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 20. februar 2013 Tid:
Side 1 av 2/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 20.
DetaljerEksamen TFY4165 Termisk fysikk kl mandag 7. august 2017 Bokmål
FY4165 7. august 2017 Side 1 av 7 Eksamen FY4165 ermisk fsikk kl 09.00-13.00 mandag 7. august 2017 Bokmål Ogave 1. (armeledning. Poeng: 5+10+5=20) Kontinuitetsligningen for energitetthet u og energistrømtetthet
Detaljer- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2
Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former
DetaljerInstitutt for Bygg- og energiteknikk BACHELOROPPGAVE
GRUPPE NR. 5 TILGJENGELIGHET ÅPEN Institutt for Bygg- og energiteknikk Postadresse: Postboks 4 St. Olavs plass, 0130 Oslo Besøksadresse: Pilestredet 35, Oslo Telefon: 67 23 50 00 www.hioa.no BACHELOROPPGAVE
DetaljerEksempler og oppgaver 9. Termodynamikkens betydning 17
Innhold Eksempler og oppgaver 9 Kapittel 1 Idealgass 20 Termodynamikkens betydning 17 1.1 Definisjoner og viktige ideer 22 1.2 Temperatur 22 1.3 Indre energi i en idealgass 23 1.4 Trykk 25 1.5 Tilstandslikningen
DetaljerLøsningsforslag til ukeoppgave 8
Oppgaver FYS1001 Vår 2018 1 øsningsforslag til ukeoppgave 8 Oppgave 13.02 T ute = 25 C = 298, 15 K T bag = 0 C = 273, 15 K A = 1, 2 m 2 = 3, 0 cm λ = 0, 012 W/( K m) Varmestrømmen inn i kjølebagen er H
DetaljerHyperbar avfuktning, termodynamisk regneeksempel
Hyperbar avfuktning, termodynamisk regneeksempel Et klimaanlegg i en dykkerklokke skal levere luft med svært nøyaktig regulering av lufttilstanden. Anlegget skal i tillegg til å kjøle luften fjerne fuktighet.
DetaljerSkipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM02N - Emneplan for: Fysikk på ledelsesnivå
Skipsoffisersutdanningen i Norge 00TM02N - Emneplan for: Fysikk på ledelsesnivå Generelt Utarbeidet av: Fysikk på ledelsesnivå Godkjent av: Anne Sjøvold Versjon: 1.02 Gjelder fra: 11.08.2016 Sidenr: 1
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 august 2015 Tid: 4 timar
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 august
DetaljerLøsningsforslag til øving 6
Ogave 1 FY1005/FY4165 ermisk fysikk Institutt for fysikk NNU åren 2015 Entroiendring for kloss 1: Entroiendring for kloss 2: 1 2 Løsningsforslag til øving 6 0 1 dq 0 2 dq 0 Cd 1 0 Cd 2 C ln 0 1 C ln 0
DetaljerManual til laboratorieøvelse Varmepumpe
Manual til laboratorieøvelse Varmepumpe Versjon 06.02.14 Teori Energi og arbeid Arbeid er et mål på bruk av krefter og har symbolet W. Energi er et mål på lagret arbeid det vil si at energi kan omsettes
DetaljerNOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg
Side 1 av 2/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 26.
DetaljerMEK2500. Faststoffmekanikk 1. forelesning
MEK2500 Faststoffmekanikk 1. forelesning MEK2500 Undervisning Foreleser: Frode Grytten Øvingslærer: NN Forelesninger: Tirsdag 10:15-12:00 B62 Torsdag 12:15-14:00 B91 Øvinger: Torsdag 14:15-16:00 B70 Øvinger
DetaljerIntroduction to thermal physics - Short course in thermodynamics
Introduction to thermal physics - Short course in thermodynamics Anders Malthe-Sørenssen 19. august 2013 1 1 Introduction Vi ønsker å forstå makroskopiske objekter basert på de mikroskopiske vekselvirkningene.
Detaljer