Laboratorieoppgave 1: Partielle molare volum
|
|
- Johanne Bø
- 8 år siden
- Visninger:
Transkript
1 Laboratorieoppgave 1: Partielle molare volum Åge Johansen Ole Håvik Bjørkedal 30. januar 2015 Sammendrag Rapporten omhandler hvordan partielle molare volum varierer med molfraksjonen Innhold 1 Innledning 2 2 Eksperimentelt Partielle molare volum som funksjon av molfraksjonen av aceton 2 3 Resultater Tettheten til aceton Molare volum av ren komponent Antall mol av hver komponent i pyknometeret Molfraksjon av hver komponent Partielle molare volum til blandingen Plott av endingen i molart volum ved blanding Partielle molare volum som funksjon av molfraksjonen av aceton Beregning av partielle molare volum av ren komponent Konklusjon 7 A Symbolliste 7 B Måleresultater 8
2 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 2 1 Innledning Ved blanding av to eller ere ulike væsker vil det totale volumet avvike fra en tilsvarende blanding av to like komponenter (Ideell blanding). Dette kommer av tiltrekkende og frastøtende krefter mellom stoene, og avhenger av komponenter og blandingsforhold. Målet for dette forsøket er å bestemme det partielle molare volumet for aceton og vann som funksjon av sammensetning. 2 Eksperimentelt Et pyknometer er en liten glasskolbe med en kork som har et lite hull i seg. Når pyknometeret fylles, vil væskeoverskudd gå ut gjennom hullet i korken, og det totale volumet i pyknometeret holder seg konstant for hver fylling. To pyknometre ble kalibrert med vann. De tomme pyknometrene ble først veid, så fylt med vann og veid igjen. Tettheten til vann ble funnet i litteratur.?? Ti ulike blandinger av vann og aceton ble preparert, og vekt av disse ble bestemt når prøvene var fullstendig blandet og romtempererte. 2.1 Partielle molare volum som funksjon av molfraksjonen av aceton V 1 og V 2 ble funnet ved å kombinere 1 og 2. mix V m = (V 1 V 1 ) + x 2 [(V 2 V 2 ) (V 1 V 1 ) (1) d mix V m dx 2 Fra dette ble følgende uttrykk for V 1 (x 2 ) og V 2 (x 2 ): = (V 2 V 2 ) (V 1 V 1 ) (2) V 1 = V 2 V 2 + V 1 d mixv m dx 2 (3) V 2 = mix V m + x 2 d mixv m dx 2 d mixv m dx 2 + V 2 (4)
3 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 3 3 Resultater 3.1 Tettheten til aceton Ved å bestemme de eksakte volumene og vektene til pyknometerne og deretter veie pyknometerne med ren aceton kan man nne tettheten til aceton etter formelen. ρ aceton = w aceton V pyknometer ρ aceton = 3.2 Molare volum av ren komponent 8, 21 10, 57 = 0, 776g/cm3 (5) Molare volum av ren komponent ble bergnet ut i fra tettheten til ren komponent. V m = 1 ρ m (6) Dette ga verdier for vann og aceton: V vann = 18, 03 V aceton = 74, Antall mol av hver komponent i pyknometeret Antall mol av gitt komponent ved blandinger følger formel; og; n vann = n aceton = kw Vvann(kρ vann + ρ aceton ) W Vaceton(kρ vann + ρ aceton ) og ρ er tett- der W er blandingens totale masse, k er volumforholdet Vvann heten til henholdvis vann og aceton. 3.4 Molfraksjon av hver komponent Molfraksjonen av hver komponent er gitt som; V aceton (7) (8) og x vann = x aceton = n vann n vann + n aceton (9) n aceton n aceton + n vann (10)
4 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side Partielle molare volum til blandingen Partielle molare volum V m ble regnet ut ved å bruke formelen; V m = V 1 +V 2 2 n vann + n aceton (11) Der V 1 og V 2 står for volumet til hvert av pyknometerene. Gjennomsnitt ble brukt for å minimalisere variasjoner i veiinger. Dersom blandingen hadde vært en ideell blanding ville den fulgt formelen: V unmix = x vann V vann + x aceton V aceton (12) 3.6 Plott av endingen i molart volum ved blanding Ved å blotte dieransen mellom reell og ideell blanding mot molfraksjonen til den ene komponenten får man en kurve som ved ideell blanding ville vært en rett linje. Figur 1: Grafen viser forskjellen mellom de partielle molare volumene til ideell og reell blanding
5 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side Partielle molare volum som funksjon av molfraksjonen av aceton Figur 2: Grafen viser det partielle molare volumet av vann plottet mot molfraksjonen av aceton Figur 3: Grafen viser det partielle molare volumet av aceton plottet mot molfraksjonen av aceton
6 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 6 Derson man ser på gur 2 og gur 3 ser man at grafene er speilvendte av hverandre. 3.8 Beregning av partielle molare volum av ren komponent Ved å bruke regresjonsverktøy på grafene i gur 2 og gur 3 blir uttrykkene for V vann og V aceton. V vann (x aceton ) = 0, 37x 3 5, 65x 2 0, 18x + 18, 064 (13) V vann = V vann (x aceton = 0) = 18, 06cm 3 /mol V aceton (x aceton ) = 0, 37x 3 5, 65x , 20x + 68, 183 (14) V aceton = V aceton (x aceton = 0) = 68, 18cm 3 /mol
7 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 7 4 Konklusjon Fra resultatene nnes det at sammenhengen mellom reell og ideell blanding er: mix V m (x 2 ) = 6, 1892 x 2 2 6, 3871 x 2 + 0, 0258 (15) Partielle molare volum som funksjon av sammensetning ble bestemt til: V 1 (x 2 ) = 0, 3749x 3 2 5, 6561x 2 2 0, 1771x , 064 (16) V 2 (x 2 ) = 0, 3749x 3 2 5, 6561x , 201x , 183 (17) Fra grafene kan det sees at disse kurvene er speilbilder av hverandre. A Symbolliste Tabell 1: Symboler brukt i rapporten Symbol Enhet Beskrivelse ρ i g/cm 3 Tettheten til en gitt komponent w i g Vekten til en gitt komponent W g Vekten til den totale blandingen V i cm 3 Volumet til en gitt komponent k 1 Volumforhold mellom komponentene n i mol Antall mol av en gitt komponent Vm cm 3 /mol Molart volum til en gitt komponent x i 1 Molfraksjon til av en gitt komponent V unmix cm 3 /mol Molfraksjon dersom ideell blanding
8 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 8 B Måleresultater Tabell 2: Tabellen viser at vekten av pyknometerne endres ved forskjellig konsentrasjon av vann og aceton Måling # volum vann volum aceton Nettovekt pyknometer 1 Nettovekt pyknometer , , , , , , , , ,005 9, ,8623 9, ,7202 9, ,4965 9, ,067 9, ,8213 8, ,394 8, ,2081 8,1569
9 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 9 Tabell 3: Tabellen viser hvordan antall mol og molfraksjonen av hver komponent varierer med målingene Måling # mol vann (n 1 ) mol aceton (n 2 ) x 1 x 2 0 0,5771 0,0000 1,0000 0, ,5596 0,0047 0,9917 0, ,4901 0,0237 0,9539 0, ,4544 0,0335 0,9314 0, ,3987 0,0482 0,8921 0, ,3595 0,0580 0,8611 0, ,3024 0,0732 0,8052 0, ,2421 0,0879 0,7338 0, ,1408 0,1119 0,5572 0, ,0999 0,1208 0,4526 0, ,0197 0,1382 0,1248 0, ,0000 0,1408 0,0000 1,0000 Tabell 4: Tabellen viser hvordan det de reelle molare volumene avviker fra de ideelle. Tabellen viser også hvordan de partielle molare volumene til hver komponent endres ved konsentrajonen Måling # V m V unmix mix V m V m,aceton V m,vann 0 18,030 18,030 0,000 68,148 18, ,592 18,497 0,094 68,397 18, ,416 20,638-0,221 68,767 18, ,504 21,905-0,401 68,976 18, ,472 24,127-0,655 69,375 17, ,126 25,877-0,751 69,765 17, ,932 29,036-1,104 70,230 17, ,791 33,074-1,283 70,984 17, ,513 43,053-1,540 72,491 16, ,539 48,962-1,422 73,289 16, ,422 67,486-1,064 74,027 13, ,489 74,536-0,047 74,489 11,992
10 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 10 Referanser [1] Kjelstrup, Signe Prosjekter i fysikalsk kjemi grunnkurs, 7. utgave; Tapir akademiske forlag, 2011 [2] Aylward, G. m.. SI Chemical Data, 6th ed. ; Wiley, Australia, 2008 [3] Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 89th ed.; CRC Press, Boca Raton, FL, USA, 2009 Ole Håvik Bjørkedal Trondheim, 30. januar 2015 Åge Johansen Trondheim, 30. januar 2015
KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum
KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Utført 14. februar 2012 Innhold 1 Innledning
DetaljerOppgave 1. Bestemmelse av partielle molare volum
Oppgave 1 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 22.02.2012 i Sammendrag Hensikten med dette forsøket var å bestemme de partielle molare volum
DetaljerLaboratorieoppgave 3: Fordampingsentalpi til sykloheksan
Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 17. mars 2013 Sammendrag Rapporten omhandler hvordan fordampningsentalpien
DetaljerOppgave 2. Bestemmelse av partielle molare entalpier
Oppgave 2 Rom C2-107 Gruppe 45 Kasper Linnestad & Anders Leirpoll kasper1301@gmail.com anders.leirpoll@gmail.com 15.02.2012 1 Sammendrag Hensikten med dette forsøket var å bestemme den molare blandingsentalpien
DetaljerEksperiment 10; Etersyntese: Alkylering av paracetamol til Phenacetin
Eksperiment 10; Etersyntese: Alkylering av paracetamol til Phenacetin Åge Johansen 6. november 2012 Sammendrag Rapporten omhandler hvordan en eter blir dannet fra en alkohol, ved hjelp av alkylering gjennom
DetaljerEksperiment 12; Oksidasjon av isoborneol til Kamfer
Eksperiment 12; Oksidasjon av isoborneol til Kamfer Åge Johansen 3. november 2012 Sammendrag Rapporten omhandler hvordan ketonet Kamfer blir dannet fra alkoholet isoborneol TMT4122- Åge Johansen - Side
DetaljerKJ1042 Termodynamikk laboratoriekurs Oppgave 2. Partiell molar entalpi
KJ104 Termodynamikk laboratoriekurs Oppgave. Partiell molar entalpi Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 1 Lab C-107 Utført 8. februar 01 Innhold 1 Innledning
DetaljerKJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton
KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 21. februar
DetaljerEksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol
Eksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol Åge Johansen 29. oktober 2012 Sammendrag Rapporten omhandler hvordan trifenylmetanol blir syntetisert via Grignardreagenset som skal reageres
DetaljerLaboratorieoppgave 4: Tokomponent faselikevekt
Laboratorieoppgave 4: Tokomponent faselikevekt Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 29. september 2013 Sammendrag Dette forsøket ble utført for å bestemme aktivitetskoesienten
DetaljerOppgave 3. Fordampningsentalpi av ren væske
Oppgave 3 Fordampningsentalpi av ren væske KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 29.02.2012 i Sammendrag I forsøket ble damptrykket
DetaljerOppgave 4. Tokomponent faselikevekt
Oppgave 4 Tokomponent faselikevekt KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 15.02.2012 i Sammendrag Forsøkets hensikt var å beregne aktivitetskoeffisienten,,
DetaljerLaboratorieoppgave 5: Standard Reduksjonspotensial. Åge Johansen Ole Håvik Bjørkedal Gruppe 60 1.
Laboratorieoppgave 5: Standard Reduksjonspotensial Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 1. mai 2013 Sammendrag Hensikten med dette forsøket var å bestemme standard
DetaljerOppgave 3 -Motstand, kondensator og spole
Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer
Detaljer4 KONSENTRASJON 4.1 INNLEDNING
4 KONSENTRASJON 4.1 INNLEDNING 1 Terminologi En løsning er tidligere definert som en homogen blanding av rene stoffer (kap. 1). Vi tenker vanligvis på en løsning som flytende, dvs. at et eller annet stoff
DetaljerKJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt
KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 16. mars 2012 Innhold 1
DetaljerPreparativ oppgave i uorganisk kjemi
Preparativ oppgave i uorganisk kjemi Kaliumaluminiumsulfat dodekahydrat (Al-1) Anders Leirpoll 13.09.2011 Innhold Sammendrag:... 1 Innledning:... 1 Prinsipp... 1 Eksperimentelt... 2 Resultater... 2 Diskusjon...
DetaljerOppgave 5. Standard elektrodepotensial
Oppgave 5 Standard elektrodepotensial KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 28.03.2012 i Sammendrag Hensikten med dette forsøket er
DetaljerEksamensoppgave i TKP4105 Separasjonsteknologi
Institutt for kjemisk prosessteknologi Eksamensoppgave i TKP4105 Separasjonsteknologi Faglig kontakt under eksamen: May-Britt Hägg Tlf: 930 80834 Sigurd Skogestad Tlf: 913 71669 Eksamensdato: 16.12.13
DetaljerVarmekapasitet, og einsteintemperatur til aluminium
Varmekapasitet, og einsteintemperatur til aluminium Tiril Hillestad, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 23. mars 2012 Sammendrag I dette forsøket er det estimert
DetaljerTBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5
TBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5 Hilde M. Vaage hildemva@stud.ntnu.no Malin Å. Driveklepp malinad@stud.ntnu.no Oda H. Ramberg odahera@stud.ntnu.no Audun
DetaljerØving Nettoinnhold i en melkekartong
Øving Nettoinnhold i en melkekartong Vi tenker oss at vi overvåker fylling av melkekartonger. Vi skal foreta et utplukk av 3 kartonger med nominelt innhold på 1 liter. Vi skal bestemme volum-innholdet
DetaljerKrystallisasjon: Isolering av acetylsalisylsyre
Krystallisasjon: Isolering av acetylsalisylsyre Eksperiment 3 I forsøket ble det utført ekstraksjon av acetylsalisylsyre fra disprill, etterfulgt av omkrystallisering av produktet. Utbyttet ble beregnet
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger
Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk
DetaljerKan vi forutse en pendels bevegelse, før vi har satt den i sving?
Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13.
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger
Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring
DetaljerLøsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org
Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned
DetaljerTEMA: Destillasjon. Løsningsforslag: Komponentbalanse (molar basis) for acetaldehyd: F X F = B X B + D Y D
Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Termisk Energi og Vannkraft Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 11 År: 2004
DetaljerMal for rapportskriving i FYS2150
Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste
DetaljerKJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov
KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,
DetaljerKANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG
Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21015 Fysikalsk kjemi 10 studiepoeng Fagansvarlige: Ole Kr. Forrisdahl, Loan Che, Grupper: K2 Dato: 10.12.2015 Tid: 0900-1300 Antall
DetaljerDe viktigste formlene i KJ1042
De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene
DetaljerI et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:
OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom
DetaljerKJ1042 Øving 12: Elektrolyttløsninger
KJ1042 Øving 12: Elektrolyttløsninger Ove Øyås Sist endret: 14. mai 2011 Repetisjonsspørsmål 1. Hva sier Gibbs faseregel? Gibbs faseregel kan skrives som f = c p + 2 der f er antall frihetsgrader, c antall
DetaljerEKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20
DetaljerNA Dok 26C Krav til kalibrering og kontroll av volumetrisk utstyr for akkrediterte prøvingslaboratorier
Norsk akkreditering NA Dok 26C: Krav til kalibrering og kontroll av volumetrisk Mandatory/Krav Utarbeidet av: Saeed Behdad Godkjent av: Morten Bjørgen Versjon: 1.01 Gjelder fra: 01.03.2012 Sidenr: 1 av
DetaljerVi ønsker å bestemme konsentrasjonen av to forskjellige spesier som begge absorberer. Ni 510
nvendelser av spektroskopi. nale av en blanding kjemiske forbindelser ε 1 bc 1 + ε 2 bc 2 + ε 3 bc 3 + ε 4 bc 4 + ε 5 bc 5 +. Vi ønsker å bestemme konsentrasjonen av to forskjellige spesier som begge absorberer.
Detaljer- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2
Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former
DetaljerRapporter. De ulike delene i en rapport og hvordan de bør utformes Sammendrag Teori Eksperimentelt Resultat Diskusjon/konklusjon Litteraturliste
Rapporter Rapporter o Generelt om rapporter o Generelt oppsett for rapporter (og variasjoner) o Språk o Tabeller og figurer Tabeller: - Tabell tekster: - Plassering av enheter - Bruk av fotnoter - Organisering
DetaljerKap. 1 Fysiske størrelser og enheter
Fysikk for Fagskolen, Ekern og Guldahl samling (kapitler 1, 2, 3, 4, 6) Kap. 1 Fysiske størrelser og enheter Størrelse Symbol SI-enhet Andre enheter masse m kg (kilogram) g (gram) mg (milligram) tid t
DetaljerEkstraksjon: Separasjon av sure, basiske og nøytrale forbindelser
Ekstraksjon: Separasjon av sure, basiske og nøytrale forbindelser Anders Leirpoll I forsøket ble det gjennomført en ekstraksjon av nafatalen og benzosyre løst i eter, med ukjent sammensetning. Sammensetningen
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger
Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme
DetaljerFYS2160 Laboratorieøvelse 1
FYS2160 Laboratorieøvelse 1 Faseoverganger (H2013) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge
DetaljerStøkiometri (mengdeforhold)
Støkiometri (mengdeforhold) Det er særs viktig i kjemien å vite om mengdeforhold om stoffer. -En hodepine tablett er bra mot hodesmerter, ti passer dårlig. -En sukkerbit i kaffen fungerer, 100 er slitsomt.
DetaljerTEMA: Damp/Væske-likevekter og Flash-Separasjon. Løsningsforslag:
Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Energi og Prosessteknikk Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 10 År: 2004
Detaljer3. Massevirkningsloven eller likevektsuttrykk for en likevekt
apittel 8 jemisk likevekt 1. Reversible reaksjoner. Hva er likevekt? 3. Massevirkningsloven eller likevektsuttrykk for en likevekt 4. Likevektskonstanten (i) Hva sier verdien oss? (ii) Sammenhengen mellom
DetaljerEksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI
Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:
Detaljer2 = 4 x = x = 3000 x 5 = = 3125 x = = 5
Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.
ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om
DetaljerKANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21014 Fysikalsk kjemi 10 studiepoeng Emneansvarlig: Ole Kr. Førrisdahl, mobil 974 873 78 Grupper: K2 Dato: 11.12.2014 Tid: 0900-1300
Detaljer0.1 Kort introduksjon til komplekse tall
Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på
DetaljerTKP 4165 Prosessutforming Øving 12
TKP 4165 Prosessutforming Øving 12 Åge Johansen agej@stud.ntnu.no Stud.nr:724109 10. april 2015 1 Innhold 1 Oppgave 1 3 1.1 a) Simulering og oppfylling av massebalanse.......... 3 1.2 b) Varmeveskler,
DetaljerKJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial
KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 27. mar012 Innhold 1
DetaljerKJ2050 Analytisk kjemi, GK
KJ2050 Analytisk kjemi, GK Kromatografi (Analytiske separasjoner og kromatografi) 1. Innledning (og noe terminologi) 2. Noe generell teori A. Retensjonsparametre B. Sonespredning C. Sonespredningsmekanismer
DetaljerKJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport
KJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport Pia Haarseth piakrih@stud.ntnu.no Audun Formo Buene audunfor@stud.ntnu.no Laboratorie:
DetaljerFasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
DetaljerSnøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
DetaljerAlkener fra alkoholer: Syntese av sykloheksan
Alkener fra alkoholer: Syntese av sykloheksan Anders Leirpoll I forsøket ble det utført syrekatalysert dehydrering av sykloheksanol. Produktet var sykloheksen og ble testet for renhet med bromvann og Jones
DetaljerSikkerhetsrisiko:lav. fare for øyeskade. HMS ruoner
Reaksjonskinetikk. jodklokka Risiko fare Oltak Sikkerhetsrisiko:lav fare for øyeskade HMS ruoner Figur 1 :risikovurdering Innledning Hastigheten til en kjemisk reaksjon avhenger av flere faktorer: Reaksjonsmekanisme,
DetaljerVarmepumpe. Innledning. Teori. Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen. 1. desember Generell teori
Varmepumpe Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen 1. desember 2012 Sammendrag Eektiviteten til en R-134a-varmpepumpe mellom to varmereservoar ble målt til å være mellom 3 og 4. Innledning
DetaljerLøsningsforslag til øving 1
Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p
DetaljerLøsningsforslag til ukeoppgave 6
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 6 Oppgave 11.07 a) pv T = konstant, og siden T er konstant blir da pv også konstant. p/kpa 45 35 25 60 80 130 V/dm 3 1,8 2,2 3,0 1,4 1,0 0,6 pv/kpa*dm
Detaljera) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1?
00000 11111 00000 11111 00000 11111 DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 900 1300 (4 timer). DATO: 22/5 2007 TILLATTE HJELPEMIDLER: Godkjent lommekalkulator
DetaljerAVDELING FOR INGENIØRUTDANNING
AVDELIG FR IGEIØRUTDAIG Emne: Analytisk kjemi Fagnr: L435K Faglig veileder: Hanne Thomassen Gruppe(r):2KA Dato: 15. desember 2005 Eksamenstid: 9.00-14.00 Eksamensoppgaven består av: Antall sider (inkl.
DetaljerTBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5
TBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5 Hilde M. Vaage hildemva@stud.ntnu.no Malin Å. Driveklepp malinad@stud.ntnu.no Oda H. Ramberg odahera@stud.ntnu.no
DetaljerEKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:
Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA
DetaljerTall og algebra 1P, Prøve 1 løsning
Tall og algebra 1P, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gjør overslag a) Ali kjøper 4,1 kg appelsiner. Appelsinene koster 15,70 kr per kg. Gjør overslag og finn ut omtrent
DetaljerNivåtettheten for ulike spinn i 44 Ti
7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.
DetaljerPreparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 ) 2 12 H 2 O. Audun Formo Buene Lab 1 Plass 17
Preparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 12 H 2 O Audun Formo Buene Lab 1 Plass 17 27. september 2011 Innhold 1 Sammendrag 1 2 Innledning 2 3 Fremstillingsmetode 2 3.1 Fremgangsmåte
DetaljerFor hver kildestrøm CMR-modellen benyttes for skal dokumentasjonen minst inkludere følgende informasjon relatert til det aktuelle rapporteringsåret:
Notat Fra: Til: Klimakvoteseksjonen i Miljødirektoratet Kvotepliktige virksomheter som benytter "CMR-modellen" for bestemmelse av CO 2 -utslippsfaktorer for fakkelgasser Dato: 27. september 2018 Versjon
DetaljerPrøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
DetaljerLøsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og
DetaljerAlkylhalider Sn1- og Sn2- reaktivitet
Alkylhalider Sn1- og Sn2- reaktivitet Anders Leirpoll Sammendrag 1 Innhold 1 Formål... 2 2 Teori... 2 3 Fysikalske data... 3 4 Eksperimentelt... 5 5 Resultater... 6 5.1 Teoretisk utbytte... Feil! Bokmerke
DetaljerEKSAMENSOPPGAVE MAT-0001 (BOKMÅL)
EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 6. desember 2011. Tid : 09.00-13.00. Sted: : Adm. bygget, Aud. max. eller B154. Tillatte hjelpemidler : Alle
Detaljer2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid
Fysikk / Termodynamikk åren 2001 2. Termodynamikkens lover 2.1. Termodynamikkens 1. lov Termodynamikkens første lov kan formuleres å mange måter. En vanlig formulering er: Energien til et isolert system
DetaljerOksidasjon av Isoborneol til Kamfer
Oksidasjon av Isoborneol til Kamfer Eksperiment 12 Anders Leirpoll TMT4122 Lab 3. Plass 18B Utført 02.11.2011 I forsøket ble det foretatt en oksidasjon av isoborneol med hypokloritt til kamfer. Råproduktet
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerNGU Rapport 2009.048. Kalibrering for densitet innvirkning for mekaniske testmetoder.
NGU Rapport 2009.048 Kalibrering for densitet innvirkning for mekaniske testmetoder. Norges geologiske undersøkelse 7491 TRONDHEIM Tlf. 73 90 40 00 Telefaks 73 92 16 20 RAPPORT Rapport nr.: 2009.048 ISSN
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
DetaljerAKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn
AKTIVITET 8-10. trinn Baneberegninger modellraketter Utviklet av Tid Læreplanmål Nødvendige materialer 1-2 timer Bruke egne målinger og tabellverdier til å gjøre baneberegninger på modellraketten. Modellrakett
DetaljerDetaljert modellering av 'gas blowby'
Bilag Innhold BILAG 1 FLYTSKJEMA... 57 B1.1 MODELL 1... 57 B1.2 MODELL2... 58 B1.3 MODELL 3... 59 B1.4 MODELL 4... 60 BILAG 2 DIMENSJONER PÅ UTSTYR... 61 B2.1 DIMENSJONER FOR MODELL 1-3... 61 B2.2 MODELL
DetaljerLøsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org
Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk
DetaljerEKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3
EKSAMENSOPPGAVE Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir
DetaljerOppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.
EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.
DetaljerLøsningsforslag Matematikk 2MX - AA6516-9. mai 2007
Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 eksamensoppgaver.org September 17, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerLøsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org
Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerFysikk for ingeniører. 11. Termiske egenskaper. Løsninger på blandede oppgaver. Side 11-1
Fysikk for ingeniører ermiske egenskaer Løsninger å landede ogaver Side - Ogave : a) Forutsetter at stemelet står i ro etrakter kreftene å undersiden av stemelet: = + mg mg kg 98m/s = + = Pa + = 6 Pa m
DetaljerSide 1 av 4/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2018 Tid:
Side 1 av 4/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten nst også på bokmål. EKSAMEN
DetaljerPreparativ oppgave - Kaliumaluminiumsulfatdodekahydrat (Al-1)
Preparativ oppgave - Kaliumaluminiumsulfatdodekahydrat (Al-1) Einar Baumann 1. Oktober 2010 Sammendrag I dette forsøket ble det fremstilt kaliumaluminiumsulfatdodekahydrat krystaller. Det ble gjort ved
DetaljerLøsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
DetaljerAldolkondensasjon: Syntese av Tetrafenylsyklopentadienon
Aldolkondensasjon: Syntese av Tetrafenylsyklopentadienon Eksperiment 13 Anders Leirpoll TMT4122 Lab 3. Plass 18B Utført 09.11.2011 I dette forsøket ble det gjennomført en aldolkondensasjon der det ble
DetaljerOppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ
DetaljerKapittel 12. Brannkjemi. 12.1 Brannfirkanten
Kapittel 12 Brannkjemi I forbrenningssonen til en brann må det være tilstede en riktig blanding av brensel, oksygen og energi. Videre har forskning vist at dersom det skal kunne skje en forbrenning, må
DetaljerCC800A Digital fyllevekt
CC800A Digital fyllevekt SPESIFIKASJONER Laste kapasitet: 0-100 kg (0-220lbs) Overlastningsadvarsel: 100kg Brukstemperatur: -10 C til 50 C Bruker og oppbevarings fuktighet: 0 til 95 % Oppløsning 10 gram
DetaljerEKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl. 10:00 og kl. 12:30
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1005 Grunnleggende Fysikalsk Kjemi Dato: Fredag 01. juni 2018 Klokkeslett: 09:00-14:00 Sted: KRAFT I og II Hall del 3 Kraft sportssenter
DetaljerBestemmelse av Newtons gravitasjonskonstant med torsjonsvekt
Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt K. Reed a, E. S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norway. Abstract Cavendisheksperimentet
DetaljerVelkommen til en dag med realfag i praksis!
Velkommen til en dag med realfag i praksis! Tom Lohiniva Noen regler Vi går/er alltid samlet. Toalett besøk Min mobil 907 69 653 Ingen mobil eller noen form for tennkilder (fyrstikker, lighter etc.) inne
DetaljerLøsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
Detaljer