0.1 Kort introduksjon til komplekse tall
|
|
- Brynjar Johannessen
- 9 år siden
- Visninger:
Transkript
1 Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på detaljerte utledninger. Dette gjelder spesielt enkelte kompliserte integraler, som vi også kan nne frem til på egen hånd ved å slå opp i matematiske formelsamlinger. Vi starter med en introduksjon av komplekse tall. 0. Kort introduksjon til komplekse tall Siden kvantefysikken er formulert ved bruk av komplekse tall, skal vi her gi en kort innføring i bruken av slike tall. Den imaginære størrelsen i er denert som kvadratroten av, eller som Dette gir uten videre at i = p i = Det komplekse tallet z kan skrives som z = x + iy. Den kompleks konjugerte av et kompleks tall fremkommer ved å erstatte alle forekomstene av det imaginære tallet i med i. Den kompleks konjugerte av z skrives som z og er gitt ved z = x iy. Tallverdien av z er denert som jzj = p zz = p (x + iy) (x iy) = p x + y Argand-diagrammet Det komplekse tallet z = x + iy kan representeres som a) punktet P (x; y) i xy-planet eller som b) vektoren OP! fra origo til punktet P. (Se gur nedenfor). I begge tilfeller kalles x-aksen for den reelle aksen, mens y-aksen kalles imaginæraksen. Denne representasjonen kalles et Argand-diagram. Figur : Argand-diagram
2 og Uttrykt i polarkoordinater (r; ) har vi at x = r cos og y = r sin z = r (cos + i sin ) der polarvinkelen er argumentet til z. Vi ser at lengden r på vektoren! OP er gitt ved r = p x + y = p zz = jzj Det komplekse tallet uttrykt ved en eksponensialfunksjon Fra algebraen vet vi at e x = + x + x + + n! xn + setter vi inn x = i, nner vi e i = i x! + 4! 4 6! ! 3 + 5! 5 7! 7 + der vi har ordnet de reelle og de imaginære leddene hver for seg. Vi kjenner igjen de to parantesene som cosinus- og sinus-seriene, slik at vi kan skrive e i = cos + i sin som er kjent som Eulers formel. Det komplekse tallet z kan derved skrives som Som et eksempel ser vi at Andre eksempler Fra Eulers formel ser vi umiddelbart at z = x + iy = r (cos + i sin ) = re i jzj = zz = r e i e i = r cos = ei + e i og sin = i e i e i Fra e i = cos + i sin = e i e i = (cos + i sin ) = cos sin + i ( sin cos )
3 nner vi ved å sammenligne de reelle og de imaginære delene at Generellt kan vi skrive at cos = cos sin og sin = sin cos e in = cos n + i sin n = (cos + i sin ) n der n er et vilkårlig positivt heltall. Vi kan også enkelt nne uttrykk for sin + sin og cos + cos : Vi starter med e i + e i = cos + cos + i (sin + sin ) Venstresiden kan skrives som e i + e i = e i= e i= e i= e i= + e i= e i= e i= e i= i( )= = e i= e i= e i( )= + e = e i(+)= ( ) cos der vi har brukt ligning 0.. Siden e i(+)= ( + ) ( + ) = cos + i sin nner vi ved å sammenligne de reelle og de imaginære delene med ligning 0. at og cos + cos = cos ( ) cos ( + ) ( ) ( + ) sin + sin = cos sin Disse uttrykkene får vi bruk for senere i kurset. Som nevnt er kvantefysikken vanligvis formulert ved hjelp av komplekse funksjoner. Om Z(x; t) er en slik funksjon (i dette tilfellet en funksjon av de reelle variablene x og t), betyr dette ikke annet enn at vi generelt kan skrive jz (x; t)j = X (x; t) + iy (x; t) der X (x; t) og Y (x; t) er to reelle funksjoner av x og t. På samme måte som ovenfor er Hyperbolsk sinus og cosinus sinh = e Når er meget stor, kan vi tilnærmet skrive Når er meget liten, kan vi tilnærmet skrive jz (x; t)j = X (x; t) + Y (x; t) e og cosh = e + e sinh cosh e = sinh og cosh 3
4 0. Noen elementer fra statistikk Fra statistikken henter vi to nyttige størrelser, middelverdi og standardavvik. For N målinger x i av en variabel x i en kontinuerlig fordeling er middelverdien gitt ved NX x = N i= x i Standardavviket, som er et mål på usikkerhet eller feilanslag er gitt ved v NP u t (x i x) i= x(= x ) = N Ofte er sannsynlighetsfordelinger beskrevet ved den såkalte gaussfordelingen som er gitt ved! (x a) f (x) = C exp b der a, b og C er konstanter. For en sannsynlighetsfordeling kreves det at R + f(x)dx =. Vi sier at funksjonen er normert, og konstanten C kalles da ofte en normaliseringskonstant. Denne kan nnes til C = = ( p b). Middelverdien for N målinger av størrelsen x med denne fordelingen vil gå mot x = a når N!, og standardavviket vil gå mot = b. Middelverdien kan beregnes fra og standardavviket fra x = Z + xf(x)dx = a s Z + = x f(x)dx = b Dette kan skjekkes fra standard formelsamlinger. 0.3 Fouriertransformasjoner Innledning Fouriers teorem sier at enhver periodisk funksjon f (x) med bølgelengde 0 (bølgetall k 0 = = 0 ) kan skrives som en uendelig sum f (x) = a 0 + X [a n cos (nk 0 x) + b n sin (nk 0 x)] n= Legg merke til at når for eksempel x = 0, så er k 0 x =, som betyr at fasen (k 0 x) varierer fra 0 til når x går fra 0 til 0. Koefsientene a m og b m kan nnes ved å multiplisere begge sider av ligningen med henholdsvis cos (mk 0 x) og sin (mk 0 x) og integrere over en bølgelengde. 4
5 Integralene forsvinner når n 6= m og for alle de blandete produktene cos (nk 0 x) sin (mk 0 x) slik at vi forholdsvis enkelt nner at a m = 0 Z 0 0 f (x) cos (mk 0 x) dx og b m = 0 Z 0 0 f (x) sin (mk 0 x) dx Ofte kan man få en ganske god tilnærming til funksjonen etter noen få ledd. Vi anbefaler å prøve ved hjelp av Maple eller en grask lommekalkulator å representere en periodisk steppfunksjon som starter med verdien f (x) = for 0 < x < 0 = og f (x) = for 0 = < t < 0. Vi nner at " f(x) = 4 # X (n + ) sin [(n + ) k 0x] n=0 Resultatet er vist på guren under for ett, to, tre, re og ni ledd.vi ser at vi kommer nærmere Figur : Representasjon av en steppfunksjon ved hjelp av fourierserier. og nærmere den ønskete steppfunksjonen når vi tar med ere ledd. Fouriers teorem. Fouriers teorem kan brukes dersom vi istedet for en periodisk funksjon med bølgetallene nk 0 som i ligning 0.3 har et kontinuerlig spektrum av bølgetall k. Vi legger merke til at uttrykket e ikx kan skrives e ikx = cos (kx) + i sin (kx), der vi har brukt Eulers formel. Fouriers teorem sier at om vi kjenner den kontinuerlige fordelingen f e (k) av bølgetallene så kan den kontinuerlige fordelingen i posisjon f(x) representeres av f(x) = p Z + Fordelingen e f (k) kalles ofte spektralinholdet. 5 ef (k) e ikx dk
6 Dersom f (x) er kjent, kan spektralinnholdet nnes fra ef(k) = p Z + f (x) e ikx dx Disse uttrykkene kalles fouriertransformasjoner, og den første betegnes som den inverse fouriertransformasjonen (k! x), mens den andre betegnes som fouriertransformasjonen (x! k). Disse transformasjonene er meget nyttige når vi skal beskrive kvantemekaniske partikkelbølger. Eksempel. Overgang fra diskontinuerlig til kontimuerlig spektralinnhold. Vi ser igjen på guren. Den første kurven er en enkel sinusbølge f(x) = sin (k 0 x) med bølgetall k 0. Den andre kurven har den samme fundamentale bølgelengden, men har i tillegg en bølge med bølgetallet 3k 0 og tredjedelen av amplityden. Den tredje kurven består av tre bølger med bølgetall k 0, 3k 0 og 5k 0, osv. Disse kurvene kan representeres ved hjelp av grafene a, b og c i guren 3, som viser bølgene representert ved sine spektralinnhold. Figur 3: Tre bølger fra gur representert ved sine spektralinnhold. Vi ser nå på bølger som har spektralinnhold som vist i første del av gur 4. De tilhørende bølgene er vist på samme guren. Vi ser at vi har fått frem noe som likner på bølgepakker, men legg merke til at når vi går fra (a) med tre bølgetall til (b) med ere mellomliggende bølgetall, går de resulterende bølgepakkene fra hverandre. Når vi går over til et kontiuerlig spektralinnhold, får vi uendelig avstand mellom pakkene. Vi skal i kurset vise at en kvantemekanisk partikkel kan representeres som en bølgepuls med lokalisering i et område uttrykt f.eks. med en sannsynlighetsfordeling f (x) av den kontinuerlige variable x, og med spektralinnhold gitt av fordelingen e f(k). Det er derfor meget nærliggende å tenke seg at en partikkelbølge må svare til en bølge med kontinuerlig spektralinnhold f(k). Vi kommer tilbake til dette i kapittel. 6
7 Figur 4: To bølger med samme fundamentale bølgelengde, men med forskjellige spektralinnhold 7
Enkel introduksjon til kvantemekanikken
Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks
DetaljerTMA4120 Matematikk 4K Høst 2015
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41 Matematikk 4K Høst 15 Chapter 6.7 Systemer av ODE. Vi bruker L t} 1 s, L e at f(t } F (s a 6.7:9 Løs IVP. y 1 y 1 + y,
DetaljerForelesning Matematikk 4N
Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks
DetaljerFourier-Transformasjoner
Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.
DetaljerMAT1100 - Grublegruppen Uke 36
MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)
DetaljerLøsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
DetaljerFYS2140 Kvantefysikk, Løsningsforslag for Oblig 1
FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag
DetaljerLøsningsforslag. og B =
Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi
DetaljerEKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG
EKSAMEN I TMA4 MATEMATIKK 4K, 3..5. LØSNINGSFORSLAG Oppgave. y + y + t y(τ)e t τ dτ = u(t ) t >, y() = Anta at den Laplacetransformerte Y (s) av y(t) eksisterer. Siden integralet er konvolusjonen av y(t)
DetaljerLsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 8 I kapittel 8 er integrasjon og integrasjonsteknikker det store tema
Lsningsforslag til utvalgte ogaver i kaittel 8 I kaittel 8 er integrasjon og integrasjonsteknikker det store temaet, og her er det mange regneogaver som gir deg anledning til a trene inn disse teknikkene.
DetaljerMAT Grublegruppen Notat 6
MAT00 - Grublegruppen Notat 6 Jørgen O. Lye Vektorrom og indreprodukt Vektorrom Vi trenger å si litt om vektorrom og indreprodukt for å formulere Fourierrekker. Denisjonen av vektorrom kan man tenke på
DetaljerMatematikk 1 Første deleksamen. Løsningsforslag
HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon
DetaljerFourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner
Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens
DetaljerFYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4
FYS40 Kvantefysikk, Oblig 3 Sindre Rannem Bilden,Gruppe 4. februar 05 Obliger i FYS40 merkes med navn og gruppenummer! Dette oppgavesettet sveiper innom siste rest av Del I av pensum, med tre oppgaver
DetaljerAt z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d
Lsningsforslag til utvalgte ogaver i kaittel I dette kaittelet har mange av ogavene et mindre teoretisk reg enn i de foregaende kaitlene, og jeg regner derfor med at lrebokas eksemler og fasit er dekkende
Detaljer1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m
Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a
DetaljerKomplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall
Kapittel Komplekse tall Oppfinnelsen av nye tallsystemer henger gjerne sammen med polynomligninger x + 4 0 har ingen positiv løsning, selv om koeffisientene er positive tall Vi må altså inn med negative
DetaljerKomplekse tall og komplekse funksjoner
KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som
DetaljerTMA4123/TMA4125 Matematikk 4M/4N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved
DetaljerLØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien
DetaljerEksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
DetaljerLøsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org
Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerAvdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge
Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerANDREAS LEOPOLD KNUTSEN
NOTAT OM FUNKSJONER AV FLERE VARIABLE VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN Dette notatet inneholder ikke noe nytt pensum i kurset MAT112 i forhold til læreboken
DetaljerLØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.
Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk
DetaljerForelesning Matematikk 4N
Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
DetaljerLøsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org
Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned
DetaljerMA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerKomplekse tall: definisjon og regneregler
Komplekse tall: definisjon og regneregler Eugenia Malinnikova, NTNU, Institutt for matematiske fag 22. august 2011 Komplekse tall fra Wikipedia Et komplekst tall er tall på formen x + iy, der x og y er
DetaljerLøsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned
DetaljerLøsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet
Detaljer9 + 4 (kan bli endringer)
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5
DetaljerLøsningsforslag Matematikk 2MX - AA mai 2006
Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerFYS2140 Kvantefysikk, Løsningsforslag Oblig 7
FYS4 Kvantefysikk, Løsningsforslag Oblig 7 4. mars 8 Her finner dere løsningsforslag for Oblig 7 som bestod av Oppgave.,.45 og.46 fra Griffiths, og et løsningsforslag for Oppgave., som var tilleggsoppgave.
DetaljerDerivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100
Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)
Detaljer(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)
NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
Detaljer1 Stokastisk variabel
FY1/TFY415 Innføring i kvantefysikk - Notat om sannsynlegheit 1 1 Stokastisk variabel Før vi byrjar på oppgåvene gjev vi ein liten briefing om stokastiske variable, middelverdiar, usikkerheiter osb. Ein
DetaljerEksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 7. desember Vidaregåande kurs II / Videregående kurs II
Eksamen Fag: AA6524/AA6526 Matematikk 3MX Eksamensdato: 7. desember 2005 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister
DetaljerNotat om trigonometriske funksjoner
Notat om trigonometriske funksjoner Dette notatet ble først skrevet for MA000 våren 005 av Ole Jacob Broch. Dette er en noe omarbeidet versjon skrevet høsten 0. Radianer Anta at en vinkel A er gitt, f.eks
DetaljerLøsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerEksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerLøsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org
Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,
Detaljer0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?
OPPGAVE 1 a) Deriver funksjonen f( x) = 5x tanx b) Deriver funksjonen ( ) 3 g( x) = x + cosx c) Bestem integralet (sin x cos x) dx d) Løs ligningen ved regning π,4,6cos x = 1,8, 1 4 x e) I et selskap blir
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
Detaljerx(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved
NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
DetaljerTMA4105 Matematikk 2 vår 2013
TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon
DetaljerFakta om fouriertransformasjonen
Fakta om fouriertransformasjonen TMA413/TMA415, V13 Notasjon Fouriertransformasjonen til funksjonen f er F[f](ω) = ˆf(ω) = 1 Den inverse fouriertransformasjonen er F 1 [g](x) = 1 f(x)e iωx dx g(ω)e iωx
DetaljerEKSAMEN Løsningsforslag
5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln
Detaljereksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor
eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)
DetaljerEn innføring i Fourrierrekker
En innføring i Fourrierrekker Matematiske metoder 2 Kristian Wråli, Sivert Ringstad, Mathias Hedberg 0 Innholdsfortegnelse Kapittel Side 1 Innledning 2 1.0 Introduksjon 2 1.1 Maple 2 2 Teori 7 2.0 Introduksjon
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid
Detaljerarbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100
arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. oktober 2011 Kapittel 6.6. Arbeid 3 Arbeid definisjon Definisjon (Arbeid
DetaljerTFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
DetaljerEKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:
. EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall
Detaljer4_Komplekse_tall.odt tg. Kap.4 Komplekse tall
4_Komplekse_tall.odt 04.09.015 tg Kap.4 Komplekse tall e i π +1=0 Innledning... Egenskaper...4 Geometrisk form...5 Regneregler...6 Lengde og argument...8 Polar form...9 Eksponentform - Eulers formel...1
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid
DetaljerFY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
DetaljerAreal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100
Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate
Detaljera) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =
Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende
Detaljer1 Mandag 1. februar 2010
Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette
DetaljerMA1410: Analyse - Notat om differensiallikninger
Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde
DetaljerLøsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
DetaljerTMA4245 Statistikk Høst 2016
TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet
DetaljerLøsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org
Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og
DetaljerHøgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x
Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +
DetaljerMA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på
DetaljerOppfriskningskurs i matematikk 2008
Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-
Detaljereksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir
eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir x, 5 2, eksamensoppgaver.org 5 a.ii) Vi har ulikheten og ordner den. 10 x 2
DetaljerLøsningsforslag AA6526 Matematikk 3MX - 8. desember eksamensoppgaver.org
Løsningsforslag AA656 Matematikk 3MX - 8. desember 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerFasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015
Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.
DetaljerDAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.
Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med
DetaljerElektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
DetaljerPrøve i R2 Integrasjonsmetoder
Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).
Detaljera 2 x 2 dy dx = e r r dr dθ =
NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk
Detaljereksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2
eksamensoppgaver.org 4 oppgave a..i) e x = 7 e x = 7 ( ) 7 ln e x = ln x = ln 7 ln a..ii) ln x ln x = ln x ln x = ln x = x = e a..i) cos x =.8 x [, 6 ] x = arccos(.8) x 6.9 x 6 6.9 x 6.9 x. a..ii) Løserdennemedabc-formelen
DetaljerNTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
DetaljerFremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet
1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate
DetaljerLøsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org
Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerTMA4135 Matematikk 4D Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)
DetaljerUNIVERSITETET I OSLO. Løsningsforslag
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
DetaljerEksamen i TMA4122 Matematikk 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk
DetaljerForelesningsplan M 117
Forelesningsplan M 117 Innledning Kan du gi et eksempel på et fenomen eller en prosess som er lineær? Har du eksempel på ikke-lineære fenomen? Hva er henholdsvis en ordinær (ODL) og en partiell differensialligning
DetaljerLøsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
DetaljerFunksjoner - i et litt annet lys?
Funksjoner - i et litt annet lys? Arne B. Sletsjøe Universitetet i Oslo Leonhard Euler (1707-1783) Store Norske Leksikon: En funksjon (eller avbildning) er en regel som til ethvert element i en mengde
DetaljerLøysingsframlegg øving 1
FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen
DetaljerLøsningsforslag til eksamen i MAT 1100 H07
Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen
DetaljerPrøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
DetaljerTMA4120 Matte 4k Høst 2012
TMA Matte k Høst Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Løsningsforslag til oppgaver fra Kreyzig utgave :..a Skal vise at u(x, t = v(x + ct
DetaljerMAT Grublegruppen Uke 37
MAT00 - Grublegruppen Uke 37 Jørgen O. Lye Bemerkning: Mye av stoffet i dette notatet er å finne i Kalkulus, kapittel. Dette kapittelet er leselig etter man vet hva følger er, men er ikke pensum før i
Detaljer13.1 Fourierrekker-Oppsummering
3. Fourierrekker-Oppsummering Fourierrekken til en periodisk funksjon f med periode = L er gitt ved F f (x) = a + a n cos(nωx) + b n sin(nωx) der x D (konvergensområdet) a = / / f(x) dx = L b n = f(x)
DetaljerTFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
Detaljer