ISBN

Størrelse: px
Begynne med side:

Download "ISBN"

Transkript

1 ISBN F R N Y E L S E S T E R I ved. e Ave

2 Forelesiger i F R N Y E L S E S T E R I ved Terje Ave

3 Forord Dee oa om foryelseseori er uarbeide i ilkyig il forelesigee over eme "Opimale vedlikeholds sraegier" som igikk som e del av hovedfagskurse S38: Palieligheseori, vare 982. Hovedgrue il a oae er uarbeide er a ige l~rebok er fue ilfredssillede. Soffe som gjeomgas dekker bare e lie del av foryelseseorie, for eksempel er Blackwell's eorem og "Key Reewal Theorem" ikke a med. Hovedresulae som gis er R9 med paf lgede uvidelser. Jeg vil akke Be Navig for verdifull assisase ved uarbeidelse av oae. Terje Ave

4 f } La X =l vcere e sekves av ikke egaive, edelige og uavhegige ilfeldige variable med e felles fordeligsfuksjo F, Aa La F(O) = P {x =O} <. µ = EX Vi ser a Se s = l x. > og N ( ) = sup { : S ;;; }. Vi sier a e foryelse skjer ved hvis N( ) hopper ved. Vi observerer a ( ) N()> <=> s <. La M() = EN(). Vi skal a gi oe resulaer kye il N() og M(). Rl M ( ) = l i=l F.(), l der F. er i-e kovolusjo av F. Bevis. La IB beege idika?rfuksjoe for hedelse B. Ved a bruke rooo greseseig og () far vi "' M() = EN() = E.L I{i~N()} i=l =.l EI{i.;;N()} i=l = l P{N();;.i} = i=l l P{S.<} = i=l l l F.().. l l = R2 M() < oo for alle < < oo. Bemerkig. Fakisk har vi E(N())k <, k =,2,..., se for eksempel Prabhu (965), side 55.

5 - 3 - Bevis. La a>o va=re slik a p = P{X >a} eksiserer da Defier e y co < P{X >} :;:;: P( U {X ~l}) m=l m foryelsesprosess ved > (e slik : :;::: lim P{X ;;..!}). m m~oo og la x :;::;: { hvis x ( a a hvis x ;;. a N( ) = sup{: x + +X <}. Da ser vi a for dee ye foryelsesprosesse sa ka foryelser bare skje pa idspukee =,a,2a, La Yi (Y -) vcere aall foryelser pa idspuk ia (), i =,2,... Da. ka vi helall ridre e eller lik / a. 2,... ) er gi ved Fordelige il Y. ( i=o,, k=,2, ' dvs. Y. er georerisk fordel med parameer p. Ved a a bruke a EY. = /p ]_ far vi - EN ( ) = p( [ / a J + ) - < Side X ' X, har vi N() ;;. N() og de f lger a M() = EN() < Ei() < oo. R3 M( ) er h yrekoiuerlig. Bevis. Da N( ) er ikke-avagede og h yrekoiuerlig og M() < V, sa f lger de ved de domiere greseseig a lim EN(+h) = E lir N(+h) = EN(), dvs. M() er h yrekoiuh+o h+o erlig. R4 La g og h vcere Borel-malbare fuksjoer fra [O,oo) il (-, ) som er begrese pa edelige iervaller. Aa g ( ) = h ( ) + J g ( -U ) df ( U ) e ( < g = h + 9*F ( f = f ), dvs. o [o,]

6 Da er g() = h() + J h(-u)dm(u) g = h + hh. < <, dvs" Bevis. Da er opplag g begrese pa edelige iervaller, og ved Fubiis eorer er g Borel-malbar. E videre er g "" h + g *F Bevise for dee pasade f lger. Ved a bruke resulae gi i appedikse fier vi a h + g *F = h + (h+h*m)*f = h + h*f + (hkm}-kf = h + h*f + h*(m*f) = h + h*(f+m*f). Da F + M*F = F + ( l F )*F = F + =l de a g = h + g *F l F *F = F + =l l F = M, f ger =2 Vi skal a vise a Vi har g = h + 9*F 9- = h + 9*F; og dee gir (de sise likhee f lger av resulae gi i appedikse). Ved iduksjo far vi a g-g = (g-g )*F for alle. Side g og g er begresede pa edelige iervaller vil de eksisere e K < slik a I (g-g ) (u) I~ K, u.;;. Vi har da I < g -g, > < > I = I J < g-g >< - u > af < u ) I ~ f I < g-g H -u > I df" < u ) < KF () for alle. Na vil F () + ar + oo da M() = l F () <, og vi ma derfor ha g() = g (). R4 er dermed bevis.

7 ~ 5 -- RS. _,,. - ar " -"I'" co med sasylighe µ Bevise Ved defiisjoe av N() har vi Derav far vi s,;;; >:; s N() N()+l ( 2 ) s N() s N()+ N().;; ITT) < N() Vi har a P {lim N()<co} = P ( IJ { X :=oo} ) ( /, P { X =:oo} =, dvs. +oo =l =l N() + "" ar + oo med sasylighe ; derred f lger de av sore alls serke lov a ( 3) Da 8 N() med sasylighe N() + µ ar + 8 N ( ) + 8 N( ) + N()+l vi " a N() = ser ogsa N()+l N() ' ( 4) SN ( ) + + ]l ar N() f med sasylighe RS f lger a f ra ( 2) ' ( 3) og ( 4) F r vi gar videre i foryelseseorie skal vi vise f lgede geerelle seig. R6 (Wald's ligig). La v~re uavhegige, ideisk fordele ilfeldige variable. La videre N v~re e ilfeldig variabel som aar verdier i {,,2,.. } U { } slik a begivehe e {N<} er uavhegig av X = 2 + I hvis ee N E /, X. = ENEX i=l l Da er ( i) (ii) x. ;;;. l Ejx. < oo l eller og EN <

8 Bevis. ( i) Si de {Ni;; } er uavhegig av x +l er EI { N > i } Xi = E ( l - I { N ( i- l } ) Xi = E ( ~I { N.;; i-l } ) EX i = EI { N > i } EX i. De f lg ;ff a N co E l X. = E l X.I{. } = I EI {. }x. = i=l i= N> i=l N>i i l EI { _. } EX. i== N#.. EX EN (ii) Bevise er som over - a vi har lov il a bye om E og l f lger av domiere greseseig side I. l X.I{N. }I. ) = m <I x.{.} " for alle m og l jx.{ '} i=l. N>i., N;;. EI jx.{.= I i='i i N>i i.} = EIX.IEN < oo. Vi veder a ilbake il foryelseseorie. m R7. Korollar. N()+ E I X, ]. i=l = ES N()+ = µ(m()+l). Bevis. Da N()+l.;; <=> N() < <=> S >, f ger de a begivehee {N()+l(} er uavhegig av X+l. De er a le a se a R7 er e kosekves av R6. R8. De eleme~re foryelseseorem M() ~ µ ar Bevis. Aa f rs a µ < Vi har allid 8 N ( ) + >. Dee gir ved R7, dvs. µ(m()+l) ;;.,

9 - 7 - De f lger a ( 5) lim kl( ) ;. + µ La a M vcere e ko:sa. Vi defierer e y foryelses~ prosess La s -- {x } ved a la I X. i==l X = mi ( X, M), og N() = sup{;s..;}. begrese av M er de klar a SN()+l ( + M. Side X.~ee. er Ved R7 vil derfor (6) (M()+l)µM ~ + M, hvor µm = EX og M() = EN(). Av ulikhee (6) f lger a M() lim -- < +oo µm Side N() ;. N() (vi har jo S < S ), vil derfor M() ) M(). Vi har ( 7) lim M() -+ro Lar vi a sa f lger de a (mooo greseseig), alsa ma = E mi(x,m) + EX = µ ( 8) lira M( ),,; +oo µ Fra (5) og (8) f lger a resulae R8. La sa µ :::: Berak igje { x }. M +, ka vi slue R8 fra (7). Si de µ -+ µ ar M

10 - 8 - Forvelses kosads prosessee_ Berak e foryelsesprosess {x } =l Aa a e kosad (-oo<y < ) er assosier med idspuke for de -e foryel se. aar a paree (X, Y ), =, 2, ideiske fordele. La N() Y() = l y ==l Da beeger Y() oal kosad i [o,]. Vi skal vise f lgede resula. er uavhegige og R9. Hvis EjY I <, da gjelder (i) Y()/ + EY /EX ar + oo med sasylighe Bevis. (i) Vi har Y( ) = N() l =l N() y N() og (i) f lger side ll Y/N() + EY ar + oo med sasylighe (sore alls serke lov - husk a N() + oo ar + oo med sasylighe, se bevise for R5) og N()/ + /EX ar + oo med sasylighe ( R5). (ii) Vi har a begivehee Y De f lger + dvs. N() E l Y = E =l dermed ved R6 a N()+l l y =l {N()+l.;;} = {s >} er uavhegig av EY N()+l = (M()+l)EY - EY ( ) N + EY() M()+l = EYl - EY N()+l

11 ~ 9 - Resulae f lger a ved R8 hvis vi ka vise a EYN()+l / + ar + (dee er ikke riviel - vi ka emlig ikke slue a EYN ( ) + = EY ) ~ La g() = EY N()+ Vi observerer a ig()i = IEY N()+l N()+l < EIY ) I< El IY I= (M()+l)EIY I< Fuksjoe g() N, + =l er dessue h yrekoi.uerlig (og dermed Borel-malbar); for ved domiere greseseig har vi lim g() = lim EY ~ -' ' N()+l E ~~~ YN()+l = EYN(')+l = g('). I Beiger med hesy pa x og far g ( ) = f E [ Y N ( ) + I X =x ] df ( x ) Me ved a a bruke a prosesse sarer pa y pa idspuk x fier vi a jx =x] E[Y N()+l = { g(-x) _ E[Y /x =x] x ( x > De f lger a der g() = f g(-x)df(x) + h(), h() = f E[Y jx =x]df(x) Viser a jh()j < EjY i < Fra R4 far vi a (f = f ). (,ro} for alle. g() = h() + f h(-x)dm(x). La a E > v~re vilk~rlig. Side h() + ~r +, ka vi velge e T slik a lh()i < for > T. Dermed vil -T lg()j/ < jh()j/ + f jh(-x)j dm(x)+ f -T ' E I + EM ( -T ) I + E I y I ( M ( ) - M ( -T)) / Ar ~ co I h(-x) I dm(x} ved R8. De f~lger a g()/ + og dermed er bevise komple.

12 - - Bemer~~ig 2. Resulaee ( i) og (ii) holder ogsa dersom E max ( Y, ) = oo E max(-y,) E max(-y,) = oo) og EX < oo. oo (eller E max(y,) < Bevise for (i) er som f r. Bevise for (ii) f lger av R9 (ii) ved a bruke e rukerigsargume. for (ii) i de ilfelle a y ;;. o. La M vcere e kos a. Da har vi N() Nf ) E l y E mi(y,m) =l = ;;. ~---~---- Vi skal gjeomf re bevise Ved a a avede R9 (ii), sa far vi lim +oo N() E l y E mi(y,m) =l ;i. EX Ved la M a _,,. ' ser vi a N() E l y EY =l + = ar EX + Bemerkig 3. Aa a a kosadee "lides" gradvis gjeom e syklus (e syklus er ide mellom o paf lgede foryelser). La Y() vcere oal kosad i [o,] og aa f rs a alle kosader er ikke-egaive. Da er ( 9) NZ ) y Nf )+ly =l Y() =l ~ --,,; hvor y = kosad i -e syklus. Vi ser av (9) a R9 fremdeles holder (se bevise for R9); vi foruseer a EY < co Aa sa geerelle + kosader. La Y = y -Y + - og Y( ) = Y ()-Y () hvor + Y = de oale posiive kosad i -e syklus, II " egaive " " + y () = " " posiive " i [o,] y = Y-() = " " egaive " "

13 + - Vi aar a (X 'y 'y ) ' = l ' 2 I fordele Vi fier + og a EY < a a og EY < er uavhegige og ideiske ( i) + ~ EY EY EX - EX = EY EX'! (ii) EY() _ EY+() - Al sa holder R9 ( i) og (ii) fremde les,, Til slu ever vi a resulaee (i) og (ii) ogsa holder dersom EX < ( j fr. Bemerkig 2). < (eller EY + - <, EY ;oo) og Appedix. La G og G 2 v~re voksede, h yrekoiuerlige fuksjoer fra [,oo) il (-, ). Videre la h v~re e Borelmalbar fuksjo fra [O,oo) il (-,) som er begrese pa edelige iervaller. Da har vi der J h(-z)d(g *G 2 )(z) = -y J J h(-x-y)dg (x)dg (y), l 2 = f G ( -x) dg ( x). 2 Bevis. La a(z) = h(-z) hvis z ~ og ellers. Vi skal vise a (A) J a(z)d(g *G )(z) = 2 co J J a ( x+y) dg ( x) dg 2 ( y) La Jd beege Borelmegdee pa [ O, ) og la for hver B E f/a, B-y = {x-y; x~y, xeb} og CD µ(b) = f Gl {B-y}dG 2 (y), hvor G {B} er Lebesgue-Sieljes male pa jj geerer ved G { (a, b ] } = G ( b) - G (a) Vi har a µ er e mal pa j?j og er lik Lebesgue-Sieljes male besem av (G *G 2 )().

14 ~ 2 - Hvis a a er e idikaor fuksjo, I B, da er a ( x+y) = I ( x) B-y for hver y. De er le A se a (A) holder i dee ilfelle - bade h yre og vesre side reduserer seg il µ(b) Geerel holder a (A) ved sadard uvidelses prosedyre fra idikaor fuksjoer il ekle fuksjoer og moooe greser av ekle fuks joer osv. Referaser Ash, R. B. ( ) Real Aalysis ad Probabiliy. Academie Press. New York. Chow, Y.S. og Teicher, H. (978) Probabiliy Theory. Spriger-Verlag, Berli. Feller, w. (97) A Iroducio o Probabiliy Theory ad is Applicaios, Vol II, sec. ed. Wiley, New York. Karli, S. og Taylor, H.M. (975) A Firs Course i Sochasic Processes. Sec. ed. Academic Press, New York. Prabhu, N. U. ( 965) New York. Sochasic Processes. The MacMilla Comp. Ross, s. (97) Applied Probabiliy Models wih Opimizaio Applicaios. Holde-Day.

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

3. Beregning av Fourier-rekker.

3. Beregning av Fourier-rekker. Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +

Detaljer

Algebra R2, Prøve 1 løsning

Algebra R2, Prøve 1 løsning Algebra R, Prøve løsig Del Tid: 70 mi Hjelpemidler: Skrivesaker Oppgave E rekke er gi ved a og a Du skal ) udersøke hva slags rekke de er Vi fier de førse leddee: a a a a, 6, 3 0, 4 4 3 4 De ser u som

Detaljer

Mot3.: Støy i forsterkere med tilbakekobling

Mot3.: Støy i forsterkere med tilbakekobling Mo3.: Søy i forserkere med ilbakekoblig Hiil har vi diskuer forserkere ue ilbakekoblig ("ope-loop"). Nå vil vi diskuere virkige av ilbakekoblig. Geerel beyes ilbakekoblig for å... edre forserkig, edre

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

STATISTICAL MEMOIRS. No. 4 August Institute of Mathematics University of Oslo. Noen grensesetninger i. sannsynlighetsregningen.

STATISTICAL MEMOIRS. No. 4 August Institute of Mathematics University of Oslo. Noen grensesetninger i. sannsynlighetsregningen. STATISTICAL MEMOIRS Istitute of Mathematics Uiversity of Oslo No. 4 August 1968 Noe gresesetiger i sasylighetsregige. av Grete Usterud Festad. INNHOLDSFORTEGNELSE l. Grese 1 sasylighet 2. Grese 1 fordelig

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer Iveseriger og ska Løsomhe av fiasiveseriger før og eer ska Løsomhe av realiveseriger eer ska Avhedelse (salg) av aleggsmidler Egekapialavkasig eer ska Joh-Erik Adreasse 1 Høgskole i Øsfold Skaesaser med

Detaljer

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018 Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-turviteskpelige fkultet Eksme i: STK1110 Sttistiske metoder og dtlyse Løsigsforslg Eksmesdg: Tirsdg 18. desemer 2018 Tid for eksme: 09.00 13.00 Oppgvesettet er på 5 sider.

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er

Detaljer

Løsningsforslag Oppgave 1

Løsningsforslag Oppgave 1 Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader

Detaljer

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE = Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere Lsigsforslag til utvalgte ogaver i kaittel 4 I seksjo 4. gir de iledede ogavee deg treig i a lse dieresligiger, og jeg reger med at det ikke er behov for a utdye lrebokas eksemler og fasit her. Me like

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

Sosialantropologisk institutt

Sosialantropologisk institutt Sosialantropologisk institutt Eksamensoppgaver til SOSANT2000: Generell antropologi: grunnlagsproblemer og kjernespørsmål Utsatt eksamen Høsten 2004 Skoleeksamen 16. desember kl. 9-15, Lesesal B, Eilert

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Europa-Universität Viadrina

Europa-Universität Viadrina !"#!$% & #' #! ( ))% * +%, -.!!! / 0 1!/ %0 2!!/ 0.!!!/ /! 0 / '3 %0 #$ '! 0 4!""2 " '5 + -#! & %%! ( 6+ * $ '. % & 7 7 8 (8 *& *& *( ** *8, 8 87 - - -! )- % 4!!# &! -! ( - / 9:0 ; ; & * 7 4! + /! ) %

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i

Detaljer

Go to and use the code Hva var viktig i siste forelesning? FYS-MEK

Go to   and use the code Hva var viktig i siste forelesning? FYS-MEK Go o www.meni.com and use he code 65 37 7 Ha ar ikig i sise forelesning? FYS-MEK 111.1.18 1 FYS-MEK 111.1.18 Beegelse i én dimensjon ().1.18 Ukesoppgaer og oblig 1 er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/18/maeriale/maeriale18.hml

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i R u d s h ø g d a V B / S, a v h o l d e s m a n d a g 1 6. m a r s k l. 1 8 : 0 0 p å L o f s r u d s k o l e, L i l l e a

Detaljer

Sosialantropologisk institutt

Sosialantropologisk institutt Sosialantropologisk institutt Eksamensoppgaver til SOSANT2000: Generell antropologi: grunnlagsproblemer og kjernespørsmål Utsatt eksamen Høst 2005 Skoleeksamen 18. januar kl. 9-15, Lesesal A Eilert Sundts

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2017

MA1102 Grunnkurs i Analyse II Vår 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA2 Grukurs i Aalyse II Vår 27 Løsigsforslag Øvig 7 2.5: For hvilke x kovergerer rekke? b) (2x) c) (l x) e) 2 si x 2 b) Dette er

Detaljer

O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g

O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g H v a k a n e n m in d re k o m m u n e ta m e d s e g? Iv a r S o lv i B enc hm a rk ing Wa ter S olutions E t s p ø rs m å l s o m m a

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

Eksamen R2, Va ren 2013

Eksamen R2, Va ren 2013 Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u

Detaljer

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 H o v i n B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 8-- 9 Formelar ( ide) Roma formelamlig

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett på diskrete

Detaljer

Polynominterpolasjon

Polynominterpolasjon Polyomiterpolasjo Ae Kværø March 5, 2018 1 Problemstillig Gitt + 1 pukter (x i, y i ) i=0 med distikte x-verdier (dvs. x i = x j hvis i = j). Fi et polyom p(x) av lavest mulig grad slik at p(x i ) = y

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet

Detaljer

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) =

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) = TMA Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for ateatiske fag Løsigsforslag - Eksae deseber 9 Oppgave a Besteer k ved å kreve fxdx =, fxdx = De kuulative fordeligsfuksjoe Fx er gitt

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

Forelesning 14 REGRESJONSANALYSE II. Regresjonsanalyse. Slik settes modellen opp i SPSS

Forelesning 14 REGRESJONSANALYSE II. Regresjonsanalyse. Slik settes modellen opp i SPSS Forelesning 4 REGRESJOSAALYSE II Regresjonsanalyse Saisisk meode for å forklare variansen i en avhengig variabel u fra informasjon fra en eller flere uavhengige variabler. Eksempel: Kjønn Udanning Alder

Detaljer

Eksamen i Matematikk desember, Løsningsforslag. . Det gir iht tabell ( nr.[22] ): G(s) = 3

Eksamen i Matematikk desember, Løsningsforslag. . Det gir iht tabell ( nr.[22] ): G(s) = 3 Høgskole i Gjøvik Avdelig for Tekologi Eksame i Maemaikk 5. desember Løsigsforslag OPPGAVE a) f () e si() Aleraiv s 8s Seer: g () si( ). De gir ih abell ( r.[] ): G(s) (s + ) (s + 9) Har a: f () e g().

Detaljer

Høst 98 Ordinær eksamen

Høst 98 Ordinær eksamen ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg MET359 Økoomer ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. Aa følgede o varabler: gpa: (Grade Po Average) Gjeomsskaraker for amerkaske sudeer. gpa fes ervalle [0;4], hvor 0 er lavese gjeomsskaraker

Detaljer

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i n æ r t s am e i e rm øt e i S am e i e t W al d em a rs H a g e, a v h o l d e s t o rs d a g 1 8. j u n i 2 0 0 9, k l.

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =

Detaljer

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4 Avdelig for igeiørudig Fg: ITUETELL AALYE Grupper: 3KA Esesoppgve esår v Tille hjelpeidler: EKAEOPPGAE All sider il. forside: 4 Fgr: O 458 K Do: 4.0.0 All oppgver: 5 Fglig veileder: Per Ol øig Esesid,

Detaljer

jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < ", far vi 7 ialt jf(x) f()j = jx + jjx j < 7 " 7 = " Dette blir flgelig ofylt for alle x sl

jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < , far vi 7 ialt jf(x) f()j = jx + jjx j < 7  7 =  Dette blir flgelig ofylt for alle x sl Lsningsforslag til utvalgte ogaver i kaittel 5 I kaittel 5 har mange av ogavene et mer teoretisk reg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt a a lage lsningsforslag til ogaver

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØ-ØNDELAG Avdelig for ekologi Eksamesdao: irsdag.1.1 arighe/eksamesid: 9-14 Emekode: Emeav: Klasse(r): ED33 Isrumeerigsekikk 3EA Sudiepoeg: 1 Faglærer(e): (av og elefor på eksamesdage) Dag

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA44 Statistikk Høst 16 Nrges tekisk-aturviteskapelige uiversitet Istitutt fr matematiske fag Abefalt øvig 7 Løsigsskisse Oppgave 1 a) Reger først ut de kumulative frdeligsfuksje til X: F X (x) = Z x

Detaljer

JUBILEUMSLOTTERIET 2013-20 ÅR

JUBILEUMSLOTTERIET 2013-20 ÅR 1994-13 år JUBILEUMSLOTTERIET 13 - ÅR Kr 30,1994-13 år og vi Skrap frem 3 like og vi! di lokale foballklubb! ES 1 Se spilleregler på bakside! X X- 0 0 0 0 0-0 0 0 2 3 4 5 6 7 8 Kr 50,- 24 9 23 22 Skrap

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 Høgsole i Gjøi d. for te., ø. og ledelse temti 5 Løsigsforslg til øig OPPGE det ( 8 Determite esisterer ie! K drtise mtriser e determit. i i detc ( i( i ( i( i ( i i i i 5i 5i i i er! Regereglee er de

Detaljer

NORSK TEKSTARKIV J o s t e in H. Hauge

NORSK TEKSTARKIV J o s t e in H. Hauge NAVF'S EDB-SENTER FOR HUMANISTISK FORSKNING V IL L A V E I 1 0, POSTBOKS 53 50 1 4 BERG EN-UNIVERSITETET 7 O k to b e r 1979 NORSK TEKSTARKIV J o s t e in H. Hauge 1. FO RHISTORIE D a ta m a s k in e ll

Detaljer

LØSNING: Eksamen 28. mai 2015

LØSNING: Eksamen 28. mai 2015 LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d

Detaljer

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8% Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet

Detaljer

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i L y s e T e r r a s s e B s, a v h o l d e s o n s d a g 1 6. 0 3. 20 1 1, k l. 1 8 : 0 0 p

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger

Detaljer

2. Å R S B E R E T N I N G F O R Å R S R E G N S K A P F O R M E D B U D S J E T T F O R

2. Å R S B E R E T N I N G F O R Å R S R E G N S K A P F O R M E D B U D S J E T T F O R S a m e i e t E d v a r d G r i e g s V e i 3-5 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S a m e i e t E d v a r d G r i e g s V e i 3-5, a v h o l d e s t o r s d

Detaljer

Løsning eksamen R2 våren 2010

Løsning eksamen R2 våren 2010 Løsig eksame R våre 010 Oppgave 1 a) f( x) x cos3x f ( x) x cos 3x x cos 3x x cos 3x x si 3x 3x xcos 3x 3x si 3x b) 1) v v u v u 1 u x x 1 x 5 x 5 x 5xe dx 5x e 5 e dx xe e dx 5 5 1 5 5 x x x x xe e C

Detaljer

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x Ogave a) f() = f 0 () = + 3 ) f() = g() f 0 () = g() g0 () g() c) f(; y) = (y + ) f 0 = (y + )y f 0 y = (y + ) d) f(; y) = ( y + ) ( y ) f 0 = ( y + ) r y ( y ) + ( y + ) ( y ) r y = ( y + )( r y y ) ((

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: 0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig

Detaljer

TMA4245 Statistikk Eksamen august 2015

TMA4245 Statistikk Eksamen august 2015 Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 K e y s e r l ø k k a Ø s t B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d

Detaljer

SAMMENLIGNING AV MINSTE KVADRATERS METODE OG SANNSYNLIGHETSMAKSIMERINGSMETODEN I BINÆR REGRESJON. Henrik Dahl *)

SAMMENLIGNING AV MINSTE KVADRATERS METODE OG SANNSYNLIGHETSMAKSIMERINGSMETODEN I BINÆR REGRESJON. Henrik Dahl *) IO 78/8 7. april 978 SAMMENLIGNING AV MINSTE KVADRATERS METODE OG SANNSYNLIGHETSMAKSIMERINGSMETODEN I BINÆR REGRESJON av Herik Dahl *) INNHOLD Side Sammedrag. Om modeller for biær regresjo 3. Miste kvadraters

Detaljer

I dag: Produktfunksjoner og kostnadsfunksjoner

I dag: Produktfunksjoner og kostnadsfunksjoner ECON2200 Avedt økoomisk aalyse Diderik Lud, 8. februar 2010 Hva er dekket i disse otatee? Seks forelesiger av meg i ECON2200 våre 2010 8. og 22. februar, 2., 9. og 15. mars og 3. mai Legges ut på emeside

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s a m e i e r m ø t e i S / E S o r g e n f r i g a t e n 3 4, a v h o l d e s o ns d a g 1 0. m a rs 2 0 1 0 k l. 1 8. 0 0 i K l u b b r o m m

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

!" #$$ % &'& ( ) * +$ $ %,% '-!" (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % -

! #$$ % &'& ( ) * +$ $ %,% '-! (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % - !" #$$ % &'& ( * +$ $ %,% '!" (,+% %#&. /000( '', 1('2# 34.566,*,, 7 8, +$,+$#& *! +&$ % + 8 ( 9( :.,;(.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l år e t s g e n e r a l f o rs am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i n

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylighetsregig med statistikk, våre 007 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D e t t e e r i n n k a l l i n g e n t i l å r e t s g e n er a l f o r s a m l i n g. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s m e l d i n g o g r e g n s k a

Detaljer