jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < ", far vi 7 ialt jf(x) f()j = jx + jjx j < 7 " 7 = " Dette blir flgelig ofylt for alle x sl

Størrelse: px
Begynne med side:

Download "jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < ", far vi 7 ialt jf(x) f()j = jx + jjx j < 7 " 7 = " Dette blir flgelig ofylt for alle x sl"

Transkript

1 Lsningsforslag til utvalgte ogaver i kaittel 5 I kaittel 5 har mange av ogavene et mer teoretisk reg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt a a lage lsningsforslag til ogaver som involverer de formelle denisjonene av kontinuitet (ka 5.1) og grenseverdi (ka 5.4), og som illustrerer hvordan man kan anvende skjringssetningen (ka 5.) og ekstremalverdisetningen (ka 5.) a ulike mater. Ogave Vi minner om at funksjonen f er kontinuerlig i unktet a D f hvis det for enhver " > 0 nnes en > 0 slik at nar x D f og jx aj <, sa er jf(x) f(a)j < ". a) Vi skal vise at f(x) = x + 1 er kontinuerlig i unktet x =. For en gitt " > 0 ma vi nne en > 0 slik at Vi har Velger vi na = ", blir nar jx j <. jx j < =) jf(x) f()j < " jf(x) f()j = j(x + 1) ( + 1)j = jx + 1 5j = jx j jf(x) f()j = jx j < = " = " b) Vi skal vise at f(x) = x er kontinuerlig i unktet x =. For en gitt " > 0 ma vi nne en > 0 slik at jx j < =) jf(x) f()j < " Funksjonsdierensen kan skrives slik: jf(x) f()j = jx j = j(x + )(x )j = jx + jjx j For a holde faktoren jx+j under en fast skranke velger vi a begrense oss til intervallet (; 4), hvor jx j < 1, slik at jxj < 4 og dermed 7

2 jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < ", far vi 7 ialt jf(x) f()j = jx + jjx j < 7 " 7 = " Dette blir flgelig ofylt for alle x slik at jx j < dersom vi velger = min(1; " 7 ). e) Vi skal vise at f(x) = 1 er kontinuerlig i unktet x = 1. For en gitt x " > 0 ma vi nne en > 0 slik at jx 1j < =) jf(x) f(1)j < " Funksjonsdierensen kan skrives slik: jf(x) f(1)j = 1 x 1 = jx 1j jxj For at denne skal bli mindre enn " nar x ligger i en -omegn om 1, ma vi srge for at x holder seg unna origo. Dette kan vi fa til ved frst a velge 1 = 1. Da blir jxj > 1 dersom jx 1j < 1, slik at jf(x) f(1)j = jx 1j jxj < jx 1j Srger vi samtidig for at jx 1j < = ", far vi videre at jf(x) f(1)j < jx 1j < " = " Setter vi derfor = min( 1 ; ) = min( 1 ; " ), har vi na ialt vist at jf(x) f(1)j < " for alle x slik at jx 1j <. Ogave 5.1.6a Vi skal vise at f(x) = x + 1 for x < 0 x for x 0 er diskontinuerlig i unktet x = 0. Velger vi nemlig en " slik at 0 < " < 1, vil f(x) = x + 1 > (" 1) + 1 = " for alle x (" 1; 0). Men det betyr at jf(x) f(0)j = f(x) > " for alle x i dette intervallet. Uansett hvor liten vi velger > 0 vil det derfor nnes en x (faktisk uendelig mange) i intervallet ( ; ) slik at jf(x) f(0)j > ". Altsa er funksjonen diskontinuerlig i unktet x = 0. 8

3 Ogave 5..a Vi skal vise at f(x) = ln x + x har nullunkt i intervallet (0; 1). Siden lim x!0 f(x) = 1, kan vi nne en x 0 i intervallet (0; 1) slik at f(x 0 ) < 0. Vi kan for eksemel velge x 0 = 1=e, som gir f(1=e) = ( ln e) + 1=e = 1 + 1=e < 0. Siden f(1) = ln = 1 > 0, og funksjonen f er kontinuerlig i intervallet [ 1 ; 1], flger det av skjringssetningen at f har e et nullunkt i intervallet ( 1 ; 1) og dermed ogsa i det strre intervallet e (0; 1). Ogave 5..b Vi skal vise at grafene til f(x) = sin x og g(x) = x skjrer hverandre i intervallet [ ; ]. I endeunktene av intervallet har f og g verdiene 6 f = ; g 8 = < = = 7 < 1 f = 1 < 1; g = > 1 Siden f( 6 ) > g( 6 ), f( ) < g( ) og begge funksjonene er kontinuerlige i intervallet [ ; ], sa ma grafene skjre hverandre ved korollar 5.. i 6 Kalkulus. Ogave 5..4 La f(x) = tan x og g(x) = x. Da har vi 4 f f 4 = 1 > 4 = g 4 = 1 < 4 = g 4 Vi ser av en gur (tegn grafen selv!) at det ikke nnes noe tall c ( ; 4 4 ) slik at f(c) = g(c). Dette er likevel ikke i strid med korollar 5.., da funksjonen f ikke er kontinuerlig i intervallet (den er diskontinuerlig for x = ). Ogave 5..6 Vi skal vise at ethvert olynom av odde grad har minst en reell rot. La f(x) = a n x n + a n 1x n 1 + a 0 = x n a n + a n 1 x + + a 0 x n vre et olynom av grad n, det vil si at a n 6= 0. Hvis n er et oddetall, vil faktoren x n i uttrykket ovenfor skifte fortegn med x. For tilstrekkelig 9

4 store verdier av jxj vil faktoren i arentes ha samme fortegn som det frste leddet a n, idet de vrige leddene i arentesen gar mot null nar jxj vokser. Det nnes derfor et (stort) tall x 0 > 0 slik at f(x 0 ) og f( x 0 ) har motsatte fortegn. (De behver ikke derfor vre motsatt like store.) Siden funksjonen f er kontinuerlig a intervallet [ x 0 ; x 0 ], har den et nullunkt i intervallet ( x 0 ; x 0 ) iflge skjringssetningen. Ogave 5..7 En fjellklatrer starter fra bakken klokken 7 og nar toen klokken 15. Neste dag starter hun nedstigningen klokken 7 og er nede klokken 15. a) Vi skal vise at det nnes et klokkeslett der hun er like hyt oe begge dager. Vi lar fjellets hyde vre H. Vi lar sa f(t) sta for klatrerens hyde over bakken ved et klokkeslett t under ostigningen og g(t) hyden under nedstigningen. Begge funksjonene er kontinuerlige, og siden f(7) = 0 < H = g(7) og f(15) = H > 0 = g(15), ma funksjonsgrafene skjre hverandre for en verdi t 0 (7; 15) iflge korollar 5.. til skjringssetningen. Det betyr at hun er like hyt oe ved klokkeslettet t 0 begge dager. b) Na antar vi at hun begynner nedstigningen klokken 10 i steden for 7, og at hun er nede klokken 16. Siden hun ikke er oe fr klokken 15 den frste dagen, ma f(10) < H = g(10). Og siden hun nar toen klokken 15, er hun der klokken 16 ogsa, sa vi ma ha f(16) = H > 0 = g(16). Pa samme mate som i unkt a) kan vi derfor trekke den konklusjon at hun ogsa i dette tilfelle er like hyt oe ved et klokkeslett t 1 (10; 16) begge dager. Ogave 5..8 Vi skal vise at en kontinuerlig funksjon f : [0; 1]! [0; 1] har et ksunkt, det vil si at det nnes en x [0; 1] slik at f(x) = x. La g : [0; 1]! [0; 1] vre identitetsfunksjonen g(x) = x. Siden f antar verdier i intervallet [0; 1], har vi at f(0) 0 = g(0) og f(1) 1 = g(1). Da f (og g) er kontinuerlige, nnes det ved korollar 5.. en x [0; 1] slik at f(x) = g(x), altsa f(x) = x. Ogave 5.. a) Siden g(x) = x er kontinuerlig for alle x, blir f(x) = 1 = 1 g(x) x kontinuerlig for alle x 6= 0 iflge setning Funksjonen f er dermed kontinuerlig i hele sitt denisjonsomrade (sa f er kontinuerlig iflge denisjon 5.1.8). 0

5 b) Siden lim x!0 f(x) = 1 og lim x!0 + f(x) = 1, er ikke funksjonen begrenset a intervallet [ 1; 1] og har dermed ingen maksimums- eller minimumsunkter. Dette strider ikke mot ekstremalverdisetningen, siden f ikke er denert for x = 0, og dermed ikke er denert a hele intervallet [ 1; 1]. Ogave 5..4 Vi antar at f : (a; b)! R er kontinuerlig og at grenseverdiene av f(x) nar x nrmer seg a ovenfra og b nedenfra eksisterer. Vi skal vise at f er begrenset. Siden lim x!a + f(x) og lim x!b f(x) eksisterer, kan vi utvide f til en kontinuerlig funksjon denert a det lukkede intervallet [a; b] slik at f(a) x!a + f og f(b) x!b f. Dermed kan vi benytte ekstremalverdisetningen som sikrer at f har maksimums- og minimumsverdi(er) a [a; b]. Dette betyr at f er begrenset a [a; b], og dermed ogsa begrenset a det mindre intervallet (a; b). Ogave 5..5 Anta at f : [a; b]! R er kontinuerlig. Vi skal vise at verdimengden = ff(x) : x [a; b]g er et lukket, begrenset intervall. V f Vi viser at V f er lik det lukkede, begrensede intervallet [f min ; f max ] ved a vise inklusjon begge veier. Inklusjonen V f [f min ; f max ] er ofylt er denisjon av minimum og maksimum. Pa den annen side sikrer ekstremalverdisetningen at den kontinuerlige funksjonen f onar sitt minimum og maksimum a det lukkede, begrensende intervallet [a; b], sa f min og f max er med i V f. Og skjringssetningen sikrer oss at alle verdier d mellom f min og f max ogsa er med i V f : Den kontinuerlige funksjonen g(x) = f(x) d er jo negativ i minimumsunktet til f og ositiv i maksimumsunktet, og har derfor et mellomliggende nullunkt c. Men det betyr netto at f(c) = d. Dermed har vi ogsa vist den omvendte inklusjonen V f [f min ; f max ]. Ogave 5.4. a) Vi skal vise at lim x! x = 6. Gitt en " > 0 ma vi rodusere en > 0 slik at hvis jx j < sa er jx 6j < ". Dette onar vi ved a velge = ", idet vi da far jx 6j = jx j < = " = ". b) Vi skal vise at lim x! x = 9. Gitt en " > 0 ma vi rodusere en > 0 slik at hvis jx j < sa er jx 9j < ". La h = x. Da er x = h +, slik at vi far jx 9j = j(h + ) 9j = jh + 6h + 9 9j = jhjjh + 6j 1

6 Her ser vi at den andre faktoren jh + 6j holder seg mindre enn 7 dersom vi velger jhj < 1. Srger vi samtidig for at den frste faktoren jhj er mindre enn ", vil roduktet holde seg mindre enn ". Begge 7 disse kravene blir ofylt dersom vi velger = min(1; " ). For hvis 7 jhj = jx j <, sa er jx 9j = jhjjh + 6j < 7 = " 7 7 = ". c) Vi skal vise at lim x!4 x =. Gitt en " > 0 ma vi nne en > 0 slik at hvis jx 4j < sa er j x j < ". Ved hjel av tredje kvadratsetning ser vi at j x j = j( x )( x + )j j x + j = jx 4j j x + j Velger vi = ", ser vi at hvis jx 4j < sa er < jx 4j j x j < jx 4j < " = " Ogave x + 4x 4 a) lim x!0 x x 7 + 4x x!0 x = = 7 8x + x + 7 b) lim x 4x 8 + x + 7 x x x 4 = = c) lim ( x ( x + x + x x)( x + x + x) x) x + x + x x + x x x + x + x q x +x x + 1 q x x + x + x 1 + x + 1 = d) lim x!4 x x 4 x!4 x!4 x ( x )( x + ) 1 x + = 1 + = 1 4 Ogave 5.4.4a Vi skal avgjre om funksjonen f(x) = x + for x 1 4 cos(x) for x > 1

7 er kontinuerlig i unktet x = 1. Vi ser a de ensidige grensene lim f(x) = f(1) = 1 + = lim f(x) 4 cos(x) = 4 cos = Siden lim f(x) 6 + f(x), eksisterer ikke den tosidige grensen lim f(x), sa funksjonen f er ikke kontinuerlig i x = 1.

Løsningsforslag til utvalgte oppgaver i kapittel 5

Løsningsforslag til utvalgte oppgaver i kapittel 5 Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag

Detaljer

Forord Dette er en samling lsningsforslag som jeg orinnelig utarbeidet til grueundervisningen i kurset MATA ved Universitetet i Oslo hsten. Den vil de

Forord Dette er en samling lsningsforslag som jeg orinnelig utarbeidet til grueundervisningen i kurset MATA ved Universitetet i Oslo hsten. Den vil de K A L K U L U S Lsningsforslag til utvalgte ogaver fra Tom Lindstrms lrebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Coyright c Klara Hveberg Forord Dette er en samling lsningsforslag

Detaljer

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x <

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x < Lsningsforslag til utvalgte ogaver i kaittel 2 I seksjon 2.1 far du velse i a lse ulikheter hvor tallverdier inngar (ogave 2.1.5) og enkel trening i a fre matematiske resonnementer ved a kombinere bruk

Detaljer

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 7 I seksjon 7.1 og 7.2 lrer du a lse oppgaver hvor det kan lnne seg a

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 7 I seksjon 7.1 og 7.2 lrer du a lse oppgaver hvor det kan lnne seg a Lsningsforslag til utvalgte ogaver i kaittel 7 I seksjon 7. og 7. lrer du a lse ogaver hvor det kan lnne seg a tegne gurer og sette navn a ukjente strrelser. Ogave 7..7 illustrerer hvordan du kan ansla

Detaljer

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 6 I kapittel 6 minner oppgavene mer om de du er vant til fra skolemat

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 6 I kapittel 6 minner oppgavene mer om de du er vant til fra skolemat Lsningsforslag til utvalgte oppgaver i kapittel 6 I kapittel 6 minner oppgavene mer om de du er vant til fra skolematematikken i den forstand at de er mindre teoripregede enn i foregaende kapittel, men

Detaljer

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 8 I kapittel 8 er integrasjon og integrasjonsteknikker det store tema

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 8 I kapittel 8 er integrasjon og integrasjonsteknikker det store tema Lsningsforslag til utvalgte ogaver i kaittel 8 I kaittel 8 er integrasjon og integrasjonsteknikker det store temaet, og her er det mange regneogaver som gir deg anledning til a trene inn disse teknikkene.

Detaljer

At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d

At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d Lsningsforslag til utvalgte ogaver i kaittel I dette kaittelet har mange av ogavene et mindre teoretisk reg enn i de foregaende kaitlene, og jeg regner derfor med at lrebokas eksemler og fasit er dekkende

Detaljer

h) Delvis integrasjon gir ln = Ogave 9.. = ln u = ln ; v = = u = ; v = = = = ln = = = ln 4 9 = + C a) Delvis integrasjon to ganger gir e cos = e cos e

h) Delvis integrasjon gir ln = Ogave 9.. = ln u = ln ; v = = u = ; v = = = = ln = = = ln 4 9 = + C a) Delvis integrasjon to ganger gir e cos = e cos e Lsningsforslag til utvalgte ogaver i kaittel 9 I kaittel 9 far du innarbeidet ere integrasjonsteknikker, slik som delvis integrasjon, substitusjon og delbrkosaltning. Du nner lsningsforslag til helt enkle

Detaljer

EKSEMPLER TIL ETTERTANKE MAT1100 KALKULUS

EKSEMPLER TIL ETTERTANKE MAT1100 KALKULUS EKSEMPLER TIL ETTERTANKE MAT00 KALKULUS Simon Foldvik. Oktober 207 Dette dokumentet inneholder eksempler på hvor «ting går galt» og har til hensikt å vise eksempler på hva man ikke kan konkludere. Alle

Detaljer

Grunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3,

Grunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3, Grunnleggende notasjon ℕ,, 3, 4, 5, 6, ℤ, 3,,, 0,,, 3, ℝ 𝑎𝑙𝑙𝑒 𝑟𝑒𝑒𝑙𝑒 𝑡𝑎𝑙𝑙 ℚ 𝑎𝑙𝑙𝑒 𝑟𝑎𝑠𝑗𝑜𝑛𝑎𝑙𝑒 𝑡𝑎𝑙𝑙 𝑎 𝑎, ℤ, 0 Induksjonsprinsippet Anta at for hver 𝑛 ℕ har vi gitt et utsagn 𝑃. Anta videre at vi vet at følgende

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Wavelet P Sample number. Roots of the z transform. Wavelet P Amplitude Spectrum.

Wavelet P Sample number. Roots of the z transform. Wavelet P Amplitude Spectrum. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG Geofysisk Signalanalyse Lsningsforslag ving Oppgave a) Vi har Amplitudespekteret er da Y (!) =

Detaljer

TFY4115 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. ) v 1 = p 2gL. S 1 m 1 g = L = 2m 1g ) S 1 = m 1 g + 2m 1 g = 3m 1 g.

TFY4115 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. ) v 1 = p 2gL. S 1 m 1 g = L = 2m 1g ) S 1 = m 1 g + 2m 1 g = 3m 1 g. TFY4 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. Ogave. a) Hastigheten v til kule like fr kollisjonen nnes lettest ved a bruke energibevarelse Riktig svar C. gl v ) v gl b) Like fr sttet

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3

Detaljer

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo K A L K U L U S Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Forord Dette er en samling løsningsforslag som jeg opprinnelig

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

Forord Dette er en samling lsningsforslag som jeg opprinnelig utarbeidet til gruppeundervisningen i kurset MAT00A ved Universitetet i Oslo hsten 2000.

Forord Dette er en samling lsningsforslag som jeg opprinnelig utarbeidet til gruppeundervisningen i kurset MAT00A ved Universitetet i Oslo hsten 2000. K A L K U L U S Lsningsforslag til utvalgte oppgaver fra Tom Lindstrms lrebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Copyright c 2006 Klara Hveberg Forord Dette er en samling lsningsforslag

Detaljer

Formelsamling Kalkulus

Formelsamling Kalkulus Formelsamling Kalkulus Martin Alexander Wilhelmsen December 8, 009 En liten formelsamling for MAT00 ved UiO. Vennligst meld fra om feil til martinaw@student.matnat.uio.no. Dette dokumentet er publisert

Detaljer

Funksjonsdrøfting MAT111, høsten 2017

Funksjonsdrøfting MAT111, høsten 2017 Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. Ogave 1 L/ d A F A B F B L mg Stuebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter i vertikal retning

Detaljer

Flere anvendelser av derivasjon

Flere anvendelser av derivasjon Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere Lsigsforslag til utvalgte ogaver i kaittel 4 I seksjo 4. gir de iledede ogavee deg treig i a lse dieresligiger, og jeg reger med at det ikke er behov for a utdye lrebokas eksemler og fasit her. Me like

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag :

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag : OPPGAVESETT MAT111-H17 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 8/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 10.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 10. TFY404 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 0. Oppgave A B C D x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0 x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 29 x 20 x ) Glass-staven er ikke i berring med

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

MA oppsummering så langt

MA oppsummering så langt MA1101 - oppsummering så langt Torsdag 29. september 2005 http://www.math.ntnu.no/emner/ma1101/2005h/ MA1101- oppsummering så langt p.1/21 Pensum til semesterprøven Kapittel P Kapittel 1 Kapittel 2: avsnittene

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Veiledning oppgave 2 kap. 4.2

Veiledning oppgave 2 kap. 4.2 Jon Vislie; august 007 Veiledning ogave ka. 4. ECON 360/460 Samfunnsøkonomisk lønnsomhet og økonomisk olitikk I en lukket økonomi med en grue identiske konsumenter (her betraktet som én aktør, skal vi

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i. Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk

Detaljer

TMA4100 Matematikk 1 Høst 2012

TMA4100 Matematikk 1 Høst 2012 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,

Detaljer

f(t) F( ) f(t) F( ) f(t) F( )

f(t) F( ) f(t) F( ) f(t) F( ) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for

Detaljer

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon F x = x K f x f' x, starter med en x 0 og beregner x 1 = F x 0, x = F x 1, x 3 = F x,... Dette er en metode der en for-løkke egner

Detaljer

Wiener filter of length 10 (performance 0.374) Pulse P Sample number. Wiener filter of length 10 (performance 0.

Wiener filter of length 10 (performance 0.374) Pulse P Sample number. Wiener filter of length 10 (performance 0. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG5 Geofysisk Signalanalyse Lsningsforslag ving 7 I forrige ving laget vi ltre ved frst a beregne

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 07 Notasjon i rettingen: R = Rett R = Rett, men med liten tulle)feil

Detaljer

ANDREAS LEOPOLD KNUTSEN

ANDREAS LEOPOLD KNUTSEN NOTAT OM FUNKSJONER AV FLERE VARIABLE VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN Dette notatet inneholder ikke noe nytt pensum i kurset MAT112 i forhold til læreboken

Detaljer

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4. Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)

Detaljer

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier 1 Fremdriftplan Siste uke Kap. 1 Funksjoner 2.1-2.2 Grenseverdier I dag 2.3 Den formelle definisjonen av grenseverdi 2.4 Ensidige grenser og grenser i uendelig 2.5 Uendelige grenser og vertikale asymptoter

Detaljer

Analysedrypp II: Kompletthet

Analysedrypp II: Kompletthet Analysedrypp II: Kompletthet Kompletthet er et begrep som står sentralt i både MAT1100 og MAT1110, og som vil stå enda mer sentralt i MAT2400. I de tidligere kursene fremstår begrepet på litt forskjellig

Detaljer

Oppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven.

Oppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven. Eksamen Prøve-eksamen for MET 11802 Matematikk Dato November 2015 - Alternativ 2 Oppgave 1. En bank-konto gir 3% rente, og renten kapitaliseres kontinuerlig. Vi setter inn 100.000 kr på denne kontoen.

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006 Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen - 27. mars 2006 1 Kompletthet av LK 1.1 Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Løsningsforslag. Innlevering i FO929A - Matematikk Obligatorisk innlevering nr. 8 Innleveringsfrist 15. april 2011 kl Antall oppgaver: 4

Løsningsforslag. Innlevering i FO929A - Matematikk Obligatorisk innlevering nr. 8 Innleveringsfrist 15. april 2011 kl Antall oppgaver: 4 Innlevering i FO99A - Matematikk Obligatorisk innlevering nr. 8 Innleveringsfrist 5. aril kl. 5. Antall ogaver: 4 Løsningsforslag Ogave Beregn disse ubestemte integralene a 5 cos3t dt 5 3 sin3t + C 5 sin3t

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100, 6/

Løsningsforslag til underveiseksamen i MAT 1100, 6/ Løsningsforslag til underveiseksamen i MAT 00, 6/0-008. ( poeng) Det komplekse tallet z har polarkoordinater r =, θ = 7π 6. Da er z lik: i + i i i + i Riktig svar: c) i. Begrunnelse: z = ( cos 7π 6 + i

Detaljer

Løsningsforslag for eksamen i AA6516 Matematikk 2MX - 4. desember eksamensoppgaver.org

Løsningsforslag for eksamen i AA6516 Matematikk 2MX - 4. desember eksamensoppgaver.org Løsningsforslag for eksamen i AA6516 Matematikk 2MX - 4. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 5 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 5 Grenseverdier I dagens forelesning skal vi se på grenseverdier. 1 Hvorfor

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en

Detaljer

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS INVERST FUNKSJONSTEOREM MAT1100 KALKULUS Simon Foldvik 29. Oktober 2017 1. Introduksjon Vi skal i dette dokumentet bevise en global og en lokal versjon av inverst unksjonsteorem i én variabel. Kort oppsummert

Detaljer

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan Løsningsforslag til utvalgte oppgaver i Kalkulus Øyvind Ryan. november 4 Innhold Kapittel 3 Seksjon.................................. 3 Seksjon.................................. 3 Seksjon.4.................................

Detaljer

Eksamensoppgave i MA1101 Grunnkurs i analyse

Eksamensoppgave i MA1101 Grunnkurs i analyse Institutt for matematiske fag Eksamensoppgave i MA1101 Grunnkurs i analyse Faglig kontakt under eksamen: Kari Hag Tlf: 48 30 19 88 Eksamensdato: 15. oktober 018 Eksamenstid (fra til): 17:30 19:00 Hjelpemiddelkode/Tillatte

Detaljer

slik at en tredje denisjon kan ogsa brukes: F (!) Fff(t)g 1 p f(t) F ff(!)g 1 p f(t)e,i!t dt ; F (!)ei!t d! : Det er ogsa mulig a bruke frekvensen f i

slik at en tredje denisjon kan ogsa brukes: F (!) Fff(t)g 1 p f(t) F ff(!)g 1 p f(t)e,i!t dt ; F (!)ei!t d! : Det er ogsa mulig a bruke frekvensen f i NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG445 Geofysisk Signalanalyse Lsningsforslag ving 1 Oppgave 1 Det som er viktig med denisjonen av

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)

Detaljer

Kontinuitet og grenseverdier

Kontinuitet og grenseverdier Kontinuitet og grenseverdier Avdeling for lærerutdanning, Høgskolen i Vestfold 5. januar 2009 1 Innledning Kontinuitetsbegrepet For å motivere og innlede til kontinuitetsbegrep skal vi først undersøke

Detaljer

Løsningsforslag i matematikk

Løsningsforslag i matematikk Løsningsforslag i matematikk 060808 Oppgave (a) ( a b ) b 4 a (ab) = a b b 4 a a b = a b = b a = a + b + 4 a b = a + + b + 4 + (b) Omskrivning av likningen gir sin(x) + cos(x) = 0 sin(x) cos(x) = tan(x)

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende

Detaljer

E, B. q m. TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 12.

E, B. q m. TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 12. TFY4104 Fsikk. nstitutt for fsikk, NTNU. ving 12. Oppgave 1 Partikler med masse m, ladning q og hastighet v kommer inn i et omrade med "krsset" elektrisk og magnetisk felt, E og, som vist i guren. E har

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

R2 - Eksamen Løsningsskisser

R2 - Eksamen Løsningsskisser R - V0 R - Eksamen 04.06.0 - Løsningsskisser Del - Uten hjelpemidler Oppgave a) ) Kjerneregel: fx 3 sin u, u x f x 3 cosu 6 cosu 6 cosx ) 3) Produktregel: g x x sin x x cosx x sin x x cosx Kjerneregel:

Detaljer

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04 Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Plan. I dag. Neste uke

Plan. I dag. Neste uke Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5 Fasit til utvalgte oppgaver MAT1110, uka 8/4-/5 Tom Lindstrøm (lindstro@math.uio.no) 5..5 a) Alle punktene i B har avstand til origo større enn 1, så d(0, B) må være minst 1. Ved å velge punkter på x-aksen

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Funksjonsdrøfting MAT111, høsten 2016

Funksjonsdrøfting MAT111, høsten 2016 Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 9.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 9. TFY44 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 9. Ogve. ) C V E dl dersom dl? E b) B U e 4" r e e 4" r e :6 9 9 9 4:4 ev c) D Totl otensiell energi for et system med unktldninger er i

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Institutionen för Matematik, KTH

Institutionen för Matematik, KTH Institutionen för Matematik, KTH Lösningsforslag till tentamen, 200-2-7, kl. 8.00-.00. 5B04, Envariabel. Uppgift. Den karakteristiske ligningen r 2 r + 2 0 kan omskrives som (r )(r 2) 0. Den generelle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer