KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Kvantekjemiske metoder. Basissett oppsummert

Størrelse: px
Begynne med side:

Download "KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Kvantekjemiske metoder. Basissett oppsummert"

Transkript

1 KJM-MEF Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Repetisjon 2. september 2004 KJM-MEF Modul 3 Kvantekjemiske metoder p.1/50 Repetisjon p.2/50 Kvantekjemiske metoder One-electron expansion Basis set limit for a given -electron model -electron models The exact solution Exact solution in a given one-electron basis Basissett oppsummert Standard basissett kan bygges ut Tette funksjoner (core-region) Polarisasjonsfunksjoner (indre valensregion) Diffuse funksjoner (ytre valensregion) Polarisasjonsfunksjoner påkrevd for gode strukturer og energier Områder som bidrar lite til energien kan være helt avgjørende for andre egenskaper Repetisjon p.3/50 Repetisjon p.4/50

2 Introduksjon Å løse den tilsynelatende enkle Schrödinger-ligningen (1) Tetthetsfunksjonalteori (DFT) er slett ikke trivielt er generelt en funksjon av tre rom- og en spinnkoordinat for hvert elektron Finnes det en enklere størrelse som energi og andre egenskaper kan beregnes fra? Introduksjon Tetthetsfunksjonalteori (DFT) p.5/50 Introduksjon Tetthetsfunksjonalteori (DFT) p.6/50 Hamilton-operatoren avhenger kun av posisjonen til kjernene og antallet elektroner Kan bestemmes fra elektrontettheten Kjerneposisjonene svarer til lokale maksima i elektrontettheten (cusps) Kjerneladning fra: (2) Tetthetsfunksjonalteori (DFT) p.7/50 Tetthetsfunksjonalteori (DFT) p.8/50

3 Introduksjon Elektrontettheten avhenger kun av tre rom-koordinater Indikerer alternativ og potensielt enklere måte å løse Schrödinger-ligningen Basis for tetthetsfunksjonalteori (DFT), energi som funksjon av tetthetsfunksjonen (tetthetsfunksjonal) Overraskende nøyaktige resultater med moderat beregningskostnad Ikke opplagt hvordan kan utnyttes Potensielle problemer: Gir en entydig bestemmelse av et systems egenskaper? Kan ulike gi opphav til samme? Kan vi bestemme uten å konstruere? Hvordan kan ulike egenskaper bestemmes direkte fra? Tetthetsfunksjonalteori (DFT) p.9/50 Tetthetsfunksjonalteori (DFT) p.10/50 Først forsøk på tetthetsfunksjonalteori baserte seg på egenskapene til uniform elektrongass (UEG) Thomas Fermi-modellen Thomas Fermi Dirac-modellen Unøyaktige, energier 10-30% for lave Ingen binding mellom atomer Alle molekyler dissosierer! Teoretisk gjennombrudd med Hohenberg og Kohn i 1964 Praktisk gjennombrudd kom med Kohn og Sham i 1965 Antar fiktivt system av ikke-vekselvirkende elektroner gir samme som det reelle systemet Energifunksjonal skrives (3) Tetthetsfunksjonalteori (DFT) p.11/50 Tetthetsfunksjonalteori (DFT) p.12/50

4 I Kohn Sham (KS) teori uttrykkes en-elektronorbitaltettheter som sum av Tre første ledd blir da enkle en-elektronintegraler Alle problemer gjemmes bort i (4) KS en-elektronoperatoren oppfyller I praksis uttrykkes gjerne KS-orbitalene ved et sett basisfunksjoner Orbitalkoeffisientene optimeres basert på sekulærligning akkurat som i HF-teori Iterativ SCF-metode (5) Tetthetsfunksjonalteori (DFT) p.13/50 Tetthetsfunksjonalteori (DFT) p.14/50 Store likheter mellom KS-teori og HF-teori Deler matematisk maskineri Fock-operatoren byttes ut med Kohn Sham-operatoren Har så langt ikke innført approksimasjoner i DFT, i prinsippet eksakt teori Krever dessverre at vi kjenner den eksakte... Fundamental forskjell mellom HF og DFT HF er en approksimativ teori som løses eksakt DFT er en eksakt teori som løses approksimativt KS-teori basis for alle vanlige DFT-metoder i kvantekjemi Approksimasjoner til skiller metodene Tetthetsfunksjonalteori (DFT) p.15/50 Tetthetsfunksjonalteori (DFT) p.16/50

5 Funksjonaler Funksjonaler inneholder først og fremst Differanse mellom klassisk og kvantemekanisk elektron elektron-repulsjon Exchange Korrelasjon Funksjonalen splittes vanligvis tilsvarende i to separate bidrag Skiller mellom tre kategorier av funksjonaler Local density approximation (LDA) Funksjonaler som kun avhenger av selve elektrontettheten, Generalized gradient approximation (GGA) Avhenger av og Hybridfunksjonaler Blander inn en viss andel Hartree Fock exchange-energi Funksjonaler Innen hver kategori er det utviklet en rekke ulike funksjonaler Kan kombineres på et utall måter Tetthetsfunksjonalteori (DFT) p.17/50 Navn på DFT-metode settes også sammen Eksempel: BLYP består av Beckes GGA-exchange (B) og GGA-korrelasjon fra Lee, Yang og Parr (LYP) Funksjonaler Den klart mest benyttede funksjonalen er B3LYP, definert ved: Tetthetsfunksjonalteori (DFT) p.18/50 (6) Benytter tre empiriske parametre, og Strengt tatt semi-empirisk metode Generelt veldig robust, overraskende gode resultater Tetthetsfunksjonalteori (DFT) p.19/50 Tetthetsfunksjonalteori (DFT) p.20/50

6 Funksjonaler Kompliserte uttrykk for exchange og korrelasjon Integrasjon foregår numerisk Må generere sett med gridpunkter Ønsker så få punkter som mulig uten å ødelegge nøyaktighet Punkter må settes fornuftig, tett med punkter der elektrontettheten er høy NB: For grovt grid er potensiell feilkilde i DFT-beregninger! Generell ytelse Ulike DFT-metoder er nøye benchmarket Mest kostnadseffektive kvantekjemiske metode Har passert HF som mest benyttet metode Fungerer likevel middels/dårlig til enkelte formål, viktig å være klar over! Mangler metoder for systematisk forbedring Generell ytelse Tetthetsfunksjonalteori (DFT) p.21/50 DFT-metoder mettes raskt med hensyn på basissett Polarisert valens dobbel- tilstrekkelig for svært mange beregninger STO er kan effektivt benyttes sammen med numerisk integrasjon GTO er likevel mest vanlig For systemer med periodiske randbetingelser benyttes ofte plane bølger Generell ytelse Tetthetsfunksjonalteori (DFT) p.22/50 DFT, spesielt hybridfunksjonalene, er robuste og like nøyaktige som langt tyngre korrelerte metoder Gode energier Gode strukturer Gode dipolmomenter, ikke fullt så gode polarisabiliteter Spesiell styrke når det gjelder overgangsmetaller Tetthetsfunksjonalteori (DFT) p.23/50 Tetthetsfunksjonalteori (DFT) p.24/50

7 Generell ytelse Gjennomsnittlig absolutt avvik (kcal/mol) Metode Atm.energier Ion.pot. Protonaff. LSDA BPW B3PW Molekylære egenskaper Tetthetsfunksjonalteori (DFT) p.25/50 Molekylre egenskaper p.26/50 Energideriverte Anta en energi er et sett eksterne parametre, f.eks. geometri er parametre for bølgefunksjonen Mange statiske molekylære egenskaper kan uttrykkes som deriverte av denne energien Numeriske deriverte Analytiske deriverte Energideriverte Førstederivert av energi mhp. kjernekoordinater gir molekylær gradient Negativ gradient er kreftene som virker på kjernene Andrederivert er molekylær Hess-matrise Symmetrisk Masseveiing og diagonalisering (harmonisk approksimasjon) Vibrasjonsfrekvenser Normalmoder Molekylre egenskaper p.27/50 Molekylre egenskaper p.28/50

8 Energideriverte Eksempel: H O Hess-matrisen symmetrisk 9x9 matrise 6 egenverdier er null eller svært nær null Translasjon Rotasjon Tre vibrasjonsmoder Energideriverte Egenskap Molekylær gradient (krefter) Elektrisk dipolmoment Magnetisk dipolmoment Molekylær Hess-matrise (vib.frekvenser) Polarisabilitet Magnetisabilitet Dipolmomentgradient (IR intensiteter) Sirkulær dikroisme Anharmonisk korreksjon Hyperpolarisabilitet Hypermagnetisabilitet Raman-intensiteter Molekylre egenskaper p.29/50 Ladningsfordeling I prinsippet alle molekylære egenskaper fra ladningsfordelingen (jfr. DFT) Direkte knyttet til fordelingen: Elektriske multipolmoment Polarisabiliteter Andre spektroskopiske egenskaper Rotasjonelle/vibrasjonelle spektra Elektronspinn resonans (ESR) Kjernemagnetisk resonans (NMR) Molekylre egenskaper p.30/50 Elektrontettheten kan enkelt bestemmes i HF og DFT Summen av alle okkuperte molekylorbitaler kvadrert Funksjon av, isotetthetsflate: Molekylre egenskaper p.31/50 Molekylre egenskaper p.32/50

9 Molekylært elektrostatisk potensial (MEP) Kan beregnes eksakt for alle punkter Potensialet positiv testladning føler Partielle atomladninger ikke fysiske observable Likevel nyttig konsept for å diskutere ladningsfordeling, reaktivitet m.m. Lang rekke beregningsmetoder, eksempler: Mulliken populasjonsanalyse Naturlig populasjonsanalyse Molekylre egenskaper p.33/50 Mulliken populasjonsanalyse Partisjonerer elektronene mellom atomene basert på AO bidrag til total Fungerer OK med små basissett Best for relative endringer Fungerer dårlig for store, spesielt diffuse, basissett Molekylre egenskaper p.34/50 Natural Population Analysis (NPA) Også orbitalbasert Mer komplisert ortogonalisering Konvergerer pent med store basissett Tendens til overestimering av ladningsseparasjon Mer beregningskrevende enn Mulliken Molekylre egenskaper p.35/50 Molekylre egenskaper p.36/50

10 Spektroskopiske egenskaper/målinger For eksempel effekten av at et elektrisk felt på molekylet virker Permanent dipolmoment Vektor (tre komponenter) (7) Polarisabilitet 3 3 matrise Første hyperpolarisabilitet tensor Molekylre egenskaper p.37/50 Molekylre egenskaper p.38/50 Born Oppenheimer-approksimasjonen splitter bevegelsen til kjerner og elektroner Bestemmer PES fra elektronisk Schrödinger-ligning Schrödinger-ligning for kjernebevegelse blir er potensialet fra elektronene (PES) (8) Rotasjonsbevegelse Betrakter gjerne molekylet som stiv rotor Rotasjonsspektre avhenger da kun av treghetsmomentet Vibrasjonsbevegelse Approksimeres som harmonisk oscillator Må beregne Hess-matrisen Gir IR frekvenser (vibrasjonsfrekvensene) For IR intensiteter må også dipolmomentgradienten beregnes Molekylre egenskaper p.39/50 Molekylre egenskaper p.40/50

11 Kalibrering Kalibrering av kvantekjemiske metoder Har presentert ulike metoder for molekylmodellering Ingen klar fasit for korrekt metode, avhenger av Gassfase, løsning eller fast stoff Egenskaper som skal beregnes Ønsket nøyaktighet Størrelsen på molekyl/system Tilgjengelig regnekraft Kalibrering av kvantekjemiske metoder p.41/50 Kalibrering av kvantekjemiske metoder p.42/50 Metoder For store systemer står valget hovedsaklig mellom molekylmekanikk eller semi-empiriske metoder For små til middels store systemer kan vi velge blant elektronstruktur-metodene Bølgefunksjonbaserte metoder, bl.a.: HF MP CC Tetthetsfunksjonalteori (DFT) One-electron expansion Metoder Basis set limit for a given -electron model -electron models The exact solution Exact solution in a given one-electron basis Kalibrering av kvantekjemiske metoder p.43/50 Kalibrering av kvantekjemiske metoder p.44/50

12 Metoder Kalibrering Hver metode har såkalt iboende feil (intrinsic error) Balansert behandling innebærer fornuftig basissett i forhold - elektronmetode Kalibrering av kvantekjemiske metoder p.45/50 Kalibrering av kvantekjemiske metoder p.46/50 Kalibrering Kalibrering Bindingslengder (pm) sammenlignet med eksperiment for 20 små molekyler Viser normaliserte feilfordelinger Noen observasjoner HF fungerer best med cc-pvdz MP3 og MP4 til dels dårligere enn MP2 CCSD(T) krever minst trippel- (TZ) basis Kalibrering av kvantekjemiske metoder p.47/50 Kalibrering av kvantekjemiske metoder p.48/50

13 Kalibrering Reaksjonsentalpier (kj/mol) for 17 reaksjoner cc-pcvxz gir bedre resultater enn cc-pvxz HF omlag 10% feil Igjen CCSD(T) som virkelig gir gode resultater Oppnår kjemisk nøyaktighet, dvs. feil under 1 kcal/mol Decisions, decisions Kalibrering av metoder og basissett Objektiv informasjon om hvilken nøyaktighet man kan forvente av gitt teorinivå Modellering av spesifikke systemer Erfaring og testberegninger med ulike basissett/bølgefunksjoner Subjektive vurderinger bak endelig metodevalg! Kalibrering av kvantekjemiske metoder p.49/50 Kalibrering av kvantekjemiske metoder p.50/50

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 2. september 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/50 Repetisjon Repetisjon p.2/50 Repetisjon p.3/50

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 19. april 2004 KJM3600 - Molekylmodellering p.1/44 Molekylære egenskaper - repetisjon Molekylre egenskaper - repetisjon p.2/44 Molekylære

Detaljer

KJM Molekylmodellering. Korrelerte metoder - repetisjon. Korrelerte metoder

KJM Molekylmodellering. Korrelerte metoder - repetisjon. Korrelerte metoder KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Korrelerte metoder - repetisjon 29. mars 2004 KJM3600 - Molekylmodellering p.1/30 Korrelerte metoder - repetisjon p.2/30 Korrelerte metoder

Detaljer

KJM Molekylmodellering. Molekyler i løsning. Introduksjon. Introduksjon

KJM Molekylmodellering. Molekyler i løsning. Introduksjon. Introduksjon KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekyler i løsning 24. mai 2004 KJM3600 - Molekylmodellering p.1/41 Molekyler i lsning p.2/41 Introduksjon Solvatisering Reaksjoner i

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder. Introduksjon. Kvantekjemiske metoder. Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder. Introduksjon. Kvantekjemiske metoder. Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Introduksjon Høst 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/134 Introduksjon p.2/134 Kvantekjemiske metoder

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 19. april 2004 KJM3600 - Molekylmodellering p.1/36 Tetthetsfunksjonalteori (DFT) - repetisjon Tetthetsfunksjonalteori (DFT) - repetisjon

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Høst 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/134 Introduksjon Introduksjon p.2/134 Introduksjon p.3/134

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 3. mai 2004 KJM3600 - Molekylmodellering p.1/43 Eksiterte tilstander - repetisjon Eksiterte tilstander - repetisjon p.2/43 Eksiterte tilstander

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 24. mai 2004 KJM3600 - Molekylmodellering p.1/41 Molekyler i løsning Molekyler i lsning p.2/41 Introduksjon Solvatisering Reaksjoner i

Detaljer

KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse

KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Semi-empiriske metoder - repetisjon 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon p.2/47 Generell

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon Semi-empiriske metoder - repetisjon p.2/47 Generell

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 27. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/45 Repetisjon Repetisjon p.2/45 Repetisjon p.3/45 Hartree

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)

Detaljer

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Monte Carlo simuleringer og molekyldynamikk - repetisjon KJM3600 - Molekylmodellering p.1/50 Monte Carlo simuleringer og molekyldynamikk

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Geometrioptimering. Hartree Fock

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Geometrioptimering. Hartree Fock KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Repetisjon 27. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/45 Repetisjon p.2/45 Hartree Fock Geometrioptimering

Detaljer

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylorbitalteori - repetisjon KJM3600 - Molekylmodellering p1/48 Molekylorbitalteori - repetisjon p2/48 Bølgefunksjonen systemet Kvantemekanikk

Detaljer

KJM3600 - Molekylmodellering. Hartree Fock - repetisjon. Hartree Fock. Hartree Fock

KJM3600 - Molekylmodellering. Hartree Fock - repetisjon. Hartree Fock. Hartree Fock KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Hartree Fock - repetisjon 23. februar 2004 KJM3600 - Molekylmodellering p.1/49 Hartree Fock - repetisjon p.2/49 Hartree Fock Hartree Fock

Detaljer

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Basissett - repetisjon 15. mars 2004 KJM3600 - Molekylmodellering p.1/44 Basissett - repetisjon p.2/44 Basissett oppsummert Hartree Fock-grensen

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 26. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/48 Introduksjon Introduksjon p.2/48 Introduksjon p.3/48

Detaljer

Eksiterte tilstander. KJM Molekylmodellering. Emisjonsmekanisme, tilstander. Fluorescens: Stopper raskt når eksiterende.

Eksiterte tilstander. KJM Molekylmodellering. Emisjonsmekanisme, tilstander. Fluorescens: Stopper raskt når eksiterende. KJM3600 - Molekylmodellerin Vebjørn Bakken Kjemisk institutt, UiO 3 mai 2004 KJM3600 - Molekylmodellerin p1/43 Eksiterte tilstander Eksitert tilstand kan enereres på ulike måter (eksempler): Absorpsjon

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 23. februar 2004 KJM3600 - Molekylmodellering p.1/49 Hartree Fock - repetisjon Hartree Fock - repetisjon p.2/49 Hartree Fock Hartree Fock

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

TKJ4170 Midtsemesterrapport

TKJ4170 Midtsemesterrapport TKJ4170 Midtsemesterrapport Forord Denne rapporten er skrevet i forbindelse med et midtsemesterprosjekt i faget TKJ4170 Kvantekjemi på NTNU. Prosjektet går ut på å studere et selvvalgt molekyl ved å gjøre

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/48 Molekylorbitalteori - repetisjon Molekylorbitalteori - repetisjon p.2/48 Kvantemekanikk Bølgefunksjonen

Detaljer

KJM2600-Laboratorieoppgave 1

KJM2600-Laboratorieoppgave 1 KJM2600-Laboratorieoppgave 1 Sindre Rannem Bilden Gruppe 1 4. mars 2015 1 Hensikt Hensikten med oppgaven var å demonstrere anvendelsen av kvantekjemiske beregninger i kjemi. 2 Teori Oppgaven baserer seg

Detaljer

Kvantekjemi kjemiens nye verktøy

Kvantekjemi kjemiens nye verktøy 1 Kvantekjemi kjemiens nye verktøy Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Norsk Kjemisk Selskap Rådsmøte 13 april 2007 DNVA, Drammensveien

Detaljer

KJM Molekylmodellering. Molekylmekanikk. Oversikt. Introduksjon

KJM Molekylmodellering. Molekylmekanikk. Oversikt. Introduksjon KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylmekanikk KJM3600 - Molekylmodellering p.1/50 Molekylmekanikk p.2/50 Oversikt Introduksjon Detaljert beskrivelse av kraftfeltmetoder

Detaljer

Det virtuelle kjemilaboratoriet. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo

Det virtuelle kjemilaboratoriet. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo 1 Det virtuelle kjemilaboratoriet Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Etterutdanningskurs for lærere i Oslo kommune Skolelaboratoriet,

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Åpen dag, 10. mars 2011 Trygve Helgaker (Kjemisk institutt, UiO) Kvantemekanikk på datamaskiner

Detaljer

Kvantekjemi. en fascinerende kjemi helt uten eksperimenter. Trygve Helgaker. Kjemisk institutt, Universitetet i Oslo

Kvantekjemi. en fascinerende kjemi helt uten eksperimenter. Trygve Helgaker. Kjemisk institutt, Universitetet i Oslo Kvantekjemi en fascinerende kjemi helt uten eksperimenter Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Nydalen videregående skole Oslo, 21. mars 2013 Trygve Helgaker (Kjemisk institutt, UiO)

Detaljer

Eten % 1.2%

Eten % 1.2% TFY4215 Innføring i kvantefysikk Molekylfysikk Løsningsforslag til Øving 11 Eten. 6. Med Hartree-Fock-metoden og basissettet 3-21G finner man en likevektsgeometri for eten med bindingslengdene C-H = 1.074

Detaljer

MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo

MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo MNF, UiO 24 mars 2014 Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Kjemi: et mangepar.kkelproblem Molekyler er enkle: ladete partikler i bevegelse styrt av kvantemekanikkens lover HΨ=EΨ men

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

Oppgave 2 Molekylmekanikk

Oppgave 2 Molekylmekanikk Oppgave 2 Molekylmekanikk KJM3600 Molekylmodellering Vår 2004 Introduksjon I denne oppgaven skal vi benytte molekylmekanikk til å gjøre en kvalitativ undersøkelse av interaksjonsenergien i to basepar-komplekser,

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo CTCC-seminar, 4. februar 2011 Trygve Helgaker (Kjemisk institutt, UiO) Kvantemekanikk på datamaskiner

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Kjemien stemmer fagkurs Thon Hotel Opera, Oslo, 24. mai 2012 Trygve Helgaker (Kjemisk institutt,

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet

Detaljer

Trygve Helgaker. 31 januar 2018

Trygve Helgaker. 31 januar 2018 Trygve Helgaker Senter for grunnforskning Det Norske Videnskaps-Akademi Hylleraas Centre for Quantum Molecular Sciences Kjemisk institutt, Universitetet i Oslo 31 januar 2018 Kjemi Kjemi er læren om stoffer

Detaljer

Kvantekjemi fremtidens virtuelle laboratorium

Kvantekjemi fremtidens virtuelle laboratorium 1 Kvantekjemi fremtidens virtuelle laboratorium Gruppen for teoretisk kjemi: Knut Fægri, Trygve Helgaker Peter Macak Vebjørn Bakken, Alf Hennum, Torgeir Ruden Kjetil Jacobsen, Ola Lutnæs, Seema Singh Arbeidsfelt:

Detaljer

BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI KJ1041 KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK HØSTEN 2010

BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI KJ1041 KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK HØSTEN 2010 BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI KJ1041 KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK HØSTEN 2010 Onsdag 8. Desember 2010 Tid: 15.00 19.00 Faglig kontakt under eksamen:

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Oslo katedralskole 2. februar 2011 Trygve Helgaker (Kjemisk institutt, UiO) Kvantemekanikk på

Detaljer

Dette gir ingen informasjon om hvor en nukleofil vil angripe.

Dette gir ingen informasjon om hvor en nukleofil vil angripe. FY1006/TFY4215 Innføring i kvantefysikk Våren 2016 Molekylfysikk Løsningsforslag til Øving 13 S N 2-reaksjon. 2. a) Flate med konstant elektrontetthet for molekylet ClC3: Dette gir ingen informasjon om

Detaljer

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll Eksperiment 2 Ina Molaug og Anders Leirpoll 1 1 Innhold 2 Formål... 1 3 Beregningsoppgave... 1 3.1 Oppgave 1: Beregninger på etenmolekylet... 1 3.1.1... 1 3.1.2... 2 3.1.3... 2 3.1.4... 3 3.2 Isomerisme

Detaljer

Computing in Science Education

Computing in Science Education Computing in Science Education Beregninger i utdanning og forskning ved Kjemisk institutt Metoder i teoretisk kjemi og beregningsorientert kjemi Kvantekjemiske beregninger i moderne kjemisk forskning Trygve

Detaljer

Eten. Innledning. TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk

Eten. Innledning. TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk Eten. Innledning Etylen, C2H4, eller eten, som det i følge IUPAC (International Union of Pure and Applied Chemistry) egentlig skal kalles, er en

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

Institutt for fysikk. Eksamensoppgave i TFY4215 Innføring i kvantefysikk

Institutt for fysikk. Eksamensoppgave i TFY4215 Innføring i kvantefysikk Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng (med forbehold om streik) Tlf.: 45 45 55 33 ksamensdato: 30. mai 2018 ksamenstid

Detaljer

S N 2-reaksjon. Dette gir ingen informasjon om hvor en nukleofil vil angripe.

S N 2-reaksjon. Dette gir ingen informasjon om hvor en nukleofil vil angripe. FY1006/TFY4215 Innføring i kvantefysikk Våren 2012 Kjemisk fysikk Løsningsforslag til Øving 2 S N 2-reaksjon. 2. a) Flate med konstant elektrontetthet for molekylet ClCH 3 : Dette gir ingen informasjon

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/50 Molekylmekanikk Molekylmekanikk p.2/50 Oversikt Introduksjon Detaljert beskrivelse av kraftfeltmetoder

Detaljer

University of Oslo. Department of Physics. FYS 3710 Høsten EPR spektroskopi. EPR-Labotratory

University of Oslo. Department of Physics. FYS 3710 Høsten EPR spektroskopi. EPR-Labotratory EPR-Labotratory FYS 3710 Høsten 2010 EPR spektroskopi Department of Physics EPR Electron Paramagnetic Resonance (alt. ESR Electron Spin Resonance) NMR spektroskopi for alle molekyler er bare avhengig av

Detaljer

Eten. Innledning. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: gruppe 2:

Eten. Innledning. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: gruppe 2: TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: 25.04. gruppe 2: 29.04. Innledning Eten. Etylen, C 2 H 4, eller eten, som det i følge IUPAC (International

Detaljer

KJM Molekylmodellering. Molekylmekanikk - repetisjon. Kraftfeltenergien. Klassisk modell

KJM Molekylmodellering. Molekylmekanikk - repetisjon. Kraftfeltenergien. Klassisk modell KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylmekanikk - repetisjon KJM3600 - Molekylmodellering p.1/49 Molekylmekanikk - repetisjon p.2/49 Klassisk modell Kraftfeltenergien

Detaljer

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag 04.05.09 Innledning Eten. Etylen, C 2 H 4, eller eten, som det i

Detaljer

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Introduksjon Våren 2004 KJM3600 - Molekylmodellering p.1/507 Introduksjon p.2/507 Molekylmodellering Molekylmodellering Flere navn på

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

Centre for Theoretical and Computational Chemistry. Trygve Helgaker Universitetet i Oslo

Centre for Theoretical and Computational Chemistry. Trygve Helgaker Universitetet i Oslo Centre for Theoretical and Computational Chemistry Trygve Helgaker Universitetet i Oslo Centre for Theore+cal and Computa+onal Chemistry Kjemi med beregninger og simuleringer i sentrum Numeriske simuleringer:

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM2600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Fredag 5. juni, 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

Parametrisering av Kraftfelt for ReaxFF

Parametrisering av Kraftfelt for ReaxFF Parametrisering av Kraftfelt for ReaxFF Ola Frisk Master i lærerutdanning med realfag Oppgaven levert: Mai 2008 Hovedveileder: Jon Andreas Støvneng, PHYS Norges teknisk-naturvitenskapelige universitet

Detaljer

TFY4215_S2018_Forside

TFY4215_S2018_Forside Kandidat I Tilkoblet TFY4215_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 6. august

Detaljer

Atommodeller i et historisk perspektiv

Atommodeller i et historisk perspektiv Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding.

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding. Kapittel 9 Kovalent binding Repetisjon 1 (11.11.03) 1. Kovalentbinding Deling av elektron mellom atom for å danne binding o vorfor blir denne type binding dannet? Det enkleste svaret: Den potensielle energien

Detaljer

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved VÅREN 1998 Oppgave II a) Bølgefunksjonen for en partikkel på ring er gitt ved ml = 1 " ei ml # m l = 0, ±1, ±, Hvorfor må vi kreve at m l er et heltall? Bestem sannsynlighetstettheten for denne partikkelen.

Detaljer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer FYS2140 Hjemmeeksamen Vår 2016 Ditt kandidatnummer 8. mars 2016 Viktig info: Elektronisk innlevering på devilry med frist fredag 18. mars kl. 16.00. Leveringsfristen er absolutt. Bevarelsen må merkes tydelig

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

A.5 Stasjonære og ikke-stasjonære tilstander

A.5 Stasjonære og ikke-stasjonære tilstander TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se

Detaljer

LØSNING EKSTRAØVING 2

LØSNING EKSTRAØVING 2 TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =

Detaljer

Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc.

Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 7 Mandag 12.02.07 Materialer og elektriske egenskaper Hovedinndeling av materialer med hensyn på deres elektriske egenskaper:

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019 Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)

Detaljer

Oppgave 1 Introduksjon til Linux og kvantekjemiske beregninger

Oppgave 1 Introduksjon til Linux og kvantekjemiske beregninger Oppgave 1 Introduksjon til Linux og kvantekjemiske beregninger KJM-MEF4010 Kvantekjemiske metoder Vår 2006 1 Introduksjon Hensikten med denne oppgaven er å gi en kort introduksjon til viktige og nyttige

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/49 Molekylmekanikk - repetisjon Molekylmekanikk - repetisjon p.2/49 Klassisk modell Ren klassisk beskrivelse

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

Onsdag og fredag

Onsdag og fredag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0

Detaljer

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1) Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og

Detaljer

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9 FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen

Detaljer

S N 2-reaksjon. Br- + ClCH3 BrCH3 + Cl-

S N 2-reaksjon. Br- + ClCH3 BrCH3 + Cl- TFY4215 Innføring i kvantefysikk Øving 12 Molekylfysikk S N 2-reaksjon. Innledning En lang rekke kjemiske reaksjoner kan klassifiseres som såkalte nukleofile substitusjonsreaksjoner. Det som er nukleofilt

Detaljer

Forelesningsnotater i molekylfysikk

Forelesningsnotater i molekylfysikk Institutt for fysikk, NTNU FY1006/TFY4215 Innføring i kvantefysikk Vår 2016 Forelesningsnotater i molekylfysikk April 2016 Dette er et sammendrag av forelesningene i molekylfysikk: Kvantemekaniske beregninger

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers Forelesningsnotat om molekyler, FYS Susanne Viefers. mai De fleste grunnstoffer (unntatt edelgassene) deltar i formingen av molekyler. Molekyler er sammensatt av enkeltatomer som holdes sammen av kjemiske

Detaljer

Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk

Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk FY1006/TFY4215 våren 2012 - pensum og kursopplegg 1 Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk våren 2012 Litt om de to emnene De to emnene FY1006 og TFY4215 er identiske både når

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

KJM3000 H-2018 løsningsforslag

KJM3000 H-2018 løsningsforslag KJM3000-2018 løsningsforslag 1a) 1 I første omgang ser vi kun på de kjemiske skiftene. Vi ser da at vi har et alken med to protoner. Disse kommer ved hhv. 6.84 og 6.87 ppm. Vi ser også at disse kobler

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden

Detaljer

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på

Detaljer

Numerisk løsning av PDL

Numerisk løsning av PDL Numerisk løsning av PDL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 6. November 2007 Problem og framgangsmåte Fram til nå har vi sett på ordinære

Detaljer

Nobelprisen i kjemi 2013 og noe annet. Trygve Helgaker. CTCC, Kjemisk Universitetet i Oslo

Nobelprisen i kjemi 2013 og noe annet. Trygve Helgaker. CTCC, Kjemisk Universitetet i Oslo Nobelprisen i kjemi 2013 og noe annet Generalforsamling NKS Oslo Villa Eckbo, Oslo Torsdag 13 februar 2014 Trygve Helgaker CTCC, Kjemisk ins>tu@, Universitetet i Oslo Kjemi: et mangepar>kkelproblem Molekyler

Detaljer

FYS1120 Elektromagnetisme, Ukesoppgavesett 1

FYS1120 Elektromagnetisme, Ukesoppgavesett 1 FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer