Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Størrelse: px
Begynne med side:

Download "Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )"

Transkript

1 Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii) Intensitet amplitude, høgden på bølgene - Elektromagnetisk stråling Måten energi beveger seg i rommet 2. Sammenheng mellom elektromagnetisk stråling (energi), partikler og bølgenatur Energi er kvantifisert 1

2 Elektromagnetisk stråling har egenskap til en partikkel /den har masse) i tillegg til at den har bølgenatur. Partikler/stoff kan bare ta opp/avgi energi med visse størrelser (energien som blir tatt opp er kvantifisert) Partikler/stoff har bølgenatur 3. Litt mer om bølgeteori Konstruktiv interferens: To bølger møtes og er i samme fase. En vil då få en bølge med større amplituder Destruktiv interferens: To bølger møtes og er i motsatt fase. Bølge vil dø ut. 2

3 Kapittel 7 Atomstruktur og periodisitet Repetisjon 2 ( ) 4. Atommodell Beskrivelse av hvor elektronene befinner seg i et atom - Bohrs atommodell (bare hovedpunkt) Elektronene går i baner rundt elektronkjernen. En har bare baner med bestemte energier. Denne modellen kan bare beskrive hydrogen. - Kvantemekanisk atommodell Denne modellen bygger på at elektronene har bølgenatur og at elektronene oppfører seg som en stående bølge (bølger som står stille og vibrerer opp og ned som en gitarstreng). o Scrödinger ligningen Et sett av ligninger som beskriver elektronene i et atom HΨ = EΨ der H - sett med ligninger Ψ - bølgefunksjon (gir posisjonen (x,y,z) til elektronene i rommet) E - total energien til atomet Løser vi denne ligningssett får vi et sett med løsninger der hver løsning har en bølgefunksjon (beskriver posisjonen til elektronet) og tre kvantetall som beskriver energi, 3-dimmensjonal form og orientering i rommet. o Fysisk tolking av hva en bølgefunksjon er (orbital) For å få en et fysisk bilde av hvor elektronene er tar vi kvadratet av bølgefunksjonen. Ψ 2 gir oss et 3-dim. område det er sannsynlig å finne elektronet (Atomorbital eller ofte bruker vi bare orbital). Tar en kvadratet av bølgefunksjonen for det ene elektronet i hydrogen får en et kuleforma området (rundt kjernen) 3

4 Så atomorbitalene er et 3-dimmensjonalt område i rommet. De ulike atomorbitalene har ulik energi, form og orientering. Størrelse på atomorbital: Så stor at det er 90 % sannsynlig at elektronet befinner seg i dette området For å få en fullstendig beskrivelse av alle elektronene i et atom må vi finne formen (3-dimmensjonal) og energien til alle atomorbitalene som blir brukt. o Beskrivelse av de ulike orbitalene kvantetall En beskrivelse av alle orbitalene vil en få dersom en løser Scrødinger ligningen. Hver bølgefunksjon (eller orbital) får 3 kvantetall fra Scrødinger ligningen og disse beskriver energi, form (3-dim) og orientering i rommet. Scrødinger ligningen kan bare løses for H, men orbitalene en får vil også gjelde for de andre atomene. Vi ser på et eksempel: Atomet klor: I klor har vi 17 elektron. Vi vil finne energien til alle elektronene og hvor vi kan forvente å finne de (i rommet). Vi må då først finne alle orbitalene elektronene bruker. Det første kvantetallet er hovedkvantetallet, n Hovedkvantetall, n = 1, 2, 3,. (ofte kalla hovedenerginivå) 4

5 n sier noe om energien. Hovedkvantetallet gir ikke den eksakte energien til orbitalene. Der er ofte flere orbitaler som har samme hovedkvantetall (en kan si at hovedkvantetallet gir en grovinndeling av orbitalene når det gjelder energi). Grunnen til at energien øker når n (og størrelsen øker) er at avstanden fra elektronet til kjernen øker. Elektronet er ikke så hardt bundet til kjernen og energien er mindre negativ. n gir størrelsen på orbitalene. Når n øker så øker størrelsen på orbitalene. Vi såg på orbitalen der det ene elektronet til hydrogen befinner seg kuleformet. Denne type orbital ligger på alle hovedenerginivåene, den har samme form, men størrelsen når n øker. Energi } n = 2 } n = 1 Det neste kvantetallet er det sekundære kvantetallet (eller vinkelkvantetallet), l Sekundære kvantetall l = 0 til n-1 l beskriver den 3-D formen på orbitalene. Den er også relatert til energi. Ofte sier en at l gir underenerginivåene (underenerginivåene er då orbitalene). l = 0 l = 0 l = 1 } n = 2 } n = 1 Verdien for l gir 3D-formen: - l = 0 Gir kuleformet orbital som vi kaller s-orbital 5

6 - l = 1 Gir orbital med to kuler som vi kaller p-orbital - l = 2 Gir orbital med fire kuler som vi kaller d-orbital - l = 3 som vi kaller f-orbital Antall ulike orbitaler på et hovedenerginivå er gitt av hvor mange ulike verdier l kan ha. Mulige orbitaler (underenerginivå) har en for de ulike hovedenerginivå (n): - På hovedenergi nivå 1 (n = 1) finnes det en type atomorbital (underenerginivå) nemlig l = 0 - På hovedenergi nivå 2 (n = 2) finnes det to typer atomorbital (underenerginivå) nemlig l = 0 og l =1 - På hovedenergi nivå 3 (n = 3) finnes det tre typer atomorbital (underenerginivå) nemlig l = 0, l = 1 og l = 2 - På hovedenergi nivå 4 (n = 4) finnes det fire typer atomorbital (underenerginivå) nemlig l = 0, l = 1, l = 2 og l = 3 Samme type atomorbital (form) finnes på de ulike hovedenerginivåene. Vi ser at vi har atomorbitalen som er kuleformet både på hovedenerginivå 1 og 2. Forskjellen mellom disse atomorbitalene er størrelsen. Til høgre hovedenerginivå til større er atomorbitalene Relativ energi for de ulike atomorbitalene (på samme hovedenerginivå) E s < E p < E d < E f Fullstendig beskrivelse av en orbital: Vi gir både hovedenerginivå og hvilke orbital en har (underenerginivå): Eksempel: n = 2 og l = 0 Fullstendig beskrivelse: 2s n = 2 og l = 1 Fullstendig beskrivelse: 2p 6

7 Magnetiske kvantetall, m l = -l til +l (inkludert 0) Angir antall av de ulike orbitalene og orientering i rommet for de. Antallet en orbitalene er gitt av hvor mange verdier en kan ha for det magnetiske kvantetallet, m l l s p d f m l 0-1, 0, 1-2, -1, 0, 1, 2-3, -2, -1, 0, 1, 2, 3 Vi har alltid en s-orbital, tre p-orbitaler, fem d-orbitaler og syv f-orbitaler Beskrivelse av alle energinivåene(atomorbitaler) i et atom n = 3 l = 0 m l = 0 l = 1 m l = -1, 0, 1 l = 2 m l = -2, -1, 0, 1, 2 s p d 3d Energi 2p 3s 3p n = 2 l = 0 m l = 0 l = 1 m l = -1, 0, 1 s p 2s 1s n = 1 l = 0 m l = 0 s 7

8 Kapittel 7 Atomstruktur og periodisitet Repetisjon 3 ( ) 4. Atommodell - Kvantemekanisk atommodell o Scrödinger ligningen o Hvordan er elektronene plassert rundt atomene Et fjerde kvantetall Magnetiske kvantetall m s ; Kan ha verdien +½ og -½ Regler for oppfylling av elektron i atom Fyller orbital med lavest energi først (Aufbau prinsippet). En kan ha max. 2 e - i hver orbital (Pauli prinsippet) og de må ha motsatt spinn. I orbitaler med samme energi fyller en først ett elektron i hver orbital (Hunds regel) Ulike skrivemåter for elektronkonfigurasjon: Eksempel: Svovel Energi 2s 2p 3s 3p 1s Metode 1: 1s 2 2s 2 2p 6 3s 2 3p 4 Metode 2: [Ne] 3s 2 3p 4 En tar bort de valenselektronene som svarer til elektronkonfigurasjonen til edelgassen som står i perioden over. Definisjoner: Valenselektron elektronene høyeste hovedenerginivå Indre elektron de som ikke er valenselektron 8

9 Hvordan finne energirekkefølgen til orbitalene: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f 7s 7p 7d 7f En kan også bruke det periodiske systemet. 5. Elektronkonfigurasjon og det periodiske systemet Grunnstoff i samme gruppe i periodesystemet har samme valenselektronkonfigurasjon Eksempel: Gruppe IA Li 1s 2 2s 1 Na 1s 2 2s 2 2p 6 3s 1 K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 Uventede elektronkonfigurasjoner: Type 1: Cr: En vil forvente følgende elektronkonfigurasjon: [Ar]3d 4 4s 2 Men elektronkonfigurasjonen er [Ar]3d 5 4s 1 Det ser ut som et halvfullt d-orbital skal gir en ekstra stabilitet. Dette gjelder også for Mo Type 2: Cu: En vil forvente følgende elektronkonfigurasjon: [Ar]3d 9 4s 2 Men elektronkonfigurasjonen er [Ar]3d 50 4s 1 Det ser ut som et fullt d-orbital skal gir en ekstra stabilitet. Dette gjelder også for Ag, Au 9

10 Kapittel 7 Atomstruktur og periodisitet Repetisjon 2 ( ) 6. Trender i det periodiske systemet Vi forklarere disse trendene ved hjelp av to faktorer. 1. Endring i hovedkvantetall 2. Endring i effektiv kjerneladning 1. Endring av hovedkvantetall: - Øker nedover i en gruppe - Konstant bortover i en periode (i) Effektivkjerneladning En positive ladningen som et elektron føler fra kjernen. Effektivkjerneladning = antall proton indre elektron Effektivkjerneladning: - Øker bortover i en periode (antall proton øker mens antall indre elektron er konstant en fyller elektron i ytterste energinivå) Dette gjelder for hovedgruppene (i innskuddsmetallene fyller en elektron i et indre energinivå) - Konstant nedover i en gruppe (ii) Atomradius Problem: Vi vet ikke radiusen til atomene, siden vi ikke vet størrelsen på atomorbitalene. Definerer derfor atomradius til et element på følgende måte: Halvparten av avstanden i en kjemiskbinding for elementet 10

11 Trender for atomradius: minker øker Bortover: Hovedkantatallet er konstant. Effektivkjerneladning øker kjernen trekker bedre på elektronene - radien minker Nedover: Eff. Kjerneladning er konstant. Hovedkvantetallet øker orbitalene blir større radien øker (iii) Ioneradius Relativstørrelse på ion og nøytralt atom: Negative ion er større en det nøytrale atomet pga. flere elektron og mer frastøting mellom elektronene. Positive ion er mindre enn det nøytrale atomet pga. færre elektron og mindre frastøting mellom elektronene. Periodiske trender: Nedover i en gruppe: Ioneradien øker nedover i en gruppe pga. økende hovedkvantetall (eff. Kjerneladning er konstant) PS! Atom i samme gruppe dannet samme type ion gjelder hovedgruppene (iv) Ioniseringsenergi Ioniseringsenergi (IE): Den energien som kreves for å fjerne ett elektron fra et atom eller ion i gassfase. Ioniseringsenergi er et mål på hvor vanskelig/lett det er å fjerne ett elektron. X(g) X + (g) + e - 11

12 Trender i periodesystemet for ioniseringsenergi: Nedover i en gruppe: Ioniseringsenergien minker. - Effektivkjerne ladning er konstant. - Hovedkvantetallet øker elektronene er lengre borte fra kjernen de er enklere å fjerne Bortover i en periode: Ioniseringsenergien øker - Hovedkvantetallet er konstant - Effektivkjerne ladning øker det blir vanskeligere å fjerne elektronene. (v) Elektronaffinitet Elektronaffinitet (EA): Den energien endringen som skjer når en legger til et elektron til et atom i gassfase. X(g) +e - X - (g) Elektronaffinitet er negativ dersom det blir avgitt energi (eksotermisk). Der finnes mange atom som ikke tar elektron og danner stabile ion. Vi ser bare på de generelle trendene: Trender i periodesystemet for elektronaffinitet: Nedover i en gruppe: Elektronaffinitet minker. - Effektivkjerneladning er konstant. - Hovedkvantetallet øker elektronene er lengre borte fra kjernen atomet holder dårlig på side egne elektron. De har derfor liten evne til å trekke til seg et nytt elektron. - Bortover i en periode: Elektronaffinitet øker - Hovedkvantetallet er konstant - Effektivkjerneladning øker kjernen trekker mer på sine egne elektron. De har da større evne til å trekke til seg et nytt elektron 12

13 Oppsumering: Trender for atomradius, ioniseringsenergi og elektronaffinitet Bestemt av to faktorer: Effektiv kjerneladning Uendret øker Hovedkvantetall Øker uendret Trender: Atomradius øker minker : Ioniseringsenergi og elektron affinitet minke øker 13

14 Kapittel 8 Kjemisk binding (Repetisjon 1) 1. Hovedtyper av kjemisk binding (i forbindelser/molekyl) - Ionebinding Elektrisk tiltrekning mellom ion med motsatt ladning. Dannet ved at atom avgir/tar opp elektron. o Hvilke ion blir dannet? Hvor for Na + og Cl -? Vi må se på elektron konfigurasjonen: Na (11 elektron): 1s 2 2s 2 2p 6 3s 1 Na + (10 elektron): 1s 2 2s 2 2p 6 Cl (17 elektron) 1s 2 2s 2 2p 6 3s 2 3p 5 Cl - (18 elektron) 1s 2 2s 2 2p 6 3s 2 3p 6 Oktettregelen: Atom tar opp eller avgir elektron til de har oppnådd 8 elektron i ytre skall (edelgass konfigurasjon) - Kovalentbinding Deling av elektron mellom atom for å danne binding 14

Atomets oppbygging og periodesystemet

Atomets oppbygging og periodesystemet Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.

Detaljer

Atomegenskaper. MENA 1001; Materialer, energi og nanoteknologi - Kap. 4. Universet. Elektroner. Periodesystemet Atomenes egenskaper

Atomegenskaper. MENA 1001; Materialer, energi og nanoteknologi - Kap. 4. Universet. Elektroner. Periodesystemet Atomenes egenskaper MENA 1001; Materialer, energi og nanoteknologi - Kap. 4 Atomegenskaper Universet Nukleosyntese Elektroner Orbitaler Kvantetall Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi

Detaljer

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET Hjelpemidler: Periodesystem Atomer 1 Hvilket metall er mest reaktivt? A) sølv B) bly C) jern D) cesium Atomer 2 Hvilket grunnstoff høyest 1. ioniseringsenergi?

Detaljer

1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en

1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 26.08.2016 1 Biologiske makromolekyler DNA PROTEIN t-rna 26.08.2016 2 Biologiske makromolekyler

Detaljer

Hvorfor studere kjemi?

Hvorfor studere kjemi? Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 28.08.2017 1 Biologiske makromolekyler DNA PROTEIN t-rna 28.08.2017 2 Biologiske makromolekyler

Detaljer

Nano, mikro og makro. Frey Publishing

Nano, mikro og makro. Frey Publishing Nano, mikro og makro Frey Publishing 1 Nivåer og skalaer På ångstrømnivået studere vi hvordan atomer er bygd opp med protoner, nøytroner og elektroner, og ser på hvordan atomene er bundet samen i de forskjellige

Detaljer

Periodesystemet.

Periodesystemet. Periodesystemet http://www.youtube.com/watch?v=zgm-wskfbpo Periodesystemet har sitt navn fra at det ble observert at egenskaper til atomer varierte regelmessig og periodisk. Som vi viste og demonstrerte

Detaljer

Atommodeller i et historisk perspektiv

Atommodeller i et historisk perspektiv Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal

Detaljer

KAPITEL 1. STRUKTUR OG BINDINGER.

KAPITEL 1. STRUKTUR OG BINDINGER. KAPITEL 1. STRUKTUR OG BINDINGER. KAPITTEL 1. STRUKTUR OG BINDINGER. Året 1828 var, i følge lærebøker i organisk kjemi, en milepæl i utvikling av organisk kjemi. I det året fant Friedrich Wöhler (1800-1882)

Detaljer

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding.

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding. Kapittel 9 Kovalent binding Repetisjon 1 (11.11.03) 1. Kovalentbinding Deling av elektron mellom atom for å danne binding o vorfor blir denne type binding dannet? Det enkleste svaret: Den potensielle energien

Detaljer

Kjemiske bindinger. Som holder stoffene sammen

Kjemiske bindinger. Som holder stoffene sammen Kjemiske bindinger Som holder stoffene sammen Bindingstyper Atomer Bindingene tegnes med Lewis strukturer som symboliserer valenselektronene Ionebinding Kovalent binding Polar kovalent binding Elektronegativitet,

Detaljer

elementpartikler protoner(+) nøytroner elektroner(-)

elementpartikler protoner(+) nøytroner elektroner(-) All materie, alt stoff er bygd opp av: atomer elementpartikler protoner(+) nøytroner elektroner(-) ATOMMODELL (Niels Bohr, 1913) - Atomnummer = antall protoner i kjernen - antall elektroner e- = antall

Detaljer

BINGO - Kapittel 1. Bilde av svovel (bilde side 9) Et natriumion (Na + ) Positiv partikkel i kjernen på et atom (proton)

BINGO - Kapittel 1. Bilde av svovel (bilde side 9) Et natriumion (Na + ) Positiv partikkel i kjernen på et atom (proton) BINGO - Kapittel 1 Bingo-oppgaven anbefales som repetisjon etter at kapittel 1 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke vannrett,

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER 1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1.

FY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1. FY006/TFY45 Innføring i kvantefysikk, - Ekstraøving Frist for innlevering (Til I.Ø.): 7. mai kl 7 Oppgave 9 hydrogenlignende atom Ekstraøving I denne oppgaven ser vi på et hydrogenlignende atom, der et

Detaljer

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny!

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny! Fasit odatert 10/9-03 Se o for skrivefeil. Denne fasiten er ny! aittel 1 1 a, b 4, c 4, d 4, e 3, f 1, g 4, h 7 a 10,63, b 0,84, c,35. 10-3 aittel 1 Atomnummer gir antall rotoner, mens masse tall gir summen

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

3. Balansering av redoksreaksjoner (halvreaksjons metoden)

3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel 4 Oksidasjon og reduksjons reaksjoner (redoks reaksjoner) 1. Definisjon av oksidasjon og reduksjon 2. Oksidasjonstall og regler 3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)

Detaljer

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

KJM2600-Laboratorieoppgave 2

KJM2600-Laboratorieoppgave 2 KJM2600-Laboratorieoppgave 2 Sindre Rannem Bilden Gruppe 1 12. mars 2015 1 Hensikt Utdypning av kvantekjemiske begreper ved hjelp av Hückelberegninger. 2 Teori Hückel-teorien bruker den tidsuavhengige

Detaljer

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit.

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit. Oppgave 1 A) d B) c C) b D) d E) a F) a G) c H) d I) c J) b Den 35. internasjonale Kjemiolympiade i Aten, juli 2003. 1. uttaksprøve. Fasit. Oppgave 2 A) a B) b C) a D) b Oppgave 3 Masseprosenten av hydrogen

Detaljer

Kapittel 2 Atom, molekyl og ion. 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff

Kapittel 2 Atom, molekyl og ion. 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff Kapittel 2 Atom, molekyl og ion 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff 2. Introduksjon til det periodiske systemet 3. Molekyl og ioniske forbindelser.

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNELG vdeling for lærer- og tolkeutdanning Emnekode(r): Emnenavn: LGU52005 Naturfag 1 5-10 emne 2 Kjemi Studiepoeng: 7,5 Eksamensdato: 20. mai 2015 Varighet/Timer: Målform: Kontaktperson/faglærer:

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018 Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene

Detaljer

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019 Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet

Detaljer

MENA1001 Deleksamen 2017 Forside

MENA1001 Deleksamen 2017 Forside MENA1001 Deleksamen 2017 Forside MENA1001 Tidspunkt: Onsdag 11. oktober 2017, kl. 9.00-10.00 Alle 20 oppgaver skal besvares. Hver oppgave teller likt. Det er 1 poeng for korrekt svar, 0 poeng for feil

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved VÅREN 1998 Oppgave II a) Bølgefunksjonen for en partikkel på ring er gitt ved ml = 1 " ei ml # m l = 0, ±1, ±, Hvorfor må vi kreve at m l er et heltall? Bestem sannsynlighetstettheten for denne partikkelen.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

Kollokvium 4 Grunnlaget for Schrödingerligningen

Kollokvium 4 Grunnlaget for Schrödingerligningen Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon 1 13.11.03 1. Molekylstruktur VSEPR modellen Elektronparene (bindende eller ikke-bindende) vil prøve å være så lang

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover Optikk: Refleksjon, brytning og diffraksjon Relativitetsteori, spesiell

Detaljer

LØSNING EKSTRAØVING 2

LØSNING EKSTRAØVING 2 TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =

Detaljer

Bindinger. Hvorfor vil atomer ha åtte elektroner i ytterste skall?

Bindinger. Hvorfor vil atomer ha åtte elektroner i ytterste skall? Bindinger Hvorfor vil atomer ha åtte elektroner i ytterste skall? Finnes det elever som lurer på dette? To klipp fra nettet: http://forum.kvinneguiden.no/index.php?showtopic=457448 http://www.fysikk.no/fysikkforum/viewtopic.php?f=2&t=183

Detaljer

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer) 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers Forelesningsnotat om molekyler, FYS Susanne Viefers. mai De fleste grunnstoffer (unntatt edelgassene) deltar i formingen av molekyler. Molekyler er sammensatt av enkeltatomer som holdes sammen av kjemiske

Detaljer

b) Beregn varmemengden som blir frigitt hvis metangassen fra a) forbrennes. Anta at reakjonen går isotermt og isobart ved 1 atm og 298K: (5p) Figur 1

b) Beregn varmemengden som blir frigitt hvis metangassen fra a) forbrennes. Anta at reakjonen går isotermt og isobart ved 1 atm og 298K: (5p) Figur 1 1 Oppgave 1 (30%) Den 20. april 2010 inntraff en eksplosjon på boreriggen «Deepwater Horizon» i Mexicogolfen, hvorpå riggen sank. Om årsaken sa ledelsen at et «unormalt høyt trykk» bygde seg opp på bunnen

Detaljer

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

Kapittel 21 Kjernekjemi

Kapittel 21 Kjernekjemi Kapittel 21 Kjernekjemi 1. Radioaktivitet 2. Ulike typer radioaktivitet (i) alfa, α (ii) beta, β (iii) gamma, γ (iv) positron (v) elektron innfangning (vi) avgivelse av nøytron 3. Radioaktiv spaltingsserie

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer

Innhold. Forord... 11

Innhold. Forord... 11 Innhold Forord... 11 Kapittel 1 Atomet og periodesystemet... 13 1.1 Kjemi og atomet... 13 Atomet består av protoner, nøytroner og elektroner... 14 Grunnstoffer... 14 Atomnummer og massenummer... 15 Isotoper...

Detaljer

1. Oppgaver til atomteori.

1. Oppgaver til atomteori. 1. Oppgaver til atomteori. 1. Hva er elektronkonfigurasjonen til hydrogen (H)?. Fyll elektroner inn i energidiagrammet slik at du får elektronkonfigurasjonen til hydrogen. p 3. Hva er elektronkonfigurasjonen

Detaljer

5.11 Det periodiske systemet

5.11 Det periodiske systemet SIF4048 Kjemisk fysikk og kvantemekanikk 2003 - Tillegg 5 1 Tillegg 5, til kapittel 5: 5.11 Det periodiske systemet La oss se litt mer i detalj på 1. Oppbygningen av de enkelte grunnstoffene Helium (Z

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Mekanikk Termodynamikk Innhold Elektrisitet og magnecsme ElektromagneCske bølger 1 Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

FY1006/TFY Øving 9 1 ØVING 9

FY1006/TFY Øving 9 1 ØVING 9 FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 NTNU Norges teknisk-naturvitenskaelige universitet Fakultet for naturvitenska og teknologi Institutt for materialteknologi TMT4112 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 OPPGAVE 1 Ved bruk av

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)

Detaljer

KOSMOS. 5: Elektroner på vandring Figur side Modell av et heliumatom. Elektron. Nøytron. p + Proton. Protoner

KOSMOS. 5: Elektroner på vandring Figur side Modell av et heliumatom. Elektron. Nøytron. p + Proton. Protoner 5: Elektroner på vandring Figur side 132 Elektron e p Nøytron n e Proton Modell av et heliumatom. Protoner Nøytroner Elektroner Nukleoner Elementærladning Elementærpartikler er små partikler i sentrum

Detaljer

Fasit for besvarelse til eksamen i A-112 høst 2001

Fasit for besvarelse til eksamen i A-112 høst 2001 Fasit for besvarelse til eksamen i A-112 høst 21 Oppgave I a Anta at hvert elektron beveger seg i et midlere, sfærisk symmetrisk felt =sentralfelt V r fra kjernen og alle de andre elektronene Ved å velge

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 4 Bindingsteori - hybridisering - molekylorbitaler Einar Sagstuen, Fysisk institutt, UiO 05.09.2017 1 Biologiske makromolekyler 4 hovedtyper Kovalent Ionisk

Detaljer

TFY løsning øving 9 1 LØSNING ØVING 9

TFY løsning øving 9 1 LØSNING ØVING 9 TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,

Detaljer

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi Eksamensdag: Fredag 15. januar 2016 Oppgavesettet består av 17 oppgaver med følgende vekt (også gitt i

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): Emnenavn: LGU52005 Naturfag 1 5-10 emne 2 Kjemi Studiepoeng: 7,5 Eksamensdato: 20. mai 2015 Varighet/Timer: Målform: 3 timer

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som

Detaljer

Lys. Bølger. Partiklar Atom

Lys. Bølger. Partiklar Atom Lys Bølger Partiklar Atom Lys «Lyshistoria» Lys er små partiklar! Christiaan Huygens (1629-1695) Lys er bølger Isaac Newton (1642-1726) «Lyshistoria» Thomas Young (1773-1829) «Lyshistoria» James Clerk

Detaljer

De vikagste punktene i dag:

De vikagste punktene i dag: AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 De vikagste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magneasme:

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover OpJkk: Refleksjon, brytning og diffraksjon RelaJvitetsteori, spesiell

Detaljer

FLERVALGSOPPGAVER KJEMISK BINDING

FLERVALGSOPPGAVER KJEMISK BINDING FLERVALGSOPPGAVER KJEMISK BINDING Hjelpemidler: periodesystem Hvert spørsmål har et riktig svaralternativ. Kjemisk binding 1 I hvilke(t) av disse stoffene er det hydrogenbindninger? I: HF II: H 2 S III:

Detaljer

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner Kapittel 19 Elektrokjemi Repetisjon 1 (14.10.02) 1. Kort repetisjon redoks Reduksjon: Når et stoff tar opp elektron Oksidasjon: Når et stoff avgir elektron 2. Elektrokjemiske celler Studie av overføring

Detaljer

Fra alkymi til kjemi. 2.1 Grunnstoffene blir oppdaget

Fra alkymi til kjemi. 2.1 Grunnstoffene blir oppdaget Fra alkymi til kjemi 2.1 Grunnstoffene blir oppdaget 2.1 Grunnstoffene blir oppdaget GRUNNSTOFF hva er det? År 300 1800: Alkymi læren om å lage gull av andre stoffer Ingen klarte dette. Hvorfor? Teori

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014

LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet naturvitenskap og teknologi Institutt for materialteknologi TMT4110 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014 OPPGAVE 1 a) Kovalent binding:

Detaljer

Lys. Bølger. Partiklar Atom

Lys. Bølger. Partiklar Atom Lys Bølger Partiklar Atom Atom «Atomhistoria» Gamle grekarar og indarar, ca 500 f. Kr. Materien har ei minste eining; den er bygd opp av små bitar som ikkje kan delast vidare 1800-talet: Dalton, Brown,

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Institutt for kjemi Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Fagleg kontakt under eksamen: Ida-Marie øyvik Tlf: 99 77 23 63 Eksamensdato: 11. desember 2014 Eksamenstid (frå til):

Detaljer

Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge.

Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. 1 Innholdsfortegnelse. Sammendrag...3 Innledning... 4 Hvorfor kvantemekanisk

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM2600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Fredag 5. juni, 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

EKSAMENSOPPGAVE. KJE-1001 Introduksjon til kjemi og kjemisk biologi

EKSAMENSOPPGAVE. KJE-1001 Introduksjon til kjemi og kjemisk biologi Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00-15:00 Sted: Tillatte hjelpemidler:

Detaljer

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018 Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.

Detaljer

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31 REPETISJON FYS2140 Susanne Viefers s.f.viefers@fys.uio.no Fysisk Institutt, Teorigruppa REPETISJON FYS2140 p.1/31 Teoretisk pensum I Første del, Forelesningsnotater Enheter og størrelser i Fys2140 Sort

Detaljer

Institutt for fysikk. Eksamen i TFY4215 Innføring i kvantefysikk

Institutt for fysikk. Eksamen i TFY4215 Innføring i kvantefysikk Institutt for fysikk Eksamen i TFY4215 Innføring i kvantefysikk Faglig kontakt under prøven: Jon Andreas Støvneng Tlf.: 45 45 55 33 Dato: 3. juni 2019 Tid (fra-til): 15.00-19.00 Hjelpemiddelkode/Tillatte

Detaljer

Det er 20 avkryssingsoppgaver. Riktig svar gir 1 poeng, feil eller ingen svar gir 0 poeng.

Det er 20 avkryssingsoppgaver. Riktig svar gir 1 poeng, feil eller ingen svar gir 0 poeng. UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1002 - Innføring i kjemi Eksamensdag: 8. desember kl. 14:30 Tid for eksamen: 4 timer Det er 20 avkryssingsoppgaver. Riktig

Detaljer

FASIT (oppg.bok / ekstra oppg.)

FASIT (oppg.bok / ekstra oppg.) 354 Fasit FASIT (oppg.bok / ekstra oppg.) 1.1 Atomer 1.1 a Han utviklet en atommodell slik at det ble fruktbart å snakke om grunnstoffer. b Rosin-i-bolle-modellen c Kjernens ladning er positiv, kjernen

Detaljer

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke

Detaljer

Onsdag og fredag

Onsdag og fredag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0

Detaljer

Oppgave 4 : FYS linjespesifikk del

Oppgave 4 : FYS linjespesifikk del Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q

Detaljer