FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier
|
|
- Elin Aase
- 7 år siden
- Visninger:
Transkript
1 FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden i et volum V, slik at alle tilstander innenfor en kuleflate i impulsrommet er opptatt, 2 mens alle utenfor er ledige. Bruk formelen dn rom = V d3 p h 3 (# romlige tilstander) til å vise at radien av Fermi-kula er ( p F = h 3π 2 N ) 1/3 (Fermi-impulsen), V der N/V er antall fermioner pr volumenhet. [Merk at Pauli-prinsippet tillater to spinn fermioner pr romlig tilstand.] b. Den ideelle Fermi-gass-modellen gir en (forenklet) beskrivelse av ledningselektronene i metaller. Vis at Fermi-impulsene for disse elektronene er ikke-relativistiske (p F << m e c), når det oppgis at antallstetthetene N/V av ledningselektroner varierer fra cm 3 = m 3 for cesium til cm 3 for beryllium. Oppgitt: h/(m e c) = m. c. Finn Fermi-energien for beryllium i elektronvolt, når det oppgis at h 2 /(2m e a 2 0)(=1 Ry) =13.6 ev, og a 0 = m. d. Elektrontettheten i en hvit dvergstjerne er (i likheten med massetettheten) omlag en faktor 10 6 større enn i ordinær materie. Anta for enkelhets skyld at den i sentrum av stjerna er en faktor 10 6 større enn den vi brukte ovenfor for beryllium. Beregn p F /(m e c) i dette tilfellet, og avgjør om Fermi-impulsen her kan sies å være ikke-relativistisk. Oppgave 6 2 Fermioner i kuleformet boks Betrakt en kuleformet boks med radius a, slik at V = 0 inne i boksen og uendelig utenfor. I denne boksen befinner det seg 18 ikke-vekselvirkende spinn- 1 -fermioner med masse m. 2 Med såpass få partikler vil metoden ovenfor bli for omtrentlig når det gjelder å finne f.eks Fermienergien. dessuten er det klart at vi må bruke metoden i Tillegg 9 til å finne energier og bølgefunksjoner. Som vist i forelesningene, vil én-partikkel-tilstandene i denne boksen være av typen ψ = R(r)Y lm (θ, φ). Med L 2 Y lm = h 2 l(l + 1) og k 2mE/ h 2 kan vi da skrive radialligningen på formen (kr) 2 d(kr) + 2(kr) dr 2 d(kr) + [ (kr) 2 l(l + 1) ] R(r) = 0, d2 R som er er kjent som den sfæriske Bessel-ligningen. Dette innebærer at radialfunksjonene R(r) er proporsjonale med sfæriske Bessel-funksjoner: R(r) j l (kr).
2 FY2045/TFY4250 Kvantemekanikk I, øving 6 2 a. Anta at dette systemet er i grunntilstanden, og finn kvantetallene til de besatte énpartikkel-tilstandene, samt energiene til disse tilstandene i enheter av h 2 /(2ma 2 ). Vis at energien til grunntilstanden er 473 h 2 /(2ma 2 ). b. Hvor mye energi koster det å redusere radien a av boksen med én promille? c. Forklar hvorfor den totale sannsynlighetstettheten for fermionene i grunntilstanden er kulesymmetrisk. Hint: +l Y lm 2 = 2l + 1 4π. Oppgitt: Tabell over nullpunkter Π (l) n m= l for de sfæriske Bessel-funksjonene: j 0 j 1 j 2 j 3 n r = 0 Π (0) 1 = π Π (1) 1 = Π (2) 1 = Π (3) n r = 1 Π (0) 2 = π 2 Π (1) 2 = Π (2) 2 = Π (3) n r = 2 Π (0) 3 = π 3 Π (1) 3 = Π (2) 3 = Π (3) 1 = = = Oppgave 6 3 Spredning på to δ-barrierer Vi har ikke gjort oss helt ferdig med deltafunksjonspotensialer, og vender nå tilbake til problemstillingen som ble skissert i øving 3, hvor vi vil se på spredning av elektroner mot et symmetrisk potensial som består av to like sterke δ-barrierer: V (x) = h2 f m e a 0 [δ(x + a/2) + δ(x a/2)] (f > 0). Med energien E = h 2 k 2 /(2m e ) og en spredningsfunksjon på formen 1 ψ = t eikx + Be ikx for x < a/2, Ce ikx + De ikx for a/2 < x < a/2, e ikx for x > a/2 kan vi da som nevnt i øving 3 vise ved hjelp av skjøte-betingelsene at og at C = 1 + if ka 0 og D = if ka 0 e ika ( 1 t = 1 + if ) 2 + f 2 ka 0 (ka 0 ) 2 e2ika. Med denne formelen kan vi studere transmisjonskoeffisienten T = t 2 som funksjon av de forskjellige parametrene.
3 FY2045/TFY4250 Kvantemekanikk I, øving 6 3 a. Etter litt regning finner en at transmisjonskoeffisienten T (2) for den doble barrieren er bestemt av formelen [ ( )] 2 1 2f f = 1 + sin ka + cos ka. T (2) ka 0 ka 0 Til sammenligning fant vi i øving 3 ved spredning mot en enkel barriere med styrke f at ( ) 2 1 f = 1 +. T (1) ka 0 Når størrelsen ka 0 er liten i forhold til f, ser vi at det er liten sannsynlighet for transmisjon gjennom den enkle barrieren. Forklar vha formelen ovenfor at vi for den doble barrieren derimot kan få full transmisjon (T (2) = 1) for visse verdier av bølgetallet k, og finn en ligning som vil bestemme disse verdiene. b. Dette fenomenet kalles tunnelerings-resonans. Figuren viser T (2) og T (1) som funksjoner av ka 0 for f = 10 og a = 2a 0. Bruk figuren til å finne (noenlunde nøyaktig) et par av de verdiene av ka 0 som gir resonans. Prøv med kalkulatoren å finne den minste verdien av ka 0 som løser ligningen funnet under pkt. a, og sammenlign med den du leste ut av figuren.
4 FY2045/TFY4250 Kvantemekanikk I, øving 6 4 Oppgave 6 4 Trening med ket- og bra-vektorer La 1, 2 og 3 være tre ortonormerte vektorer som danner en basis for et tredimensjonalt komplekst vektorrom: i j = δ ij, i, j = 1, 2, 3 ; 3 i i = 1. i=1 a. La a = 1 og b = 1 + i 2. Hva er da a, b, a b, b a og b b? b. Finn normen (lengden) av vektoren b, dvs b finn Â1 A 1 A 1. b b. Sett A 1 = b og Hva er normen til vektoren Â1? Sett Â2 = c c 2 2 og velg c 1 og c 2 slik at Â2 blir normert og ortogonal på Â1. Finn en normert vektor Â3 som er ortogonal på både Â1 og Â2. c. Bruk definisjonen av adjungert, a A b = b A a, til å vise at den adjungerte til operatoren c d er Oppgave 6 5 ( c d ) = d c. Litt mer trening med ket- og bra-vektorer I forelesningene har vi sett at det er én-til-én-korrespondanse mellom de abstrakte vektorene i Hilbert-rommet og de gode gamle bølgefunksjonene: ψ a (x) ψ a a, ψ b (x) ψ b b, osv., der vi velger merkelapper etter behag. Videre har vi sett at de nye skalarproduktene er identisk med de gamle: ψ a, ψ b ψ a ψ b = ψ a, ψ b ψ a ψ b dτ.
5 FY2045/TFY4250 Kvantemekanikk I, øving 6 5 a. I den gode gamle posisjonsrepresentasjonen av kvantemekanikk har vi sett at egenverdiligningen for operatoren x = x, har løsningen x ψ x (x) = x ψ x (x), ψ x (x) = δ(x x ). (Dette kan du lett sjekke.) Til denne bølgefunksjonen svarer det en vektor ψ x x i Hilbert-rommet. Vi har også sett at egenverdiligningen for impulsoperatoren har løsningen p x ψ p (x) = p ψ p (x) ψ p (x) = (2π h) 1/2 exp(ipx/ h). Til denne impulsbølgefunksjonen svarer det en vektor ψ p p i Hilbert-rommet. Og så kommer spørsmålene: Hva er x ψ p og ψ p x? b. Operatoren x som representerer observabelen x er i Dirac-formalismen definert ved egenverdiligningen x x = x x, hvor x = x, slik at x x = x x. Hva blir da ψ p x x? Hva blir x x ψ p? c. La n svare til energiegenfunksjonen ψ n (x) for en harmonisk oscillator. Når operatoren x virker på grunntilstanden, fås en ny vektor som vi kan kalle ny : x 0 = ny. Hvilken bølgefunksjon (ψ ny ) svarer den nye vektoren til? Hint: Se på x ny og bruk at x x = x x. Det oppgis at h xψ 0 (x) = 2mω ψ 1(x). Vis at ny = konstant 1, og finn konstanten.
FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5
FY045/TFY450 Kvantemekanikk I, 0 - øving 5 ØVING 5 Oppgave 0 α-desintegrasjon α-sdesintegrasjon er en prosess hvor en radioaktiv opphavs -kjerne (parent nucleus) desintegrerer (henfaller) til en datter
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK
DetaljerFaglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerA.3.e: Ortogonale egenfunksjonssett
TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at
DetaljerOppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415
DetaljerTFY Øving 8 1 ØVING 8
TFY4215 - Øving 8 1 ØVING 8 Mye av poenget med oppgave 2 er å øke fortroligheten med orbitaler, som er bølgefunksjoner i tre dimensjoner. Fordi spørsmålene/oppdragene er spredt litt rundt omkring, markeres
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte
DetaljerFY1006/TFY Øving 7 1 ØVING 7
FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.
FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy
DetaljerFY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008
Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen
DetaljerFY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.
FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerFY1006/TFY Øving 9 1 ØVING 9
FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt
DetaljerTFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette
Detaljerψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at
Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.
FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerEn samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.
Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:
DetaljerEKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
DetaljerFY1006/TFY Øving 12 1 ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l = 0, 1, ; m = l,, l.
FY1006/TFY4215 - Øving 12 1 Frist for innlevering: Tirsdag 28. april kl.1700 Oppgåve 1 system ØVING 12 Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande For ein partikkel som bevegar
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00
DetaljerLøsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte
DetaljerFY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.
FY16/TFY415 - Løsning øving 8 1 Løsning oppgave 3 Vinkelfunksjoner, radialfunksjoner og orbitaler for hydrogenlignende system LØSNING ØVING 8 a. (a1: Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.
DetaljerLøsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255
DetaljerLøsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og
DetaljerTFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
DetaljerEksamen FY1006/TFY mai løsningsforslag 1
Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store
DetaljerLØSNING EKSTRAØVING 2
TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =
DetaljerNORSK TEKST Side 1 av 5
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,
DetaljerLøsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk
Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
DetaljerLøsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med
DetaljerFY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1.
FY006/TFY45 Innføring i kvantefysikk, - Ekstraøving Frist for innlevering (Til I.Ø.): 7. mai kl 7 Oppgave 9 hydrogenlignende atom Ekstraøving I denne oppgaven ser vi på et hydrogenlignende atom, der et
DetaljerFY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3
FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i
DetaljerLøsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
DetaljerOppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59
DetaljerEksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
DetaljerEKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator
FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i
DetaljerTFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
DetaljerFY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand
FY006/TFY45 - Løsning øving 3 Løsning oppgave 8 LØSNING ØVING 3 Ikke-stasjonær bokstilstand a. For 0 < x < L er potensialet i boksen lik null, slik at Hamilton-operatoren har formen Ĥ = K + V (x) = ( h
DetaljerFY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
DetaljerEn partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK
DetaljerTFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY415 - Løsning øving 7 1 Løsning oppgave a. Med z = r cos θ har vi at LØSNING ØVING 7 3-dimensjonal isotrop harmonisk oscillator ψ 1 = C C 1 e mωr / h r cos θ, som er uavhengig av asimutvinkelen φ, dvs
DetaljerFY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1)
FY1006/TFY4215 -øving 10 1 ØVING 10 Oppgave 25 Om radialfunksjoner for hydrogenlignende system De generelle formlene for energiene og de effektive potensialene for et hydrogenlignende system kan skrives
DetaljerFaglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK
DetaljerLøsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
DetaljerLøsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl
BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK
DetaljerTFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er
DetaljerEKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
Detaljer9 Kulesymmetrisk boks. Sylindersymmetriske
TFY4250/FY2045 Tillegg 9 - Kulesymmetrisk boks. Sylindersymmetriske systemer 1 TILLEGG 9 9 Kulesymmetrisk boks. Sylindersymmetriske systemer I dette Tillegget starter vi med en gjennomgang av det kulesymmetriske
DetaljerEKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne
EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling
DetaljerTFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer
TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk
DetaljerLøsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk
Eksamen TFY450/FY045 4. desember 007 - løsningsforslag Løsningsforslag Eksamen 4. desember 007 TFY450 Atom- og molekylfysikk/fy045 Kvantefysikk Oppgave a. For tilfellet α 0 har vi et ordinært bokspotensial
DetaljerFY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h
FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8
FY045/TFY450 Kvantemekanikk I, løsning øving 8 1 Løsning oppgave 8 1 LØSNING ØVING 8 Koherente tilstander for harmonisk oscillator a. Utviklingen (3) er en superposisjon av stasjonære tilstander for oscillatoren,
DetaljerLøsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 13 1 LØSNING ØVING 13. V (x, t) = xf (t) = xf 0 e t2 /τ 2.
FY045/TFY450 Kvantemekanikk I, løsning øving 13 1 Løsning Oppgave 13 1 LØSNING ØVING 13 Transient perturbasjon av harmonisk oscillator a. Med kraften F (t) = qe(t) = F 0 exp( t /τ ) og sammenhengen F (t)
DetaljerFigur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.
Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerLøsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk
Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 2 1 LØSNING ØVING 2
FY2045/TFY4250 Kvantemekanikk I, løsning øving 2 1 LØSNING ØVING 2 Oppgave 2 1 LØSNING nesten en posisjonsegentilstand a Siden den Gaussiske sannsynlighetstettheten ψ(x) 2 = 2β/π exp( 2β(x a) 2 ) symmetrisk
DetaljerKursopplegg for TFY4250 og FY2045
TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2007 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 (under utarbeidelse) Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
Detaljer(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ
Oppgave 1 Variasjoner over hydrogen Løsningen av den tidsuavhengige Schrødingerligningen for potensialet til hydrogenatomet Vr) = k ee r, 1) er som kjent ψ nlm r,θ,φ) = R nl r)yl m θ,φ), ) hvor R nl r)
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425
DetaljerLøsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
DetaljerLøsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk
ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien
DetaljerFY1006/TFY Løsning øving 9 1 LØSNING ØVING 9
FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen
DetaljerBOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,
BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
DetaljerLøsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
DetaljerLøsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for
DetaljerLøsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
DetaljerTFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
DetaljerEKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,
DetaljerLøsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra
DetaljerLøsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018
Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene
DetaljerEKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
DetaljerKursopplegg for TFY4250 og FY2045
TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2008 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics,
DetaljerOppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)
Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 2 1 ØVING 2. nesten en posisjonsegentilstand
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 2 1 Oppgave 2 1 ØVING 2 nesten en posisjonsegentilstand Vi har sett at en posisjon ikke kan måles med en usikkerhet som er eksakt lik null. Derimot er det
DetaljerFY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8
FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 I. FLERVALGSOPPGAVER (Teller 2.5% 30 = 75%) En fri partikkel med masse m befinner seg i det konstante potensialet V = 0 og beskrives
Detaljer4. Viktige kvantemekaniske teoremer
FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske
DetaljerKursopplegg for TFY4250 og FY2045
TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2004 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 Felles undervisning i to emner De to emnene TFY4250 Atom- og molekylfysikk for teknologistudiet,
DetaljerLøsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk
Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen
DetaljerTFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem
TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som
DetaljerLøsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019
Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet
Detaljer