Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
|
|
- Beate Sletten
- 7 år siden
- Visninger:
Transkript
1 NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK og FY045 KVANTEFYSIKK Mandag 1. desember 008 kl Tillatte hjelpemidler: Godkjent kalkulator Rottmann: Matematisk formelsamling Øgrim & Lian: Størrelser og enheter i fysikk og teknikk, eller Lian og Angell: Fysiske størrelser og enheter Et ark med uttrykk og formler er vedlagt. Sensuren faller i desember 008. Oppgave 1 En partikkel med masse m befinner seg i et endimensjonalt potensial som består av en deltafunksjonsbrønn, V x = βδx β > 0. Det opplyses at energiegenfunksjoner i dette potensialet må oppfylle diskontinuitetsbetingelsen ψ /ψ x=0 + ψ /ψ x=0 = mβ h. a. Vis at dette systemet har bare én bundet tilstand, med energien E E B = mβ h. b. Anta at partikler med masse m og energi E > 0 sendes fra venstre inn mot denne deltafunksjons-brønnen. Dette spredningsproblemet kan beskrives ved hjelp av en energiegenfunksjon som har formen ψ I x = e ikx + Be ikx ψ i + ψ r for x < 0. Finn bølgetallet k uttrykt ved energien E. Sannsynlighets-strømtettheten kan for x < 0 skrives på formen [ ] j = Re ψ h d I im dx ψ I = j i + j r = j i j r. Finn j i og j r uttrykt ved k og den komplekse koeffisienten B. [Hint: z z = iimz.] Hvilken form skal energiegenfunksjonen ha for x > 0 i dette spredningsproblemet?
2 Side av 5 c. Det kan vises at koeffisienten B er B = 1 + i h k mβ 1. Finn energien E når det oppgis at 5 % av partiklene reflekteres av potensialbrønnen. Utled formelen ovenfor for B. Oppgave I denne oppgaven betrakter vi en spinn- 1 -partikkel som befinner seg i et konstant og homogent magnetfelt B rettet i z-retningen. Når vi ser bort fra andre frihetsgrader, kan Hamilton-operatoren for dette spinnet skrives på formen der vi antar at ω er positiv. H = ωs z, a. Finn energiegenverdiene og de tidsavhengige stasjonære tilstandene for dette systemet, og pass på at disse skal oppfylle ligningen i h d χt = Hχt = Eχt, dt der E er de respektive egenverdiene. Finn spinnretningene σ for de stasjonære tilstandene, og kontrollér at disse retningene er tidsuavhengige. Hvorfor er en lineærkombinasjon med tidsuavhengige koeffisienter av de stasjonære tilstandene en mulig tilstand for dette systemet? Hvorfor er en slik lineærkombinasjon den mest generelle tilstanden vi kan ha for dette systemet? b. Ved t = 0 foretas det en måling av komponenten S y av spinnet. Finn måleresultatet dersom spinnet umiddelbart etter målingen befinner seg i tilstanden 1/ χ0 = i/. Finn spinnretningen σ 0 ved tiden t = 0 dvs umiddelbart etter målingen. Finn også spinnretningen σ ved tidene t = π/ω og t = π/ω. Oppgave 3 I denne oppgaven betrakter vi et topartikkelsystem eller snarere et ensemble av slike, der begge partiklene har spinn 1 dvs s 1 = s = 1: S 1 = h s 1 s = h og S = h s s + 1 = h. Ved en måling av S 1z og S z etterlates spinn nummer 1 i en av triplett-tilstandene 1 1, 0 1, 1 1 og spinn nummer i en av tilstandene 1, 0, 1. Vi bruker
3 Side 3 av 5 her de magnetiske kvantetallene m 1 og m som merkelapper, sammen med partikkelindeksene 1 og. Topartikkelsystemet havner altså i en av 9 mulige produkt-tilstander av typen m 1 m, der m 1 = 1, 0, 1 og m = 1, 0, 1. Disse 9 tilstandene danner en basis for dette spinnsystemet, som vi godt kan kalle den gamle basisen. Gjør vi i stedet en måling av størrelsen S og z-komponenten S z av det totale spinnet S = S 1 + S for dette topartikkelsystemet, havner systemet i en tilstand av typen s, m slik at S = h ss + 1 og S z = hm, der det oppgis at s 1 s s s 1 + s. Disse tilstandene s, m velger vi å kalle nye. a. Kontrollér at antallet av nye tilstander er lik antallet gamle. Hvorfor kan de nye tilstandene s, m uttrykkes som lineærkombinasjoner av de gamle, m 1 m? Vis at den gamle tilstanden er en egentilstand til Ŝz = Ŝ1z + Ŝz med egenverdien h. Hvorfor er den nye tilstanden, lik den gamle 1 1 1, og hvorfor er, = 1 1 1? b. Fra de generelle stigeoperator-relasjonene se formelarket følger det at vi for hvert av spinnene har Ŝ n 1 n = h 0 n ; Ŝn 0 n = h 1 n ; n = 1,, mens vi for de nye tilstandene har Ŝ, = h, 1, Bruk disse relasjonene til å vise at den nye tilstanden, 1, med s = og m = 1, er osv., 1 = Vis at den nye tilstanden med s = og m = 0 er, 0 = Hva er den fysiske tolkningen av koeffisientene i denne utviklingsformelen? c. Topp-trinnet 1, 1 i triplett- stigen for s = 1 skal være en lineærkombinasjon av de to gamle tilstandene med m = 1, samtidig som den er ortogonal på, 1 fordi s-kvantetallene er forskjellige for tilstandene, 1 og 1, 1. Disse kriteriene oppfylles av 1, 1 = Vis med utgangspunkt i tilstanden 1, 1 at 1, 0 = Finn til slutt den normerte singletten 0, 0 uttrykt ved de gamle tilstandene med m = 0.
4 Side 4 av 5 Oppgave 4 Et elektron som ved tiden t = befinner seg i grunntilstanden i et hydrogenatom, utsettes for en transient forbigående perturbasjon, i form av et homogent tidsavhengig elektrisk felt som svarer til et perturberende ledd V t = zee 0 exp t /τ i Hamilton-operatoren. Ifølge 1.-ordens tidsavhengig perturbasjonsteori er overgangssannsynligheten fra grunntilstanden ψ i = ψ 100 = πa 3 0 1/ exp r/a 0 ved t = til en bundet slutt-tilstand ved t = gitt ved der ω fi = E f E i / h. P i f = a i f 1 = i h ψ f = ψ nlm = R nl ry lm θ, φ expiω fi t ψ f V t ψ i dt a. Vis at denne overgangssannsynligheten kan skrives på formen P i f = fτ ψ f z/a 0 ψ i d 3 d r fi fτ, der integralet er dimensjonsløst, og finn funksjonen fτ uttrykt ved de oppgitte størrelsene. Oppgitt: π exp ay + bydy = a expb /4a; Rea > 0. Vis at overganger bare er mulig til slutt-tilstander med l = 1 og m = 0 til 1. orden. [Hint: z = r cos θ = r 4π/3 Y 10.] b. Figuren ovenfor viser at mesteparten av perturbasjonen foregår i løpet av et tidsintervall τ. Finn den τ-verdien τ m som gir den maksimale overgangssannsynligheten P i f for fastholdt E 0, og sammenlign τ m med den naturlige perioden T fi = π/ω fi. Lag en rask skisse av P i f τ/p i f τ m som funksjon av τ/τ m for fastholdt E 0, og kommentér spesielt oppførselen for tilfellene τ << τ m og τ >> τ m. a 0,
5 Side 5 av 5 c. Dipolmomentene d fi = ψ f z ψ i for overganger fra ψ 100 til tilstandene ψ n10 er av størrelsesorden a 0 Bohr-radien eller mindre. F.eks er ψ 10 z ψ a 0 og ψ 310 z ψ a 0. La oss anta at E 0 har samme styrke som feltet fra protonet i en avstand a 0, dvs E 0 = e/4πɛ 0 a 0, slik at ee 0 a 0 = e /4πɛ 0 a 0 = 7. ev. Ser vi da på overgangen ψ 100 ψ 10, med hω 1 = E E 1 = 10. ev, så følger det fra resultatene ovenfor og formelen at fτ m = π e ee0 a 0, hω 1 P τ = P τ m fτ fτ m 9.1 τ/τ m exp[1 τ/τ m ]. Dette resultatet har for å si det mildt en alvorlig svakhet for τ τ m. Forklar hva svakheten består i, og hvordan feilen har kommet inn.
6
7 Vedlegg: Formler og uttrykk Noe av dette kan du få bruk for. Sannsynlighets-strømtetthet Målepostulatet [ jr, t = Re Ψ r, t h ] Ψr, t. im i De eneste mulige verdiene som en måling av observabelen F kan gi er en av egenverdiene f n. ii Umiddelbart etter målingen av F er systemet i en egentilstand til den tilhørende operatoren F, nemlig en egentilstand som svarer til den målte egenverdien f n. Spinn 1 For en partikkel med spinn 1 kan en bruke spinnoperatoren S = 1 hσ = 1 hê xσ x + ê y σ y + ê z σ z, der σ x = , σ y = 0 i i 0 er de såkalte Pauli-matrisene. Pauli-spinorene χ + =, σ z = og χ = 0 1 er da a egentilstander til S z = 1 hσ z med egenverdiene ± 1 h. En normert spinntilstand χ = b kan karakteriseres ved spinnretningen, σ = χ σχ = ê x Rea b + ê y Ima b + ê z a b. Matrisene S x = 1 hσ x osv oppfyller dreieimpulsalgebraen, [S x, S y ] = i hs z, [S y, S z ] = i hs x, [S z, S x ] = i hs y. Videre er S x = S y = S z = h og S = 3 h Stigeoperator-relasjoner for dreieimpulser Ĵ + j, m = h j mj m j, m + 1 ; Ĵ j, m = h j + mj + 1 m j, m 1.
8 Sfæriske harmoniske { L L z } { h ll + 1 Y lm = hm } Y lm ; Y l m Y lmdω = δ l lδ m m; L z = h i φ ; Y 0 = Y 00 = 4π, Y 10 = 4π cos θ, Y 1,±1 = 8π sin θ e±iφ π 3 cos θ 1, Y,±1 = 8π sin θ cos θ e±iφ, Y,± = 3π sin θ e ±iφ. Utgangspunktet for tidsavhengig perturbasjonsteori Med en Hamilton-operator Ĥ = Ĥ0 + V t kan den eksakte løsningen utvikles i de uperturberte stasjonære løsningene: Ψr, t = n a n tψ 0 n r, t, der Ψ 0 n r, t = ψ n re ient/ h, Ĥ0ψ n r = E n ψ n r. Det eksakte ligningssettet for utviklingskoeffisientene er i h da k dt = n e iω knt V kn ta n t; V kn t = ψ k V t ψ n, ω kn = E k E n / h. Med a n t 0 = δ ni oppfyller den eksakte amplituden ligningen Noen fysiske konstanter a f t = δ fi + 1 i h t e n t 0 iω fnt V fn t a n t dt. a 0 4πɛ 0 h m e e = 1 α h m e c = m; α e 4πɛ 0 hc = ; c = m/s; h = evs; m e = MeV/c. h m e a 0 Tidsutvikling av forventningsverdier δ-funksjonen og sprangfunksjonen 13.6 ev. d dt F = ī [Ĥ, F ] + F. h t d Θx = δx; dx fxδx adx = fa.
EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK
DetaljerFaglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerEKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 970355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00
DetaljerLøsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk
Eksamen TFY45/FY45. desember 8 - løsningsforslag Løsningsforslag Eksamen. desember 8 TFY45 Atom- og molekylfysikk/fy45 Kvantefysikk Oppgave a. For x og E = E B < har den tidsuavhengige Schrödingerligningen
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
DetaljerEn partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255
DetaljerLøsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk
Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerLøsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/
DetaljerLøsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY45/TFY45 8. august - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august FY45/TFY45 Kvantemekanikk I a. For E < V blir området x > klassisk forbudt, og den tidsuavhengige Schrödingerligningen
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Sie 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt uner eksamen: Ingjal Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK
DetaljerEKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
DetaljerEn samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.
Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
DetaljerEKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.
DetaljerA.5 Stasjonære og ikke-stasjonære tilstander
TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se
DetaljerLøsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og
DetaljerLøsningsforslag Eksamen 1. desember 2009 TFY4250/FY2045
Eksamen TFY45/FY45 1. desember 9 - løsningsforslag 1 Oppgave 1 a. For n = 3j er Løsningsforslag Eksamen 1. desember 9 TFY45/FY45 ψ () 3j (L/3) = A sin(jπ) = og ψ () 3j (L/3) = A sin(jπ) =. Vi kan da konstatere
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN
DetaljerOppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415
DetaljerLøsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
DetaljerLøsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk
Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.
DetaljerOppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425
DetaljerNORSK TEKST Side 1 av 5
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
DetaljerFY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008
Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.
FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)
DetaljerBOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,
BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
DetaljerEKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl
BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Tirsdag 4. desember 2007 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl
NORSK TEKST Side av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 0 august 200 kl 0900-300 Tillatte hjelpemidler:
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK
DetaljerEKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne
EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling
DetaljerLøsningsforslag Eksamen 9. desember 2006 TFY4250 Atom- og molekylfysikk /FY2045 Kvantefysikk
Eksamen TFY450/FY045 9. esember 006 - løsningsforslag 1 Løsningsforslag Eksamen 9. esember 006 TFY450 Atom- og molekylfysikk /FY045 Kvantefysikk Oppgave 1 a. Grunntilstanen ψ 1 (x) har ingen nullpunkter.
DetaljerLøsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk
Eksamen TFY450/FY045 4. desember 007 - løsningsforslag Løsningsforslag Eksamen 4. desember 007 TFY450 Atom- og molekylfysikk/fy045 Kvantefysikk Oppgave a. For tilfellet α 0 har vi et ordinært bokspotensial
DetaljerOppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7
NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 Jon Andreas Støvneng, tel. 73
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl
NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Lørdag 9. desember 2006 kl
ENGLISH TEXT and NORWEGIAN Page of 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM-
DetaljerLøsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for
DetaljerLøsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018
Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene
DetaljerEKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator
FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
DetaljerTFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette
DetaljerTFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
DetaljerEKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:
DetaljerEKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 12 1 LØSNING ØVING 12. Spinnpresonans. 2 hσ blir resultatet. 0 e
FY045/TFY450 Kvantemekanikk I, løsning øving Løsning Oppgave LØSNING ØVING Spinnpresonans a. Med B B 0 + B B 0 [ê z + ɛ(ê x cos ωt + ê y sin ωt)] B 0 (ê z + ɛˆn), er Hamilton-operatoren med Her er altså
DetaljerFY1006/TFY Øving 7 1 ØVING 7
FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom
DetaljerEKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl
BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
DetaljerLøsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige
DetaljerLøsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 13 1 LØSNING ØVING 13. V (x, t) = xf (t) = xf 0 e t2 /τ 2.
FY045/TFY450 Kvantemekanikk I, løsning øving 13 1 Løsning Oppgave 13 1 LØSNING ØVING 13 Transient perturbasjon av harmonisk oscillator a. Med kraften F (t) = qe(t) = F 0 exp( t /τ ) og sammenhengen F (t)
DetaljerFYS2140 Kvantefysikk, Obligatorisk oppgave 10. Nicolai Kristen Solheim, Gruppe 2
FYS2140 Kvantefysikk, Obligatorisk oppgave 10 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 10 Oppgave 1 a) Ligningene 1, 2 og 3 er egenverdifunksjoner, mens ligning 4 er en deltafunksjon. b)
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden
DetaljerLøsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
DetaljerLøsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
DetaljerTFY Øving 8 1 ØVING 8
TFY4215 - Øving 8 1 ØVING 8 Mye av poenget med oppgave 2 er å øke fortroligheten med orbitaler, som er bølgefunksjoner i tre dimensjoner. Fordi spørsmålene/oppdragene er spredt litt rundt omkring, markeres
DetaljerTFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er
DetaljerFY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.
FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse
DetaljerFY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3
FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i
DetaljerFigur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.
Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur
Detaljerψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at
Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk
DetaljerLøsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
DetaljerLøsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019
Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet
DetaljerEKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
Detaljer(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ
Oppgave 1 Variasjoner over hydrogen Løsningen av den tidsuavhengige Schrødingerligningen for potensialet til hydrogenatomet Vr) = k ee r, 1) er som kjent ψ nlm r,θ,φ) = R nl r)yl m θ,φ), ) hvor R nl r)
DetaljerFY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
Detaljer13 Addisjon av dreieimpulser
TFY450/FY045 Tillegg 13 - Addisjon av dreieimpulser 1 TILLEGG 13 13 Addisjon av dreieimpulser (8.4 i Hemmer, 6.10 i B&J, 4.4 i Griffiths) Begrepet Addisjon av dreieimpulser kommer inn i bildet når vi ser
DetaljerFY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1.
FY006/TFY45 Innføring i kvantefysikk, - Ekstraøving Frist for innlevering (Til I.Ø.): 7. mai kl 7 Oppgave 9 hydrogenlignende atom Ekstraøving I denne oppgaven ser vi på et hydrogenlignende atom, der et
DetaljerLøsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra
DetaljerLøsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk
ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien
DetaljerTFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
DetaljerEksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger
Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har
DetaljerLøsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen
DetaljerLØSNING EKSTRAØVING 2
TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =
DetaljerEKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl
BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 18 67, eller 97 01 2 55 Jon Andreas Støvneng, tel. 7 59 6
DetaljerTFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem
TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som
DetaljerA.3.e: Ortogonale egenfunksjonssett
TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at
DetaljerUNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.
DetaljerTFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY415 - Løsning øving 7 1 Løsning oppgave a. Med z = r cos θ har vi at LØSNING ØVING 7 3-dimensjonal isotrop harmonisk oscillator ψ 1 = C C 1 e mωr / h r cos θ, som er uavhengig av asimutvinkelen φ, dvs
DetaljerTFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 3 55 Jon Andreas Støvneng, tel. 73
DetaljerEksamen FY1006/TFY mai løsningsforslag 1
Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store
DetaljerLøsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
DetaljerLøsning til øving 17 for FY1004, våren 2008
Løsning til øving 17 for FY1004, våren 2008 Her skal vi se på hvordan spinnet egenspinnet til et elektron påvirkes av et konstant magnetfelt B Merk: Det korrekte navnet på B er magnetisk flukstetthet,
Detaljer