EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl
|
|
- Ann-Kristin Enger
- 6 år siden
- Visninger:
Transkript
1 BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel , eller Jon Andreas Støvneng, tel , eller EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 1. mai 2012 kl Tillatte hjelpemidler: Godkjent kalkulator; Rottmann: Matematisk formelsamling; Øgrim & Lian: Størrelser og enheter i fysikk og teknikk, eller Lian og Angell: Fysiske størrelser og enheter; Aylward & Findlay: SI Chemical Data. Et ark med uttrykk og formler er heftet ved. Sensuren faller i uke 25. Oppgave 1 (Teller 27 %) a. En partikkel med masse m befinner seg i et enkelt endimensjonalt brønnpotensial V (x) = { 0 for πa/2 < x < πa/2, V 0 = h 2 /(2ma 2 ) for x > πa/2. Brønnvidden (πa) er valgt slik at dette systemet har en energiegenfunksjon (som vi kan kalle ψ 2 ) med energien E 2 = V 0. Vis ved hjelp av den tidsuavhengige Schrödingerligningen at ψ 2 må ha formen ψ 2 = B (en konstant) for x > πa/2. Finn deretter formen til ψ 2 i brønnområdet, πa/2 < x < πa/2. Tegn en skisse av funksjonen ψ 2, og forklar med ord hvordan den oppfører seg for x < πa/2.
2 Side 2 av 6 b. Funksjonen ψ 2 er i realiteten 1. eksiterte tilstand for dette systemet. Finn ut hvilken form grunntilstanden ψ 1 må ha i og utenfor brønnen, og skissér ψ 1. Finn en ligning som bestemmer grunntilstandsenergien, og forklar hvordan denne kan løses (uten å gjennomføre beregningen). c. Vi modifiserer nå potensialet, ved å plassere en barriere med høyde 2V 0 = h 2 /(ma 2 ) midt i brønnen, i området b < x < b, der 0 < b < πa/2; se figuren: Når b økes fra null, vil grunntilstandsenergien E 1 øke. Vi skal nå se hvordan en kan finne den b-verdien (b 0 ) som gir E 1 = V 0. Det opplyses at grunntilstanden ψ 1 er symmetrisk for alle 0 b b 0. Anta at E 1 = V 0, og finn først ut hvilken form ψ 1 har for x > πa/2. Vis deretter at ψ 1 for b 0 < x < πa/2 er proporsjonal med sin k 1 x (der k 1 skal bestemmes). Finn så formen for b 0 < x < b 0. [Det kan hjelpe å lage en skisse.] Finn til slutt en ligning som bestemmer b 0. (Denne kreves ikke løst.) Oppgave 2 (Teller 16 %) I denne oppgaven betrakter vi en todimensjonal problemstilling, der en partikkel med masse m beveger seg i xy-planet, i et harmonisk oscillatorpotensial V (x, y) = 1 2 mω2 (x 2 + y 2 ). Ved t = 0 prepareres denne oscillatoren i produkt-tilstanden Ψ(x, y, 0) = ψ x (x)ψ y (y), der både ψ x og ψ y er normerte: ( ( ) ) mω 1/4 ψ x (x) = C 0 exp[ mω(x b) 2 /2 h] C 0 =, π h ψ y (y) = C 0 exp[ mωy 2 /2 h + iy mωb/ h], (b > 0). a. Forklar hvilke symmetriegenskaper sannsynlighetstettheten Ψ(x, y, 0) 2 ved t = 0 har, og bruk dette til å finne forventningsverdiene x 0 og y 0 ved t = 0 (uten å regne eksplisitt). Vis at p x 0 = 0 og p y 0 = mωb. [Hint: Merk at (f.eks) f(x, p x ) 0 = ψ x (x) f(x, p x ) ψ x (x)dx, multiplisert med normeringsintegralet for ψ y (y), som jo er lik 1.] b. Bruk Ehrenfests teorem til å vise at forventningsverdiene av x og p x for t > 0 for denne oscillatoren kan skrives på formen x t = A x sin ωt + B x cos ωt; p x t = mω(a x cos ωt B x sin ωt).
3 Side av 6 Bruk resultatene ovenfor til å bestemme A x og B x, finn tilsvarende resultater for y-retningen, og vis at forventningsverdien av posisjonen følger en sirkelbane. Oppgave (Teller 2 %) I denne oppgaven ser vi først på et hydrogenlignende atom som består av en cesium-kjerne (Z = 55) og et elektron. Det gjøres en måling av energien E, kvadratet L 2 av dreieimpulsen og en viss komponent ˆn L av denne, på et stort antall av slike atomer. Et utvalg av dem havner da i et ensemble beskrevet av bølgefunksjonen der R = C Zr a 0 ψ = R(r)Y (θ, φ), ( 1 Zr ) exp( Zr/a 0 ) 6a 0 og Y = 4π ˆn ˆr = n x x 4π r + n y 4π Her er C en normeringskonstant og ˆn en enhetsvektor. y r + n z 4π a. Radialfunksjonen ovenfor svarer til at den reduserte massen er satt lik elektronmassen m e. Hvorfor er dette en svært god tilnærmelse i denne problemstillingen? Hva mener vi med å si at E, L 2 og ˆn L er kompatible observable for dette systemet, og hvilke betingelser svarer dette til for de tilsvarende operatorene? Hva er måleresultatet for L 2 ved prepareringen av dette ensemblet, og hva er det tilhørende dreieimpulskvantetallet l? (Begrunn svaret.) Finn radialkvantetallet n r, og finn energien E som ble målt ved prepareringen av dette ensemblet, ved hjelp av formelarket. b. Analogt med at L z = ( h/i)/φ spør etter variasjonen i asimut-retningen, dvs variasjon ved rotasjon omkring z-aksen, kan vi sette ˆn L = h i φ, der vinkelen φ beskriver rotasjon rundt ˆn-aksen. Argumentér ut fra dette for at måleresultatet for ˆn L var lik null. Anta at L z måles for ensemblet som er preparert i tilstanden ψ = RY. Finn de mulige måleresultatene og de tilhørende sannsynlighetene. Finn også forventningsverdien L z for tilstanden ψ = RY. c. La oss til slutt gjøre en liten sammenligning av det hydrogenlignende atomet (Z = 55) og det nøytrale cesium-atomet. Det løsest bundne elektronet i cesium befinner seg i 6s-orbitalen, ψ600 Cs = R60 Cs Y 00 ucs 60 r Y 00, hvor radialfunksjonen har n r = n l 1 = 5 nullpunkter. For s-bølger oppfyller funksjonene u n0 = rr n0 den endimensjonale ligningen [ h2 d 2 ] 2m e dr + V (r) u 2 n0 = E u n0, (l = 0), z r.
4 Side 4 av 6 der V (r) er potensialet fra kjernen i det hydrogenlignende tilfellet, og fra kjernen og de 54 øvrige elektronene i Cs-tilfellet. Forklar først hva vi mener med den relative krumningen av en radialfunksjon u(r) = rr(r), og finn den relative krumningen uttrykt ved den kinetiske energien E V (r) for s- bølgene u n0. Hvordan krummer u i klassisk tillatte og klassisk forbudte områder? I figuren er V hl = Ze2 4πɛ 0 r = Z h2 (Z = 55) m e a 0 r det uskjermede Coulomb-potensialet for det hydrogenlignende atomet (i enheter av kev). Kurven u hl 60 er den tilsvarende 6s-tilstanden. Anslå den ytre venderadien rytre hl for denne tilstanden ut fra diagrammet, og beregn den samme størrelsen, som en kontroll. Hvorfor må nullpunktene i denne radialfunksjonen ligge innenfor rytre? hl Hvorfor ligger disse nullpunktene tettest for små r? d. Kurven V Cs viser en forenklet modell av potensialet som 6s-elektronet i Cs opplever (i kev). Merk at for store r er V Cs [ e 2 /4πɛ 0 r] mye svakere enn V hl [= Ze 2 /4πɛ 0 r]. Forklar hvorfor. Enda større forskjell er det mellom bindingsenergiene til de to 6s-tilstandene: For det hydrogenlignende atomet er E hl mer enn 1 kev, mens E Cs i virkeligheten er av størrelsesorden 5 ev. Når vi skal prøve å skjønne hvordan dette henger sammen, er det et viktig poeng at differansen mellom de kinetiske energiene i de to tilfellene oppfyller følgende ulikhet (idet E Cs 5 ev > 0): E hl V hl (E Cs V Cs ) > E hl V hl + V Cs. Høyresiden i denne ulikheten er vist i figuren ovenfor (i den nevnte forenklede modellen, og i enheter av kev). Forklar på bakgrunn av dette hvorfor nullpunktene i u Cs 60 må ligge lenger ut enn de tilsvarende nullpunktene i u hl 60. Hva må vi da (kvalitativt) forvente når det gjelder venderadien rytre Cs i forhold til rytre, hl og når det gjelder E Cs i forhold til E hl?
5 Side 5 av 6 Oppgave 4 (Teller 25%) Innledning (strengt tatt ikke nødvendig for å løse oppgaven): Den giftige sennepsgassen ClCH 2 CH 2 SCH 2 CH 2 Cl blir ved å erstatte S-atomet med NR (der R = H, CH eller en større alkylgruppe) omdannet til aminer som har vist seg meget effektive innen kjemoterapi og bekjempelse av kreft. Denne oppgaven er knyttet til mekanismen for hvordan slike aminer reagerer med guanin, som er en av fire typer baser som inngår i DNA. Det viser seg at reaksjonen starter med dannelsen av et såkalt aziridinium kation (se figuren nedenfor, til venstre, der R = CH ) ved at et kloridion Cl spaltes av aminet. En tre-atomig ring (N-C-C) dannes, og reaksjonen med guanin i DNA forløper ved at en kjemisk binding dannes mellom et av C-atomene i den tre-atomige ringen og et av N-atomene i guanin. Vi har fått i oppdrag å studere denne reaksjonen nærmere, og siden vi ikke har et laboratorium men derimot en datamaskin til rådighet, velger vi å gjøre de nødvendige kvantemekaniske beregninger med Hartree Fock metoden. Vi erstatter først de to gruppene CH og CH 2 CH 2 Cl med to H-atomer (se figuren nedenfor, til høyre) for å redusere regnetiden. Reaksjonen blir dermed: CH 2 (NCH CH 2 CH 2 Cl)CH + 2 CH 2 NH 2 CH CH 2 NH 2 CH C 5 N 5 H 5 O CH 2 NH 2 CH 2 C 5 N 5 H 5 O + (Størrelse og farge: C: stor, grå; N: medium, svart; O: medium, lys grå; H: liten, hvit; Cl: stor, hvit) Her slutter innledningen til oppgaven! I basissettet 21G(*) inkluderer man de atomære orbitalene, eller basisfunksjonene, 1s og 2s for hvert H-atom, og 1s, 2s, 2p, s og p for hvert C-, N- og O-atom. Hvor mange basisfunksjoner inkluderes da i beregningen for henholdsvis CH 2 NH 2 CH + 2, C 5 N 5 H 5 O, CH 2 NH 2 CH 2 C 5 N 5 H 5 O +?
6 Side 6 av 6 Hvor mange elektroner er det i alt i henholdsvis CH 2 NH 2 CH + 2, C 5 N 5 H 5 O, CH 2 NH 2 CH 2 C 5 N 5 H 5 O +? For hvert av disse tre molekylene er det totale spinnet S til elektronene i grunntilstanden lik null. Forklar hvorfor S = 0 her er mulig. Kunne man her tenke seg en grunntilstand med totalt elektronspinn S = 1/2? Hva med S = 1? Begrunn svarene dine. I grunntilstanden, med S = 0, hvor mange molekylorbitaler er okkupert av elektroner, i henholdsvis CH 2 NH 2 CH + 2, C 5 N 5 H 5 O, CH 2 NH 2 CH 2 C 5 N 5 H 5 O +? (Husk Pauliprinsippet!) Hvor mange vibrasjonsfrihetsgrader er det i henholdsvis CH 2 NH 2 CH + 2, C 5 N 5 H 5 O, CH 2 NH 2 CH 2 C 5 N 5 H 5 O +? I en Hartree Fock beregning kan vi grovt sett anta at beregningstiden avhenger av antall basisfunksjoner opphøyd i fjerde potens. Dersom en beregning på CH 2 NH 2 CH + 2 tar ett sekund, hvor lang tid vil da en beregning omtrent ta for CH 2 NH 2 CH 2 C 5 N 5 H 5 O +? Vår beregning av den beskrevne kjemiske reaksjonen, der vi endrer avstanden mellom N- atomet i guanin og C-atomet i CH 2 NH 2 CH + 2 skrittvis fra 2.8 Å til 1.5 Å, resulterer i følgende energikurve: Les av reaksjonens aktiveringsenergi E a fra figuren (på øyemål) og regn deretter ut den tilhørende Boltzmannfaktoren exp( E a /k B T ) ved romtemperatur. Kan vi ut fra dette konkludere med at den modellerte reaksjonen ikke vil skje ved romtemperatur? Anta ideell gass, pv = Nk B T, regn ut volumet pr molekyl (ved normalt trykk p), anslå fra dette en midlere fri veilengde mellom to kollisjoner for et gitt molekyl, og dermed en midlere tid τ mellom påfølgende kollisjoner. Husk at temperaturen T er direkte knyttet til molekylenes midlere kinetiske energi.
7 Vedlegg: Formler og uttrykk (Noe av dette kan du få bruk for.) Endimensjonal harmonisk oscillator, V (x) = 1 2 kx2 ( h2 2m 2 ) k x kx2 ψ n (x) = hω(n + 1)ψ 2 n(x); ω = m ; (ψ n, ψ k ) = δ nk ; ( ) mω 1/4 ψ 0 (x) = C 0 e mωx2 /2 h, C 0 = ; π h 2mω ψ 1 (x) = C 0 h x /2 h e mωx2, ψ 2 (x) = C ( ) 0 2mω 2 h x2 1 e mωx2 /2 h, ; ψ n ( x) = ( 1) n ψ n (x). Laplace-operatoren og dreieimpulsoperatorer i kulekoordinater L x = h i 2 = 2 r r r L 2 h 2 r 2 ; ( L 2 = h 2 2 θ + cot θ 2 θ ) sin 2, L θ φ 2 z = h i ( sin φ ) cot θ cos φ, L y = h ( cos φ θ φ i θ [ L 2, L z ] = 0, [ L x, L y ] = i h L z, osv. φ ; cot θ sin φ φ ) ; Hydrogenlignende system V = Ze2 4πɛ 0 r = Z h2 m e a 0 r ; E n = 1 mc2 (αz)2 = h2 2 n 2 2m e a 2 0 m m e Z 2 (l n r ) 2. [m = m 1 m 2 /(m 1 + m 2 ) er den reduserte massen; n r er antall nullpunkter i radialfunksjonen, for 0 < r <.] Vinkelfunksjoner { L 2 L z } { h 2 l(l + 1) Y lm = hm } Y lm, l = 0, 1, 2,...; 2π 0 1 dφ d(cos θ)y l 1 m Y lm = δ l lδ m m; Y 20 = 1 Y 00 = 4π, Y 10 = Y px = 4π 5 16π ( cos2 θ 1), 4π cos θ = 4π z r Y p z, x r = 1 (Y 1, 1 Y 11 ), Y py = 2 4π Y 1±1 = 8π sin θ e±iφ ; y r = i 2 (Y 11 + Y 1, 1 ); 15 Y 2,±1 = 8π sin θ cos θ e±iφ, Y 2,±2 = PY lm = ( 1) l Y lm. 15 2π sin2 θ e ±2iφ.
8 Ehrenfests teorem Noen konstanter d dt r t = p t m og d dt p t = V t. Noen formler h = (18) 10 4 Js = (56) evs; 1 ev = (14) J hartree 2.07 kcal/mol; a 0 = 4πɛ 0 h 2 m e e m (Bohr-radien); α = e2 4πɛ 1 0 hc α2 m e c 2 = h2 2m e a ev k B = J/K = ev/k u = kg tan y = 1 cot y (finstrukturkonstanten); (Rydberg-energien); (atomær masse-enhet); 1 atm = N/m 2 ; 1 Å = m. = tan(y + nπ), n = 0, ±1, ; (Boltzmanns konstant); sinh y = 1 2 (ey e y ); cosh y = 1 2 (ey + e y ); tanh y = 1 coth y = sinh y cosh y ; cosh 2 y sinh 2 y = 1; d d sinh y = cosh y; dy cosh y = sinh y. dy
NORSK TEKST Side 1 av 5
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,
BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,
BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN
Løsningsforslag Eksamen 31. mai 2012 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 31. mai 2012 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 31. mai 2012 FY1006/TFY4215 Innføring i kvantefysikk a. Med energien E 2 = V 0 følger det fra den tidsuavhengige
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl
BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK
EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255
Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59
Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415
EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl
BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl
NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK
Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7
NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 Jon Andreas Støvneng, tel. 73
En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK
EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl
BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 18 67, eller 97 01 2 55 Jon Andreas Støvneng, tel. 7 59 6
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 6. august 2007 kl
NRSK TEKST Side 1 av 7 NRGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK
EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 3 55 Jon Andreas Støvneng, tel. 73
Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 6. juni 2007 kl
NRSK TEKST Side 1 av 7 NRGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73
NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK
En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.
Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:
Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra
EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00
TFY Øving 8 1 ØVING 8
TFY4215 - Øving 8 1 ØVING 8 Mye av poenget med oppgave 2 er å øke fortroligheten med orbitaler, som er bølgefunksjoner i tre dimensjoner. Fordi spørsmålene/oppdragene er spredt litt rundt omkring, markeres
TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette
FY1006/TFY Øving 7 1 ØVING 7
FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom
FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.
FY16/TFY415 - Løsning øving 8 1 Løsning oppgave 3 Vinkelfunksjoner, radialfunksjoner og orbitaler for hydrogenlignende system LØSNING ØVING 8 a. (a1: Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.
Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3
FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i
Institutt for fysikk. Eksamensoppgave i TFY4215 Innføring i kvantefysikk
Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng (med forbehold om streik) Tlf.: 45 45 55 33 ksamensdato: 30. mai 2018 ksamenstid
EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
LØSNING EKSTRAØVING 2
TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =
EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK mandag 26. mai 2008 kl
NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.
Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;
Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
FY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1.
FY006/TFY45 Innføring i kvantefysikk, - Ekstraøving Frist for innlevering (Til I.Ø.): 7. mai kl 7 Oppgave 9 hydrogenlignende atom Ekstraøving I denne oppgaven ser vi på et hydrogenlignende atom, der et
EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK
Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. juni 007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. juni 007 TFY415 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i én dimensjon er enten symmetriske eller
TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige
Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk
Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x
Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for
Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte
EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne
EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling
Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte
TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
FY1006/TFY Øving 9 1 ØVING 9
FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt
Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med
EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,
EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425
Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK
TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY415 - Løsning øving 7 1 Løsning oppgave a. Med z = r cos θ har vi at LØSNING ØVING 7 3-dimensjonal isotrop harmonisk oscillator ψ 1 = C C 1 e mωr / h r cos θ, som er uavhengig av asimutvinkelen φ, dvs
TFY4215_S2018_Forside
Kandidat I Tilkoblet TFY4215_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 6. august
Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden
FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 3 55 Jon Andreas Støvneng, tel. 73
Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer
TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk
Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk
Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.
EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:
Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk
ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien
Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
Institutt for fysikk. Eksamen i TFY4215 Innføring i kvantefysikk
Institutt for fysikk Eksamen i TFY4215 Innføring i kvantefysikk Faglig kontakt under prøven: Jon Andreas Støvneng Tlf.: 45 45 55 33 Dato: 3. juni 2019 Tid (fra-til): 15.00-19.00 Hjelpemiddelkode/Tillatte
Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008
Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen
FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden
TFY løsning øving 9 1 LØSNING ØVING 9
TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,
Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018
Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.
FY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1)
FY1006/TFY4215 -øving 10 1 ØVING 10 Oppgave 25 Om radialfunksjoner for hydrogenlignende system De generelle formlene for energiene og de effektive potensialene for et hydrogenlignende system kan skrives
EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator
FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk
Løsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk
Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen
A) λ < 434 nm B) λ < 534 nm C) λ < 634 nm D) λ < 734 nm E) λ < 834 nm
TFY4215 Innføring i kvantefysikk Eksamen 9. august 2017 Side 1 av 9 1) Hva er bølgelengden til fotoner med energi 40 mev? A) 31 µm B) 41 µm C) 51 µm D) 61 µm E) 71 µm 2) Hva er impulsen til fotoner med
FY1006/TFY Øving 12 1 ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l = 0, 1, ; m = l,, l.
FY1006/TFY4215 - Øving 12 1 Frist for innlevering: Tirsdag 28. april kl.1700 Oppgåve 1 system ØVING 12 Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande For ein partikkel som bevegar
Eksamen FY1006/TFY mai løsningsforslag 1
Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store
Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015
Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.
LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1
TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 Løsning oppgave 5 LØSNING ØVING 2 Krumningsegenskaper for endimensjonale energiegenfunksjoner a. For oscillator-grunntilstanden i oppgave 3b har vi
Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger
Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har
ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at
Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk
FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h
FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse
Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl
ENGLISH TEXT Page 1 of 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 3 55 Jon Andreas Støvneng, tel.
FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.
FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse
Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.
Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur
NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Sie 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt uner eksamen: Ingjal Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK