FY2045/TFY4250 Kvantemekanikk I, løsning øving 13 1 LØSNING ØVING 13. V (x, t) = xf (t) = xf 0 e t2 /τ 2.

Størrelse: px
Begynne med side:

Download "FY2045/TFY4250 Kvantemekanikk I, løsning øving 13 1 LØSNING ØVING 13. V (x, t) = xf (t) = xf 0 e t2 /τ 2."

Transkript

1 FY045/TFY450 Kvantemekanikk I, løsning øving 13 1 Løsning Oppgave 13 1 LØSNING ØVING 13 Transient perturbasjon av harmonisk oscillator a. Med kraften F (t) = qe(t) = F 0 exp( t /τ ) og sammenhengen F (t) = dv (x, t)/dx kan vi bruke perturbasjonsleddet V (x, t) = xf (t) = xf 0 e t /τ. (Vi kan her betrakte F 0 som en litenhetsparameter.) Vi ser at mesteparten av perturbasjonen foregår i et tidsintervall τ. b. Matrise-elementene av perturbasjonen V = x F (t) er 1 V n0 (t) = n V (t) 0 = F (t) n x 0 = F (t) mω n (a + a ) 0 = F (t) mω δ n1, idet a 0 = 1, a 0 = 0 og n 1 = δ n1. Til første orden er altså overgangsamplitudene a (1) 0 n(t) lik null, unntatt for n = 1, dvs vi har bare overgang til første eksiterte tilstand. Ved hjelp av den oppgitte integralformelen 1 Mer generelt har vi at x n = mω (a + ( ) a ) n = n n 1 + n + 1 n + 1, mω som gir n x n = mω ( n δn,n 1 + ) n + 1 δ n,n+1. Matrise-elementene n x n er altså lik null unntatt for n n n = ±1. Med en perturbasjon V x får vi da til 1. orden bare overganger med n n n = ±1. Dette kaller vi en utvalgsregel. Merk at matrise-elementet også kan skrives som et integral: V n0 (t) = F (t) ψ n x ψ 0 dx. Siden xψ 0 ψ 1, er dette integralet forskjellig fra null bare for n = 1.

2 FY045/TFY450 Kvantemekanikk I, løsning øving 13 finner vi overgangsamplituden og den tilhørende overgangssannsynligheten, og a (1) 0 1( ) = 1 i = F 0 i V 10 (t)e iω 10t dt (der ω 10 = (E 1 E 0 )/ = ω ) mω dt e t /τ π e iωt = if 0 mω τ e τ ω /4, P 0 1 ( ) = πf 0 mω τ e τ ω /. c. I grensen τ 0, altså når perturbasjonen blir svært kortvarig eller plutselig, ser vi at P 0 1 0, dvs vi får ingen overgang. Dette er i tråd med den generelle diskusjonen i forelesningene, der vi kom fram til at tilstanden er uendret under plutselige endringer av Hamilton-operatoren; bølgefunksjon og tilstandsvektor endrer seg ifølge tilstandsligningen med endelig hastighet, og rekker derfor ikke å henge med på slike plutselige endringer. Også i grensen τ ser vi at P I denne grensen har vi en svært langsom endring av kraften, altså en såkalt adiabatisk endring av Hamilton-operatoren. Ifølge diskusjonen i forelesningene skal systemet da forbli i grunntilstanden (både under og etter den adiabatiske endringen av Hamilton-operatoren). Det siste bekreftes i denne beregningen; overgangssannsynligheten ovenfor går som vi ser veldig raskt mot null for stor og økende varighet τ av perturbasjonen. Den maksimale overgangssannsynligheten P0 1 max finnes ved derivasjon av P 0 1 med hensyn på τ, for τ m = /ω. Figuren under pkt. a viser at mesteparten av perturbasjonen gjøres unna i løpet av tiden τ, som her blir rundt regnet τ m 3/ω, altså ca. halvparten av periodetiden, T = π/ω. Som du kanskje husker fra diskusjonen i forelesningene, er en perturbasjon over en halv-periode en effektiv sak klassisk, og det samme er altså tilfelle i dette kvantemekaniske eksemplet. d. τ = τ m gir en maksimal overgangssannsynlighet P0 1 max = πe 1 F0 mω π Fo, 3 e Fh der F h mω 3 som nevnt må ha dimensjon kraft, og må være en karakteristisk kraft for oscillatoren. Det viser seg at F h er størrelsen av den harmoniske kraften ved vendeavstanden for grunntilstanden, x 0 = /mω. Med potensialet 1 mω x, dvs. fjærkonstanten k = mω, er den sistnevnte kraften nemlig kx 0 = mω /mω = mω 3, q.e.d. Resultatet ovenfor forteller at når en velger den mest effektive varigheten τ = τ m, så er overgangssannsynligheten til første eksiterte tilstand ifølge 1.-ordens perturbasjonsteori P0 1 max = (π/e)(f0 /Fh). Førsteordens perturbasjonsteori er bare nøyaktig så lenge amplitudene er tilnærmet lik de verdiene de hadde i begynnelsestilstanden. I dette tilfellet vil dette si så lenge overgangssannsynligheten(e) er mye mindre enn 1. Vi kan altså bare stole på første-ordens-resultatet når F0 << Fh (når τ = τ m ).

3 FY045/TFY450 Kvantemekanikk I, løsning øving 13 3 Tilfellet F 0 >> F h ligger derfor langt utenfor gyldighetsområdet for 1.-ordens teori (untatt når τ er veldig liten eller veldig stor, som vi skal se nedenfor). Dette kommer også tydelig fram ved at første-ordens-resultatet P0 1 max da blir mye større enn 1, hvilket selvsagt er feil. Det som skjer ved en slik kraftig perturbasjon (med τ = τ m ) er at en lenge før perturbasjonen er over får en betydelig overgang til andre tilstander, først til 1. eksiterte, og så snart amplituden i denne begynner å vokse, også overgang fra denne til. eksiterte (og forsåvidt også tilbake til grunntilstanden). Slik fortsetter det, med overgang til stadig flere tilstander, helt til perturbasjonen er forbi. Hvor langt opp i de eksiterte tilstandene en finner vesentlige overgangssannsynligheter til slutt, avhenger av hvor stor F 0 er i forhold til F h. Ved perturbasjoner av makroskopisk styrke kan en danne seg et begrep om resultatet ved å regne klassisk. Rent teknisk kan en beregne overgangsamplitudene til tilstander med n ved å iterere som i forelesningene. e. For generelle verdier av τ kan overgangssannsynligheten uttrykkes slik: P 0 1 = π F 0 F h τ τm e τ /τ m. For τ av størrelsesorden τ m eller mindre er π exp( τ /τ m) av størrelsesorden 1. For at førsteordens perturbasjonsteori skal være gyldig, dvs for at P 0 1 skal være liten, må da (F 0 τ) << (F h τ m ), q.e.d. Kommentar: Den overførte impulsen er p = F 0 e t /τ dt = F 0 πτ = τf 0 π, q.e.d. For grunntilstanden, som har energien E 0 = 1 ω, kan vi kalle p 0 me 0 = mω for en karakteristisk impuls. (Det er impulsen for x = 0, når en regner klassisk). Dermed er F h τ m = mω 3 /ω = mω = p 0, q.e.d., og vi kan skrive P 0 1 = ( p) p 0 Gyldighetskriteriet blir derfor e τ /τ m. ( p) << p 0, (for τ < τ m ). Så til tilfellet τ > τ m. Klassisk fant vi at en tilnærmet konstant perturbasjon over mange perioder, som selvsagt gir en stor overført impuls, ikke ga huskeren særlig fart. Den overførte impulsen er derfor mindre relevant her. Kriteriet for å få P 0 1 << 1 kan vi derfor heller formulere slik: F 0 F h << τ m τ eτ /τ m (for alle τ). For store τ vil eksponensialfunksjonen dominere, slik at en ved en slik adiabatisk perturbasjon tåler svært store F 0 i forhold til F h, uten at overgangssannsynligheten blir særlig stor, dvs uten at gyldigheten til første-ordens-resulatet går fløyten.

4 FY045/TFY450 Kvantemekanikk I, løsning øving 13 4 Løsning Oppgave 13 Spinnresonans i 1.-ordens perturbasjonsteori a. Ved å sette inn nullte-ordens-resulatet a (0) (t) = 1 på høyresiden i den eksakte ligningen finner vi spin-flipp-amplituden til første orden: a + (t) = a + (0) 1 iω 1 = i t 0 e i(ω 0 ω)t dt = i ω 1 e i(ω 0 ω)t 1 i(ω 0 ω) ω 1 ω 0 ω ei(ω 0 ω)t/ ei(ω0 ω)t/ e (iω0 ω)t/ i = iω 1 ω ω 0 e i(ω 0 ω)t/ sin[(ω 0 ω)t/]. Sannsynligheten for å finne at spinnet har flippet ved tiden t er altså til første orden P + (t) = a + (t) = ω 1 (ω ω 0 ) sin [(ω ω 0 )t/], q.e.d. b. For ω ω 0 >> ω 1, dvs når vi er langt unna resonans, ser vi at maksimalverdien av a + (t) er mye mindre enn 1. Da er det kanskje ikke så rart at maksimalverdien av dette første-ordens-resultatet er nesten korrekt: Forholdet mellom denne maksimalverdien og den eksakte maksimalverdien er som du ser Ω (ω ω 0 ) = 1 + ω 1 (ω ω 0 ) 1. Vha binomialutviklingen (1 + ɛ) 1/ = ɛ + O(ɛ ) har vi Fra denne ser vi at Ω ω ω 0 = 1 + ω 1 (ω ω 0 ) + O ( ω 4 1/(ω ω 0 ) 4 ) ), q.e.d. Ω ω ω 0 1 ω 1 (ω ω 0 ) ω ω 0. Når differansen mellom argumentene 1Ωt og 1 ω ω 0 t er lik 1 π, er de to sinus-kvadratene kommet helt i mottakt, i den forstand at første-ordens-resultatet er lik null mens det eksakte har et maksimum. Første gang dette skjer er etter en tid t gitt av 1 Ωt 1 ω ω 0 t = 1π, dvs t = π Ω ω ω 0 π ω ω 0 (ω ω 0 ). Her er den første av de to siste faktorene omtrent lik peridetiden for oscillasjonene. Det tar altså svært mange slike perioder før oscillasjonene kommer helt i utakt. c. Ved resonans (ω = ω 0 ) er Ω = ω 1, slik at det eksakte resultatet er P + (t) = sin ( 1 ω 1t) = 1 [1 cos(ω 1t)]. Oscillasjonene skjer altså mye raskere enn ovenfor, og med mye større utsving; idet sannsynligheten for spinn-flipp nå svinger helt over til 1 alt ved t = T/ = π/ω 1, slik at a (T/) = 0. Lenge før dette må vi da vente at første-ordens-resultatet bryter sammen, siden dette bygde på at a (t) 1. Dette sammenbruddet bekreftes av resultatet (til 1. orden) som er P (1) + (t) = 1 4 ω 1t. ω 1

5 FY045/TFY450 Kvantemekanikk I, løsning øving 13 5 Denne sannsynligheten begynner ganske raskt å avvike fra den eksakte, som vi ser, og den blir jo raskt større enn 1: Figuren viser det eksakte resultatet sammen med første-ordensresultatet. Merk at de to resultatene er identiske til laveste orden i ω 1. Løsning Oppgave 13 3 Plutselig og adiabatisk endring av magnetfeltet a. Den eneste tids-skalaen for det uperturberte systemet er her T 0 π/ω 0, (Dette er presesjonstiden, når σ preseserer). En adiabatisk endring av B skal derfor pr. definisjon skje langsomt i forhold til T 0. Da σ her er rettet antiparallelt med B-feltet i begynnelsestilstanden, vil den i den adiabatiske tilnærmelsen følge med B-feltet under den langsomme retningsendringen av dette. Vi vil altså ha σ = ˆB(t) og χ(t) = χ ˆB hele tiden når endringen skjer tilstrekkelig langsomt. b. En plutselig endring av B-feltet skal tilsvarende skje svært raskt i forhold til T 0. Dette går så fort at χ og σ er tilnærmet uendret; de rekker ikke å følge med. Dersom vi f.eks. endrer retningen på B-feltet fra ẑ til ˆx i løpet av tidsintervallet [0, t] (der t << T 0 ), så vil σ være tilnærmet lik ẑ ved tiden t, umiddelbart etter at perturbasjonen er overstått. Etter dette fås en ordinær presesjon à là den vi har sett eksempler på før, denne gang med hensyn på x-aksen.

Løsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen

Detaljer

Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY45/TFY45 8. august - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august FY45/TFY45 Kvantemekanikk I a. For E < V blir området x > klassisk forbudt, og den tidsuavhengige Schrödingerligningen

Detaljer

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk Eksamen TFY45/FY45. desember 8 - løsningsforslag Løsningsforslag Eksamen. desember 8 TFY45 Atom- og molekylfysikk/fy45 Kvantefysikk Oppgave a. For x og E = E B < har den tidsuavhengige Schrödingerligningen

Detaljer

Løsningsforslag Eksamen 1. desember 2009 TFY4250/FY2045

Løsningsforslag Eksamen 1. desember 2009 TFY4250/FY2045 Eksamen TFY45/FY45 1. desember 9 - løsningsforslag 1 Oppgave 1 a. For n = 3j er Løsningsforslag Eksamen 1. desember 9 TFY45/FY45 ψ () 3j (L/3) = A sin(jπ) = og ψ () 3j (L/3) = A sin(jπ) =. Vi kan da konstatere

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8

FY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8 FY045/TFY450 Kvantemekanikk I, løsning øving 8 1 Løsning oppgave 8 1 LØSNING ØVING 8 Koherente tilstander for harmonisk oscillator a. Utviklingen (3) er en superposisjon av stasjonære tilstander for oscillatoren,

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 12 1 LØSNING ØVING 12. Spinnpresonans. 2 hσ blir resultatet. 0 e

FY2045/TFY4250 Kvantemekanikk I, løsning øving 12 1 LØSNING ØVING 12. Spinnpresonans. 2 hσ blir resultatet. 0 e FY045/TFY450 Kvantemekanikk I, løsning øving Løsning Oppgave LØSNING ØVING Spinnpresonans a. Med B B 0 + B B 0 [ê z + ɛ(ê x cos ωt + ê y sin ωt)] B 0 (ê z + ɛˆn), er Hamilton-operatoren med Her er altså

Detaljer

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte

Detaljer

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand FY006/TFY45 - Løsning øving 3 Løsning oppgave 8 LØSNING ØVING 3 Ikke-stasjonær bokstilstand a. For 0 < x < L er potensialet i boksen lik null, slik at Hamilton-operatoren har formen Ĥ = K + V (x) = ( h

Detaljer

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9 FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

A.5 Stasjonære og ikke-stasjonære tilstander

A.5 Stasjonære og ikke-stasjonære tilstander TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2. FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK

Detaljer

EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl

EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 970355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK

Detaljer

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på

Detaljer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk

Detaljer

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 2 1 LØSNING ØVING 2

FY2045/TFY4250 Kvantemekanikk I, løsning øving 2 1 LØSNING ØVING 2 FY2045/TFY4250 Kvantemekanikk I, løsning øving 2 1 LØSNING ØVING 2 Oppgave 2 1 LØSNING nesten en posisjonsegentilstand a Siden den Gaussiske sannsynlighetstettheten ψ(x) 2 = 2β/π exp( 2β(x a) 2 ) symmetrisk

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden

Detaljer

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008

FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008 Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen

Detaljer

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk Eksamen TFY450/FY045 4. desember 007 - løsningsforslag Løsningsforslag Eksamen 4. desember 007 TFY450 Atom- og molekylfysikk/fy045 Kvantefysikk Oppgave a. For tilfellet α 0 har vi et ordinært bokspotensial

Detaljer

FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.

FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse

Detaljer

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7) TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4

FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4 FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i

Detaljer

FY1006/TFY Øving 7 1 ØVING 7

FY1006/TFY Øving 7 1 ØVING 7 FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for

Detaljer

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 Løsning oppgave 5 LØSNING ØVING 2 Krumningsegenskaper for endimensjonale energiegenfunksjoner a. For oscillator-grunntilstanden i oppgave 3b har vi

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå

Detaljer

Forelesning, TMA4110 Torsdag 11/9

Forelesning, TMA4110 Torsdag 11/9 Forelesning, TMA4110 Torsdag 11/9 Martin Wanvik, IMF Martin.Wanvik@math.ntnu.no (K 2.8) Tvungne svingninger. Resonans. Ser på masse-fjær system påvirket av periodisk ytre kraft: my + cy + ky = F 0 cos

Detaljer

LØSNING EKSTRAØVING 2

LØSNING EKSTRAØVING 2 TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =

Detaljer

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast

Detaljer

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005 NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl NORSK TEKST Side av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 0 august 200 kl 0900-300 Tillatte hjelpemidler:

Detaljer

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7 FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga

Detaljer

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:

Detaljer

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden

Detaljer

14 Tidsavhengig perturbasjonsteori

14 Tidsavhengig perturbasjonsteori TFY4250/FY2045 Tillegg 14 - Tidsavhegig perturbasjonsteori 1 TILLEGG 14 14 Tidsavhengig perturbasjonsteori (Avsnittene 11.1 2 i Hemmer, 9.1 3 i B&J, 9.1 i Griffiths) 14.1 Innledning For å illustrere hva

Detaljer

Løysingsframlegg øving 1

Løysingsframlegg øving 1 FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen

Detaljer

FY1006/TFY Løysing øving 4 1 LØYSING ØVING 4. Vibrerande to-partikkelsystem. = k(x l) og F 2 = V = V. k (x l) dvs ω 1 =,

FY1006/TFY Løysing øving 4 1 LØYSING ØVING 4. Vibrerande to-partikkelsystem. = k(x l) og F 2 = V = V. k (x l) dvs ω 1 =, FY6/TFY425 - Løysing øving 4 Løysing oppgåve LØYSING ØVING 4 Vibrerande to-partikkelsystem a) Vi kontrollerer fyrst at kreftene på dei to massane er F V x V x x k(x l) og F 2 V V x x 2 x x x 2 k(x l),

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1) Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og

Detaljer

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette

Detaljer

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene. FY16/TFY415 - Løsning øving 8 1 Løsning oppgave 3 Vinkelfunksjoner, radialfunksjoner og orbitaler for hydrogenlignende system LØSNING ØVING 8 a. (a1: Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

Detaljer

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00

Detaljer

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1.

FY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1. FY006/TFY45 Innføring i kvantefysikk, - Ekstraøving Frist for innlevering (Til I.Ø.): 7. mai kl 7 Oppgave 9 hydrogenlignende atom Ekstraøving I denne oppgaven ser vi på et hydrogenlignende atom, der et

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-13 Lars Kristian Henriksen UiO. februar 15 Oppgave 1 Vi betrakter bølgefunksjonen Ψ(x, t) Ae λ x e iωt hvor A, λ og ω er positive reelle konstanter. a) Finn normaliseringen

Detaljer

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for

Detaljer

Hermiteske og ikke-hermiteske operatorer, kommutatorer,

Hermiteske og ikke-hermiteske operatorer, kommutatorer, TFY4250/FY2045 Tillegg 1 1 Tillegg 1: Hermiteske og ikke-hermiteske operatorer, kommutatorer, etc a. Reelle forventningsverdier krever Hermiteske operatorer I avsnitt 2.2 i Hemmer kan du først se hvordan

Detaljer

Løsningsforslag Matematisk fysikk, 28. mai 2001

Løsningsforslag Matematisk fysikk, 28. mai 2001 Løsningsforslag Matematisk fysikk, 8. mai Oppgave a) Det er trykkfeil i oppgaven. Riktig uttrykk er Vi har sin n θ = π cosx sin θ) = π π = n= n= n= = J x). π n n!). ) n x sin θ) n n= ) n x n ) n x n )

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 1 Oppgave 1 a) Vi antar at Hookes lov, F = kx, gjelder for fjæra. Newtons andre lov gir da eller kx = m d x

Detaljer

B.1 Generelle egenskaper til energiegenfunksjoner

B.1 Generelle egenskaper til energiegenfunksjoner TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner

Detaljer

Eksamen FY1006/TFY mai løsningsforslag 1

Eksamen FY1006/TFY mai løsningsforslag 1 Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

Løsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011

Løsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011 Løsning, eksamen TFY45 Kvantemekanikk II Torsdag 8. desember a) Et kort og fullgodt svar er at en stasjonær tilstand ψ er en løsning av den tidsuavhengige Schrödingerligningen H ψ E ψ, () der H er Hamilton-operatoren

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 2 1 ØVING 2. nesten en posisjonsegentilstand

FY2045/TFY4250 Kvantemekanikk I, øving 2 1 ØVING 2. nesten en posisjonsegentilstand FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 2 1 Oppgave 2 1 ØVING 2 nesten en posisjonsegentilstand Vi har sett at en posisjon ikke kan måles med en usikkerhet som er eksakt lik null. Derimot er det

Detaljer

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige

Detaljer

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra

Detaljer

Løsningsforslag Eksamen 10. august 2010 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 10. august 2010 FY2045/TFY4250 Kvantemekanikk I Eksame FY045/TFY450 10. august 010 - løsigsforslag 1 Oppgave 1 Løsigsforslag Eksame 10. august 010 FY045/TFY450 Kvatemekaikk I a. Bølgefuksjoe ψ for første eksiterte tilstad er (i likhet med ψ 4, ψ 6 osv)

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

Løsning til øving 8 for FY1004, høsten 2007

Løsning til øving 8 for FY1004, høsten 2007 øsning til øving 8 for FY4, høsten 7 Vi tar for oss en partikkel med masse m i en endimensjonal boks med lengde For < x < gjelder den stasjonære Schrödingerligningen h m d ψ Eψ, ( dx der E er energien

Detaljer

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018 Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5 FY045/TFY450 Kvantemekanikk I, 0 - øving 5 ØVING 5 Oppgave 0 α-desintegrasjon α-sdesintegrasjon er en prosess hvor en radioaktiv opphavs -kjerne (parent nucleus) desintegrerer (henfaller) til en datter

Detaljer

TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator TFY415 - Løsning øving 7 1 Løsning oppgave a. Med z = r cos θ har vi at LØSNING ØVING 7 3-dimensjonal isotrop harmonisk oscillator ψ 1 = C C 1 e mωr / h r cos θ, som er uavhengig av asimutvinkelen φ, dvs

Detaljer

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial FY006/TFY45 - Løysing øving 5 Løysing oppgåve LØYSING ØVING 5 Krumning og stykkevis konstante potensial a) I eit område der V er konstant (lik V ), og E V er positiv, er området klassisk tillate og vi

Detaljer

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

Fasit for besvarelse til eksamen i A-112 høst 2001

Fasit for besvarelse til eksamen i A-112 høst 2001 Fasit for besvarelse til eksamen i A-112 høst 21 Oppgave I a Anta at hvert elektron beveger seg i et midlere, sfærisk symmetrisk felt =sentralfelt V r fra kjernen og alle de andre elektronene Ved å velge

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

TMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte

TMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte TMA 4 Matematikk Høsten 4 Svingeligningen med kompleks regnemåte H.E.K., Inst. for matematiske fag, NTNU Svingeligningen forekommer i mange sammenhenger, og ofte vil vi møte regning og utledninger der

Detaljer

Løsning til øving 17 for FY1004, våren 2008

Løsning til øving 17 for FY1004, våren 2008 Løsning til øving 17 for FY1004, våren 2008 Her skal vi se på hvordan spinnet egenspinnet til et elektron påvirkes av et konstant magnetfelt B Merk: Det korrekte navnet på B er magnetisk flukstetthet,

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Løysing øving 2 1 LØYSING ØVING 2. a) For grunntilstanden for den harmoniske oscillatoren har vi

FY1006/TFY4215 Innføring i kvantefysikk - Løysing øving 2 1 LØYSING ØVING 2. a) For grunntilstanden for den harmoniske oscillatoren har vi FY6/TFY45 Innføring i kvantefysikk - Løysing øving Løysing oppgåve LØYSING ØVING Krumningseigenskapar for eindimensjonale energiegenfunksjonar a) For grunntilstanden for den harmoniske oscillatoren har

Detaljer

TFY løsning øving 9 1 LØSNING ØVING 9

TFY løsning øving 9 1 LØSNING ØVING 9 TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,

Detaljer

TFY Øving 8 1 ØVING 8

TFY Øving 8 1 ØVING 8 TFY4215 - Øving 8 1 ØVING 8 Mye av poenget med oppgave 2 er å øke fortroligheten med orbitaler, som er bølgefunksjoner i tre dimensjoner. Fordi spørsmålene/oppdragene er spredt litt rundt omkring, markeres

Detaljer

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002 NTNU Side 1 av 6 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF40 Fysikk Tirsdag 3. desember 00 Dette løsningsforslaget er på 6 sider. Oppgave 1. a) Amplituden

Detaljer