Kursopplegg for TFY4250 og FY2045
|
|
- Edith Sletten
- 7 år siden
- Visninger:
Transkript
1 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten kursopplegg 1 Kursopplegg for TFY4250 og FY2045 (under utarbeidelse) Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics, av B.H. Bransden & C.J. Joachain. Denne vil også være nyttig i TFY4205 Kvantemekanikk og i TFY4210 Anvendt kvantemekanikk. Den finnes på Tapir og anbefales innkjøpt. En annen god bok i kvantemekanikk er DJ Griffiths, Introduction to quantum mechanics. I likhet med Hemmers bok går begge disse bøkene langt videre enn vårt kurs, og vil være spesielt nyttige for dem som ønsker å lære seg mer kvantemekanikk. Bakgrunnsstoff Kapittel 1 i Hemmers bok sier litt om den historiske bakgrunnen for utviklingen av den kvantemekaniske teorien. Kapittel 1 i Bransden & Joachain gir en fyldigere framstilling. En nokså kortfattet versjon av dette stoffet kan du også finne i notatet Bakgrunnsstoff. (Se under Lærebok på hjemmesiden. Dette notatet er identisk med Tillegg 1 i TFY4215 våren 2005.). Dette kan du betrakte som bakgrunnsstoff. Et viktig poeng i dette notatet er å motivere Schrödingerligningen og energi- og impulsoperatorene; jf grunnpostulatene i neste kapittel. Felles undervisning i to emner De to emnene TFY4250 Atom- og molekylfysikk for teknologistudiet, og FY2045 Kvantefysikk for realfagsstudiet i fysikk har felles undervisning, pensum og eksamen, og er altså i realiteten ett og samme kurs. Dette kurset er nummer to i en hel rekke av fysikk-emner som tar for seg kvantemekanisk teori og de mange fysiske anvendelsene av denne teorien. Neste kurs i rekken, TFY4205 Kvantemekanikk i 6. semester, er også felles for de to studiene (både formelt og reelt). Bakgrunnen fra 1.-avdeling er imidlertid litt forskjellig: Teknologistudentene har TFY4215 Kjemisk fysikk og kvantemekanikk i 4. semester, mens realfagsstudentene har FY1004 Innføring i kvantefysikk i 2. årskurs. Innholdet i disse emnene er ikke helt det samme. I det nye kurset FY2045/TFY4215 må dere derfor starte med å konsolidere grunnlaget fra begynnerkursene sørge for en felles grunnmur, for å si det på den måten. Dette må dere i hovedsak gjøre ved å repetere på egen hånd. Her passer kapittel 2 i Hemmers bok, om FUNDAMENTALE PRINSIPPER, veldig godt. Dette kapitlet inneholder noe av verktøyet som brukes i kvantemekanikk. Mye av dette har dere allerede vært gjennom. Men her er det uansett fornuftig med en repetisjon. Kapittel 2 i Hemmer utfylles av Tilleggene som listes opp i kapittel A i innholdsfortegnelsen nedenfor. Stoffet i dette kapitlet er også å betrakte som pensum i inneværende kurs, selv om store deler av det altså må repeteres på egen hånd.
2 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten kursopplegg 2 A. FUNDAMENTALE PRINSIPPER Dette kapitlet følger stort sett Hemmers kapittel 2, og mesteparten av dette stoffet må du repetere på egen hånd. Nedenfor følger en veiviser gjennom dette kapitlet, hvor det i tillegg til Hemmer også refereres til andre kilder. A.1 Grunnpostulatene (leses på egen hånd) På samme måte som Newtons lover fungerer som grunnpostulater for mekanikk, kan kvantemekanisk teori tuftes på et sett av grunnpostulater. Hvordan disse formuleres er litt av en smaksak. Her holder vi oss til de fire postulatene hos Hemmer: Operatorpostulatet, tilstandspostulatet, forventningsverdipostulatet og målepostulatet. Disse bør du innprente vha avsn 2.1 i Hemmer, for vi har stadig bruk for dem. En litt annen formulering av postulatene finner du i kapittel 5 hos Bransden & Joachain (B&J). A.2 Hermiteske og ikke-hermiteske operatorer (leses på egen hånd) a. Reelle forventningsverdier F krever hermiteske operatorer ˆF b. Definisjon av den adjungerte, Â, til en operator  c. Kommuterende og ikke-kommuterende operatorer Dette stoffet dekkes av 2.2 i Hemmer. Dette utfylles av Tillegg 1. Se ellers 5.1, 5.2 og 5.4 i B&J. A.3 Egenfunksjoner og egenverdier (leses på egen hånd) Dette stoffet, som du finner nydelig beskrevet i avsnitt 2.4 i Hemmer, antas for det meste kjent, og må leses på egen hånd. Se ellers kap 5 i B&J. Sjekk at du har kontroll på følgende: a. Spektret til en operator b. Hermiteske operatorer har reelle egenverdier c. I egentilstanden ψ n (til operatoren ˆF ) er observabelen F skarp d. Ortogonalitet e. Ortonormale egenfunksjonssett. (Se Tillegg 2 ) f. Diracs delta-funksjon (Appendix B i Hemmer, Appendix A i B&J) g. Deltafunksjons-normering (se 2.4.4) A.4 Utvikling i egenfunksjoner Også dette er et svært sentralt kapittel i kvantemekanisk teori. Hemmer gir en konsis framstilling i avsnitt 2.5. Denne bør du lese først. Du finner også relevant stoff i avsnitt 5.3 i B&J, og i kapittel 3 i Griffiths. Et supplement til Hemmer finner du i Tillegg 3, hvor analogien med vektorer er framhevet. De som tok TFY4215 i vår, vil se at en god del av stoffet er repetisjonsstoff fra avsnitt 3 og 4 i Tillegg 2 i dette kurset. Nytt i forhold til dette notatet er stoffet side 8 9 og 10 15, som vil bli forelest. Innholdet i Tillegg 3 finner du i listen nedenfor:
3 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten kursopplegg 3 a. Begrepet fullstendig sett eller basis, illustrert vha to-dimensjonale vektorer b. Fullstendige sett av funksjoner c. Er funksjoner vektorer? d. Plane bølger som basis Fourier-integraler e. Fysisk tolkning av utviklingskoeffisienter f. Fysisk tolkning i det kontinuerlige tilfellet g. ψ x (x) = δ(x x ) som basis ( x-basisen ) (foreleses) h. Impulsrepresentasjonen av kvantemekanikk (4.6 i Hemmer, p 124 i B&J) (foreleses) A.5 Stasjonære og ikke-stasjonære tilstander Dette er som du vet sentrale begreper i kvantemekanikk, som du kan repetere vha avsnitt 2.3 i Hemmer, avsnitt 3.5 i B&J og avsnitt 2.1 i Griffiths. Se dessuten Tillegg 4 (hvor innholdet pkt. a og b er hentet fra et tilsvarende notat i TFY4215, mens c er nytt): a. Stasjonære tilstander (foreleses ikke) b. Ikke-stasjonære tilstander (foreleses ikke) c. Når Ĥ er tidsavhengig, Ĥ = Ĥ(t) (foreleses senere) A.6 Fri partikkel. Bølgepakker (foreleses) Her følger vi Tillegg 5, hvor vi tar for oss: a. Stasjonære tilstander for fri partikkel b. Ikke-stasjonære tilstander for fri partikkel c. Fasehastighet. Dispersjon d. Gruppehastighet Se også 2.4 i Griffiths, og , samt 4.2 i B&J. B. ÉNDIMENSJONALE POTENSIALER Dette kapitlet dekker utvalgte deler av stoffet i Hemmers kapittel 3, deriblant endelig potensialbrønn, deltafunksjonsbrønn, spredning i én dimensjon og harmonisk oscillator. B.1 Generelle egenskaper til energiegenfunksjoner Se avsnittene 3.1 i Hemmer og 3.6 i B&J, samt Tillegg 6. Mye av stoffet i dette tillegget er vel repetisjonsstoff (se f.eks Tillegg 3 i TFY4215), men vi skal gå (raskt) gjennom det. Innholdet er: a. Energiegenfunksjoner kan velges reelle b. Kontinuitetsbetingelser c. Krumningsegenskaper d. Degenerasjonsgrad e. Stykkevis konstante potensialer f. Symmetriske potensialer
4 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten kursopplegg 4 B.2 En endelig potensialbrønn Se avsnittene 3.3 i Hemmer og 4.6 i B&J, 2.6 i Griffiths, samt Tillegg 7. I avsnitt B.2 ser vi nærmere på endelig potensialbrønn (som også var med i Tillegg 3 i TFY4215), ut fra et krumnings-synspunkt. Første del av dette avsnittet bør du repetere på egen hånd. Innholdet er: a. Repetisjon av firkantbrønn b. Diskusjon ut fra krumningsegenskaper B.3 Deltafunksjons-brønn I avsnitt B.3 tar vi for oss deltafunksjonsbrønnen, som er nytt stoff. Se 3.4 i Hemmer, 2.5 i Griffiths, samt Tillegg 7. B.4 Spredning i én dimensjon Se avsnittene 3.6 i Hemmer og i B&J, samt Griffiths p 56. Forelesningene følger Tillegg 8, hvor innholdet er: a. Hva er spredning i dimensjon? b. Spredningsberegning basert på energiegenfunksjoner c. Bølgepakke-betraktning d. Spredning mot potensialsprang e. Spredning på firkant-brønn eller -barriere f. Tunnel-effekten g. Felt-emisjon h. Sveipe-tunnelerings-mikroskopi i. α-desintegrasjon og fusjon B.5 Éndimensjonal harmonisk oscillator Se avsnittene 3.5 i Hemmer, 2.3 i Griffiths og 4.7 i B&J, samt Tillegg 9. Mesteparten av dette Tillegget er repetisjonsstoff, som må leses på egen hånd. Avsnitt e er nytt. Dette utsetter vi til senere, fordi metoden er nært beslektet med en tilsvarende metode som kan brukes til å finne dreieimpulstilstander. Innholdet er: a. Den enkle harmoniske oscillatoren b. Illustrasjon av rekkeutviklingsmetoden c. Rekkeutviklingsmetoden brukt på oscillatorligningen d. Sammenligning med klassisk harmonisk oscillator e. Operator-metoden (gjennomgås senere i kurset) f. Eksempler C. TREDIMENSJONALE POTENSIALER C.1 Tredimensjonal boks (Tillegg 10, Hemmer 5.2, 5.3 i Griffiths, 7.1 i B&J) a. Energinivåer
5 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten kursopplegg 5 b. Symmetri fører til degenerasjon c. Tilstandstettheten d. Periodiske grensebetingelser C.2 Ideell gass med spinn- 1 2-fermioner (Tillegg 10, 8.6 i Hemmer, 5.3 i Griffiths, 10.3 i B&J) a. Generelt om Fermi-gass ved lav temperatur b. Fri-elektron-modellen for ledningselektroner i metaller c. Electroner i hvite dverger d. Fermi-gass-modellen for kjerner C.3 Ideell Bose-gass (Tillegg 10) a. Bose Einstein-fordelingen (5.4 i Griffiths) b. Maxwell Boltzmann-fordelingen c. Plancks strålingslov d. Einsteins A- og B-koeffisienter (9.3 i Griffiths) e. Maser og laser C.4 Sylindersymmetriske potensialer (Tillegg 11) a. Klassisk bevegelse i sentralfelt, V (r) b. Todimensjonale systemer c. Sirkulært todimensjonalt bokspotensial C.5 Dreieimpuls og kulesymmetriske potensialer (Tillegg 12) Innholdet i dette kapitlet er definert av Tillegg 12 (se punktene a-e nedenfor). Som du vil se er en god del av dette repetisjonsstoff, som du må friske opp på egen hånd. Hovedreferansen ved siden av Tillegg 12 er avsnittene i Hemmer. Se også 4.1 i Griffiths og 6.1,6.3, 6.4 og 7.2 i B&J. a. Innledning. Dreieimpulsalgebraen b. Simultane egenfunksjoner til ˆL 2 og ˆL z de sfæriske harmoniske c. Stiv rotator d. Bevegelse i kulesymmetrisk potensial. Radialligningen e. Kulesymmetrisk boks Vedlegg 1: Om kulekoordinater etc Vedlegg 2: Bevis for at Θ lm (θ) er proporsjonal med de tilordnede Legendre-funksjonene C.6 Hydrogenlignende atomer (Tillegg 13) Innholdet i dette kapitlet er definert av Tillegg 13 (se punktene a-g nedenfor). Som du vil se er en god del av dette repetisjonsstoff, som du må friske opp så godt du kan. Hovedreferansen ved siden av Tillegg 13 er avsnittene i Hemmer. Se også 4.2 i Griffiths og 7.3 og 7.5 i B&J.
6 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten kursopplegg 6 a. Innledning. To-partikkel-systemer b. Energikvantisering c. Degenerasjonsgraden d. Radialfunksjoner og fullstendige bølgefunksjoner e. Hydrogenlignende atomer f. Orbitaler g. Hybridisering Vedlegg: Separasjon av tyngdepunkts- og relativbevegelse D. STRÅLINGSOVERGANGER. Vekselvirkning med det elektromagnetiske feltet i Griffiths (Pensum dekkes her av Tillegg 14, hvor innholdet er:) a. Innledning. Strålingsoverganger b. Vekselvirkende atom og elektromagnetisk bølge. Dipoltilnærmelsen c. Tidsavhengig perturbasjonsteori (se også pkt c i Tillegg 4) d. Utvalgsregler i dipoltilnærmelsen e. Levetid. Linjebredde E. MAGNETISKE MOMENTER. SPINN E.1 Energibidrag knyttet til dreieimpuls og spinn 1.5, 6.8 og 12.2 i B&J, 8.3 i Hemmer, 4.4 i Griffiths (Pensum dekkes her av Tillegg 15, hvor innholdet er:) a. Magnetisk moment b. Normal Zeeman-effekt c. Stern Gerlachs eksperiment E.2 Spinn i Hemmer, 4.4 i Griffiths, 6.8 i B&J (Pensum dekkes her av Tillegg 16, hvor innholdet er:) a. Hva spinnet ikke er b. Generell teori for spinn og andre dreieimpulser c. Formalisme for spinn 1 2 d. Spinnretning e. Presesjon i homogent magnetfelt E.3 Addisjon av dreieimpulser 8.4 i Hemmer, 4.4 i Griffiths, 6.10 i B&J (Pensum dekkes her av Tillegg 17, hvor innholdet er:)
7 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten kursopplegg 7 a. Kvantemekanisk addisjon av dreieimpulser b. Addisjon av to spinn 1 2 c. Addisjon av dreieimpulser generelt d. Kommuteringsregler e. Addisjon av banedreieimpuls og spinn F. ATOMER OG MOLEKYLER F.1 Hydrogenatomet Kap 7 og 8 i B&J, 9.1 i Hemmer, 6.3 i Griffiths (Pensum dekkes her av Tillegg 18, hvor innholdet er:) a. To måter å klassifisere tilstandene på b. Finstruktur. Spinn-bane-kobling og relativistisk (kinetisk) korreksjon c. Lamb-forskyvning og hyperfinoppsplitting F.2 Helium 9.2 i Hemmer, 5.2 i Griffiths, kap 10 i B&J (Pensum dekkes her av Tillegg 19, hvor innholdet er:) a. Innledning b. Sentralfelt-tilnærmelsen c. Eksperimentelt spektrum. Korreksjoner d. Andre korreksjoner. Total dreieimpuls
Kursopplegg for TFY4250 og FY2045
TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2004 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 Felles undervisning i to emner De to emnene TFY4250 Atom- og molekylfysikk for teknologistudiet,
DetaljerKursopplegg for TFY4250 og FY2045
TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2008 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics,
DetaljerPensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk
FY1006/TFY4215 våren 2012 - pensum og kursopplegg 1 Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk våren 2012 Litt om de to emnene De to emnene FY1006 og TFY4215 er identiske både når
DetaljerKursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I
FY2045/TFY4250 Kvantemekanikk I, kursopplegg 1 Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics, av B.H.
DetaljerPensum og kursopplegg for FY1006 Innføring i kvantefysikk TFY4215 Kjemisk fysikk og kvantemekanikk
FY1006/TFY4215 våren 2009 - pensum og kursopplegg 1 Pensum og kursopplegg for FY1006 Innføring i kvantefysikk TFY4215 Kjemisk fysikk og kvantemekanikk Litt om de to emnene våren 2009 (under utarbeidelse)
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden
DetaljerA.3.e: Ortogonale egenfunksjonssett
TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
DetaljerOppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5
FY045/TFY450 Kvantemekanikk I, 0 - øving 5 ØVING 5 Oppgave 0 α-desintegrasjon α-sdesintegrasjon er en prosess hvor en radioaktiv opphavs -kjerne (parent nucleus) desintegrerer (henfaller) til en datter
DetaljerB.1 Generelle egenskaper til energiegenfunksjoner
TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:
DetaljerA.5 Stasjonære og ikke-stasjonære tilstander
TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se
DetaljerHermiteske og ikke-hermiteske operatorer, kommutatorer,
TFY4250/FY2045 Tillegg 1 1 Tillegg 1: Hermiteske og ikke-hermiteske operatorer, kommutatorer, etc a. Reelle forventningsverdier krever Hermiteske operatorer I avsnitt 2.2 i Hemmer kan du først se hvordan
DetaljerTFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er
DetaljerLØSNING EKSTRAØVING 2
TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =
DetaljerFY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
DetaljerForelesningsnotater om spinn, FYS2140 (Erstatter kap. 4.4 i Griffiths) Susanne Viefers
Forelesningsnotater om spinn, FYS2140 (Erstatter kap. 4.4 i Griffiths) Susanne Viefers 20. april 2005 Dette notatet sammenfatter forelesningene om elektronets egenspinn og erstatter dermed avsnitt 4.4
Detaljerψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at
Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255
DetaljerTFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
DetaljerTFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
DetaljerLøsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige
DetaljerLøsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte
DetaljerFaglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerFaglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK
DetaljerOppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
DetaljerFigur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.
Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur
DetaljerEKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
Detaljer2. Postulatene og et enkelt eksempel
FY619 Moderne fysikk 1 Dette notatet kan leses parallelt med deler av kapitlene 2 og 3 i Hemmer; fortrinnsvis delkapitlene 3.1, 3.2 og 2.1. NOTAT 2 2. Postulatene og et enkelt eksempel I kapittel 2 i Hemmer
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
Detaljer4. Viktige kvantemekaniske teoremer
FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske
DetaljerFY1006/TFY Øving 7 1 ØVING 7
FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom
DetaljerTFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette
DetaljerREPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31
REPETISJON FYS2140 Susanne Viefers s.f.viefers@fys.uio.no Fysisk Institutt, Teorigruppa REPETISJON FYS2140 p.1/31 Teoretisk pensum I Første del, Forelesningsnotater Enheter og størrelser i Fys2140 Sort
Detaljer4. Viktige kvantemekaniske teoremer
FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske
DetaljerInstitutt for fysikk. Eksamen i TFY4215 Innføring i kvantefysikk
Institutt for fysikk Eksamen i TFY4215 Innføring i kvantefysikk Faglig kontakt under prøven: Jon Andreas Støvneng Tlf.: 45 45 55 33 Dato: 3. juni 2019 Tid (fra-til): 15.00-19.00 Hjelpemiddelkode/Tillatte
DetaljerFY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1.
FY006/TFY45 Innføring i kvantefysikk, - Ekstraøving Frist for innlevering (Til I.Ø.): 7. mai kl 7 Oppgave 9 hydrogenlignende atom Ekstraøving I denne oppgaven ser vi på et hydrogenlignende atom, der et
Detaljer9 Kulesymmetrisk boks. Sylindersymmetriske
TFY4250/FY2045 Tillegg 9 - Kulesymmetrisk boks. Sylindersymmetriske systemer 1 TILLEGG 9 9 Kulesymmetrisk boks. Sylindersymmetriske systemer I dette Tillegget starter vi med en gjennomgang av det kulesymmetriske
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
DetaljerLøsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
DetaljerTFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY415 - Løsning øving 7 1 Løsning oppgave a. Med z = r cos θ har vi at LØSNING ØVING 7 3-dimensjonal isotrop harmonisk oscillator ψ 1 = C C 1 e mωr / h r cos θ, som er uavhengig av asimutvinkelen φ, dvs
DetaljerREPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31
REPETISJON FYS2140 Susanne Viefers s.f.viefers@fys.uio.no Fysisk Institutt, Teorigruppa REPETISJON FYS2140 p.1/31 Teoretisk pensum I Første del, Forelesningsnotater Enheter og størrelser i Fys2140 Sort
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerKJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering
KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerLøsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden
DetaljerFY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.
FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
DetaljerKJM Molekylmodellering
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk
DetaljerLøsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk
Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425
DetaljerFYS2140 Kvantefysikk Forelesning 29. Maria V. Bøe og Marianne E. Bathen
FYS2140 Kvantefysikk Forelesning 29 Maria V. Bøe og Marianne E. Bathen I dag Oppsummering av pensum Basert på vår oppfatning og erfaring (ikke eksamen) 1. Brudd med klassisk fysikk (15 min) 2. Schrödingerlikningen
DetaljerFY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3
FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i
DetaljerFYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4
FYS2140 Kvantefysikk, Oblig 11 Sindre Rannem Bilden og Gruppe 4 30. april 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen er satt sammen av den første delen av eksamen våren 2010
DetaljerLøsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
DetaljerEKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne
EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl
BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK
DetaljerEksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger
Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har
DetaljerOppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)
Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og
DetaljerLøsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;
DetaljerEKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 970355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK
DetaljerLøsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
DetaljerTFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
DetaljerEKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK
DetaljerEn samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.
Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:
DetaljerFY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8
FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 I. FLERVALGSOPPGAVER (Teller 2.5% 30 = 75%) En fri partikkel med masse m befinner seg i det konstante potensialet V = 0 og beskrives
DetaljerE. MAGNETISKE MOMENTER. SPINN E.1 Energibidrag knyttet til dreieimpuls og spinn
TFY4250/FY2045 2005 - Tillegg 15 - E. Magnetiske momenter. Spinn 1 Tillegg 15: E. MAGNETISKE MOMENTER. SPINN E.1 Energibidrag knyttet til dreieimpuls og spinn (Se avsnittene 1.5, 6.8 og 12.2 i B&J, 8.3
DetaljerLøsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
DetaljerEKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.
EKSAMENSOPPGAVE Eksamen i: FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: ett handskrevet A4-ark(2 sider med egne notater, samt K. Rottmann: Matematisk
DetaljerLøsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019
Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet
Detaljer2. Fundamentale prinsipper
TFY4215 Tillegg 2 1 Dette notatet leses med fordel parallelt med kapittel 2 i Hemmer. TILLEGG 2 2. Fundamentale prinsipper Kapittel 2 i dette kurset Fundamentale prinsipper dekkes av Tillegg 2, som du
Detaljer2. Fundamentale prinsipper
FY1006/TFY4215 Tillegg 2 1 Dette notatet skal leses parallelt med kapittel 2 i Hemmer. TILLEGG 2 2. Fundamentale prinsipper Kapittel 2 i dette kurset Fundamentale prinsipper dekkes av Tillegg 2, som du
DetaljerEksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
DetaljerTFY Øving 8 1 ØVING 8
TFY4215 - Øving 8 1 ØVING 8 Mye av poenget med oppgave 2 er å øke fortroligheten med orbitaler, som er bølgefunksjoner i tre dimensjoner. Fordi spørsmålene/oppdragene er spredt litt rundt omkring, markeres
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK
DetaljerTFY løsning øving 9 1 LØSNING ØVING 9
TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,
DetaljerLøsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for
DetaljerLøsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med
DetaljerEksamen FY1006/TFY mai løsningsforslag 1
Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store
DetaljerLØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1
TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 Løsning oppgave 5 LØSNING ØVING 2 Krumningsegenskaper for endimensjonale energiegenfunksjoner a. For oscillator-grunntilstanden i oppgave 3b har vi
DetaljerNORSK TEKST Side 1 av 5
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerFY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar
FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 Frist for innlevering: tirsdag 3. februar Oppgave 1 ØVING 2 Krumningseigenskapar for eindimensjonale energieigenfunksjonar Ein partikkel med masse m
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerKontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
DetaljerLøsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk
Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x
DetaljerTFY4215_S2018_Forside
Kandidat I Tilkoblet TFY4215_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 6. august
DetaljerBOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,
BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
DetaljerFYS2140 Kvantefysikk, Obligatorisk oppgave 10. Nicolai Kristen Solheim, Gruppe 2
FYS2140 Kvantefysikk, Obligatorisk oppgave 10 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 10 Oppgave 1 a) Ligningene 1, 2 og 3 er egenverdifunksjoner, mens ligning 4 er en deltafunksjon. b)
Detaljer4. Viktige kvantemekaniske teoremer
FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8
FY045/TFY450 Kvantemekanikk I, løsning øving 8 1 Løsning oppgave 8 1 LØSNING ØVING 8 Koherente tilstander for harmonisk oscillator a. Utviklingen (3) er en superposisjon av stasjonære tilstander for oscillatoren,
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
DetaljerEKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
Detaljer