KJM Molekylmodellering. Molekylmekanikk. Oversikt. Introduksjon

Størrelse: px
Begynne med side:

Download "KJM Molekylmodellering. Molekylmekanikk. Oversikt. Introduksjon"

Transkript

1 KJM Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylmekanikk KJM Molekylmodellering p.1/50 Molekylmekanikk p.2/50 Oversikt Introduksjon Detaljert beskrivelse av kraftfeltmetoder Kort om anvendelser/begrensninger Introduksjon Molekylmekanikk p.3/50 Introduksjon p.4/50

2 Klassisk modell Ren klassisk beskrivelse av molekyler: Atomene modelleres som baller (eventuelt med ladning) Bindinger modelleres som fjærer Molekylets energi er funksjon av koordinatene til atomene Ingen eksplisitt behandling av elektronene Strukturenheter Observasjon: Molekyler er bygget opp av enheter som er strukturelt svært like Eksempler: Alle C-H bindinger er omtrent like lange ( Å) Alle C=O bindinger er på rundt 1.21 Å har vibrasjonsfrekvens på ca cm Strukturenheter/funksjonelle grupper Introduksjon p.5/50 Introduksjon p.6/50 Kraftfelt Kraftfelt Begrenset antall parametre beskriver hver atomtype Et sett slike parametre for ulike grunnstoffer utgjør et kraftfelt (force field) Finnes et utall forskjellige kraftfelt For organiske molekyler/biomolekyler Metallforbindelser Universelle MM2(91) atomtyper Introduksjon p.7/50 Introduksjon p.8/50

3 Kraftfeltenergien Geometrioptimering Energien er gitt som en sum, molekylet svarer til strekk, bøy vridning av er kryssledd mellom de disse tre er vekselvirkninger mellom atomer ikke direkte bundet til hverandre (1) Kraftfeltenergien er en funksjon av de 3 koordinatene til molekylet kartesiske Mange-dimensjonal potensialenergiflate (PES) Stabile konformere svarer til minima på denne flaten Lokaliseres ved å minimere atomkoordinatene Overgangstilstander er sadelpunkter med hensyn på Introduksjon p.9/50 Introduksjon p.10/50 Diatom Kraftfeltmodeller For et diatom AB har vi en en-dimensjonal potensialkurve Minimum for likevektsavstanden er dissosiasjonsenergien Kraftfeltmodeller p.11/50 Kraftfeltmodeller p.12/50

4 # er den kubiske kraftkonstanten (anharmonisk Diatom To første ledd er null for Den enkleste modellen blir da (3) Kraftkonstanten Fungerer OK for små forskyvninger fra Kraftfeltmodeller p.14/50 Bindingsstrekk Løsning: Inkluder så kvartisk ledd:! $ #!% (5) Denne formen benyttes f.eks. i det organiske MM3 kraftfeltet Kraftfeltmodeller p.16/50 Diatom Taylor-ekspansjon rundt (2) Kraftfeltmodeller p.13/50 Bindingsstrekk Nok et ledd gir bedre modell! (4)! kraftkonstant) Problem: Energi går mot minus uendelig når bindingen strekkes! Kraftfeltmodeller p.15/50

5 % Bindingsstrekk Bindingsstrekk Hvorfor ikke benytte Morse-potensialet? #! (6) der er dissosiasjonsenergien Eksponentialfunksjonen er beregningsmessig svært tung Kvartisk funksjon er god nok for relevante forskyvninger CH strekkenergi Kraftfeltmodeller p.17/50 Kraftfeltmodeller p.18/50 Bøying av vinkler Enkleste modell er igjen en harmonisk approksimasjon er vinkelen mellom bindingene A-B B-C er en likevektsvinkel (7) Bøying av vinkler Kan utvides med flere ledd MM3 benytter 6(!) ledd for visse atomkombinasjoner ABC Andre kraftfelt nøyer seg med to Egne parametre for små ringer Generelle problemer Feil oppførsel for Spesielt uorganiske systemer kan ha flere minima (aksiale/ekvatoriale posisjoner) Kraftfeltmodeller p.19/50 Kraftfeltmodeller p.20/50

6 Bøying av vinkler Vridning rundt bindinger Vridning rundt sentral bindingen B-C i fire-atomers sekvensen ABCD Diedervinkelen er definert i intervallet [ [, ], ] eller H O bøyingsenergi Kraftfeltmodeller p.21/50 Kraftfeltmodeller p.22/50 Vridning rundt bindinger Vridning rundt bindinger Fundamentalt forskjellig fra strekk bøy Periodisk funksjon av vinkelen Energibarrierene for vridning er små Taylor-ekspansjon lite egnet Benytter Fourier serie (8) har periode på, på etc. CH FCH F Kraftfeltmodeller p.23/50 Kraftfeltmodeller p.24/50

7 Vridning rundt bindinger Vridning rundt bindinger For noen atomkombinasjoner ABCD settes enkelte Eksempel: Etan har tre minima tre maksima for vridning rundt C-C bindingen, kun leddene kan bidra Fourier serien kan gjøres enda mer fleksible ved å introdusere fasefaktorer Normalt benyttes CH FOH Kraftfeltmodeller p.25/50 Kraftfeltmodeller p.26/50 Vridning ut av plan van der Waals energi Et plant AB pyramidal struktur molekyl har barriere mot å danne Vanskelig å modellere med Egen funksjon eller ut-av-planet strekk behandles som diedervinkel, vinkel beskriver vekselvirkning mellom atomer som ikke er direkte bundet til hverandre (vekselvirkning mellom elektronskyene) Skyldes ikke ladning, men indusert dipol-dipol vekselvirkning 0 ved lange avstander svært repulsiv ved korte avstander svakt attraktiv ved middels avstander Kalles dispersjonskrefter Kraftfeltmodeller p.27/50 Kraftfeltmodeller p.28/50

8 van der Waals energi Vanlig å benytte Lennard Jones potensialet der Det attraktive $ er passelige parametre -leddet er korrekt for store avstander Det repulsive -leddet er valgt av beregningsmessige årsaker (9) van der Waals energi I noen kraftfelt beregnet på mindre molekyler foretrekkes Morse-potensialet Hill-potensialet der, små ) er parametre (NB! problemer med (10) van der Waals energi Kraftfeltmodeller p.29/50 Elektrostatisk energi Kraftfeltmodeller p.30/50 er den andre vekselvirkningen mellom atomer som ikke er bundet til hverandre Vekselvirkning mellom permanente elektriske moment (ladning, dipol, kvadropol etc.) Kan tilordne ladning til hvert atom (11) Basert på atomtype (fiksert) eller basert på omgivelsene (variabel) H -He potensial Kraftfeltmodeller p.31/50 Kraftfeltmodeller p.32/50

9 Elektrostatisk energi Elektrostatisk energi Alternativt kan man tilordne dipolmoment til hver binding der, er vinkler som definerer orienteringen av dipolmomentene Dielektrisitetskonstanten kan varieres (12) Modellen med atomladninger mest vanlig, lettest å parametrisere beregnes for atomer som er separert av mer enn tre bindinger Noen kraftfelt inkluderer de ikke-bundne bidragene (nedskalert) for atomer separert av tre bindinger (A-B-C-D) Få kraftfelt inkluderer polarisasjon (krevende beregningsmessig) Kraftfeltmodeller p.33/50 Kraftfeltmodeller p.34/50 Hydrenbindinger Sterke bindinger, men ingen formell binding Kan inkluderes gjennom LJ-potensiale (spesialtilfelle) ved å benytte modifisert Mer vanlig å inkludere implisitt gjennom elektrostatisk vekselvirkning Kryssledd Bindinger, vinkler diedervinkler er ikke uavhengige koordinater Eksempel: Reduserer man vinkelen i H bindingene strekkes, økes vinkelen, blir optimal bindingslengde kortere Modelleres ikke av leddene Må inkludere eksplisitte koblinger, O, vil Kraftfeltmodeller p.35/50 Kraftfeltmodeller p.36/50

10 ! Kryssledd Den viktigste er kobling mellom strekk bøy Andre relevante kombinasjoner er,, De fleste kraftfelt inkluderer bare noen få av disse (13), Parametrisering Har presentert en lang rekke matematiske uttrykk Hva med alle parametrene i uttrykkene? Tilpasses best mulig et sett eksperimentelle data (strukturelle spektroskopiske) Kan suppleres med kvantekjemiske beregninger Konstruer funksjon som måler avvik mellom modell eksperiment, minimer denne funksjonen Parametrisering Kraftfeltmodeller p.37/50 Antall unike parametre er i utgangspunktet enormt 100 ulike grunnstoff gir ca strekkparametre, 10 bøy-parametre 10 vridningsparametre... Må forenkle + bruke kjemisk intuisjon Optimere subsett av parametre Uansett, underbestemt optimeringsproblem Parametrisering Kan estimere fler-atom parametre fra enkeltatomene F.eks. LJ parametrene!% kan settes til fast brøkdel av Må finne kompromiss mellom nøyaktighet generalitet Kraftfeltmodeller p.38/50 Kraftfeltmodeller p.39/50 Kraftfeltmodeller p.40/50

11 Parametrisering Eksempel: MM2(91) (71 atomtyper) Ledd Unike parametre Faktiske parametre De fleste relevante parametre er likevel med Parametrisering Et hvert kraftfelt har et nedslagsfelt Vær meget varsom dersom kraftfeltet mangler relevante parametre! Enkelte prrammer forsøker å estimere manglende parametre automatisk, kan gi meningsløse resultater! Bedre å spesifisere manuelt, basert på erfaring/lignende systemer Velg annet kraftfelt? Kraftfeltmodeller p.41/50 Kraftfeltmodeller p.42/50 Energi Nullpunkt for de ulike leddene er satt vilkårlig Den numeriske verdien av seg selv!! har ingen mening i Kan likevel benyttes til å sammenligne konformere med nøyaktig samme atomtyper bindinger er en sterisk energi Energi For å sammenligne energien til ulike molekyler må vi beregne dannelsesentalpi Må definere for hver atomtype Summen av for atomene + dannelsesentalpi gir molekylets Mange kraftfelt er kun opptatt av geometrier relative konformasjonelle energier Kraftfeltmodeller p.43/50 Kraftfeltmodeller p.44/50

12 Valg av kraftfelt Anvendelser/begrensninger Mange er spesifikke for bestemte typer forbindelser (proteiner, biomolekyler, etc.) Class I (store systemer), Class II (mindre systemer) Enkelte er universelle, dekker hele periodesystemet De spesifikke (MM2, MM3, MMFF) er langt mer nøyaktige enn de universelle (UFF) Valg kan begrenses av tilgjengelig prramvare Valg av kraftfelt Anvendelser/begrensninger p.45/50 Kraftfelt bør velges basert på erfaring med tilsvarende systemer (litteratur) Sammenlign med eksperimentelle data om mulig (evt beregninger) Få gode kraftfelt for uorganiske systemer Det faktum at det er mulig å kjøre en beregning betyr ikke automatisk at man kan stole på resultatet... Beregningskostnad De ikke-bundne vekselvirkningen tidkrevende Vokser kvadratisk med størrelsen på systemet Fornuftige cut-off hjelper på effektiviteten Problem: Coulomb-vekselvirkninger har lang rekkevidde Fast Multipole Methods (FMM) Ewald-summasjon Anvendelser/begrensninger p.46/50 er mest Anvendelser/begrensninger p.47/50 Anvendelser/begrensninger p.48/50

13 Bruksområder Kraftfelt har to hovedanvendelser Bestemmelse av strukturer (minima) Bestemmelse av relative energier Klart best til førstnevnte Viktigste styrke: Store systemer kan behandles Tusenvis av atomer selv på vanlig PC Biomolekyler, proteiner, DNA Eksplisitt modell av solvatisering Bruksområder Viktige svakheter Begrenset til systemer som er godt parametrisert Ikke mulig å vurdere nøyaktighet internt Problemer med elektroniske effekter, orbitalvekselvirkninger etc. Dannelse/bryting av bindinger, overgangstilstander Anvendelser/begrensninger p.49/50 Anvendelser/begrensninger p.50/50

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/50 Molekylmekanikk Molekylmekanikk p.2/50 Oversikt Introduksjon Detaljert beskrivelse av kraftfeltmetoder

Detaljer

KJM Molekylmodellering. Molekylmekanikk - repetisjon. Kraftfeltenergien. Klassisk modell

KJM Molekylmodellering. Molekylmekanikk - repetisjon. Kraftfeltenergien. Klassisk modell KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylmekanikk - repetisjon KJM3600 - Molekylmodellering p.1/49 Molekylmekanikk - repetisjon p.2/49 Klassisk modell Kraftfeltenergien

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/49 Molekylmekanikk - repetisjon Molekylmekanikk - repetisjon p.2/49 Klassisk modell Ren klassisk beskrivelse

Detaljer

KJM Molekylmodellering. Korrelerte metoder - repetisjon. Korrelerte metoder

KJM Molekylmodellering. Korrelerte metoder - repetisjon. Korrelerte metoder KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Korrelerte metoder - repetisjon 29. mars 2004 KJM3600 - Molekylmodellering p.1/30 Korrelerte metoder - repetisjon p.2/30 Korrelerte metoder

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Introduksjon Våren 2004 KJM3600 - Molekylmodellering p.1/507 Introduksjon p.2/507 Molekylmodellering Molekylmodellering Flere navn på

Detaljer

Oppgave 2 Molekylmekanikk

Oppgave 2 Molekylmekanikk Oppgave 2 Molekylmekanikk KJM3600 Molekylmodellering Vår 2004 Introduksjon I denne oppgaven skal vi benytte molekylmekanikk til å gjøre en kvalitativ undersøkelse av interaksjonsenergien i to basepar-komplekser,

Detaljer

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylorbitalteori - repetisjon KJM3600 - Molekylmodellering p1/48 Molekylorbitalteori - repetisjon p2/48 Bølgefunksjonen systemet Kvantemekanikk

Detaljer

KJM Molekylmodellering. Molekyler i løsning. Introduksjon. Introduksjon

KJM Molekylmodellering. Molekyler i løsning. Introduksjon. Introduksjon KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekyler i løsning 24. mai 2004 KJM3600 - Molekylmodellering p.1/41 Molekyler i lsning p.2/41 Introduksjon Solvatisering Reaksjoner i

Detaljer

KJM3600 - Molekylmodellering. Hartree Fock - repetisjon. Hartree Fock. Hartree Fock

KJM3600 - Molekylmodellering. Hartree Fock - repetisjon. Hartree Fock. Hartree Fock KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Hartree Fock - repetisjon 23. februar 2004 KJM3600 - Molekylmodellering p.1/49 Hartree Fock - repetisjon p.2/49 Hartree Fock Hartree Fock

Detaljer

KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse

KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Semi-empiriske metoder - repetisjon 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon p.2/47 Generell

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/48 Molekylorbitalteori - repetisjon Molekylorbitalteori - repetisjon p.2/48 Kvantemekanikk Bølgefunksjonen

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 23. februar 2004 KJM3600 - Molekylmodellering p.1/49 Hartree Fock - repetisjon Hartree Fock - repetisjon p.2/49 Hartree Fock Hartree Fock

Detaljer

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Monte Carlo simuleringer og molekyldynamikk - repetisjon KJM3600 - Molekylmodellering p.1/50 Monte Carlo simuleringer og molekyldynamikk

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 24. mai 2004 KJM3600 - Molekylmodellering p.1/41 Molekyler i løsning Molekyler i lsning p.2/41 Introduksjon Solvatisering Reaksjoner i

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon Semi-empiriske metoder - repetisjon p.2/47 Generell

Detaljer

KJM2600-Laboratorieoppgave 1

KJM2600-Laboratorieoppgave 1 KJM2600-Laboratorieoppgave 1 Sindre Rannem Bilden Gruppe 1 4. mars 2015 1 Hensikt Hensikten med oppgaven var å demonstrere anvendelsen av kvantekjemiske beregninger i kjemi. 2 Teori Oppgaven baserer seg

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 28.08.2017 1 Biologiske makromolekyler DNA PROTEIN t-rna 28.08.2017 2 Biologiske makromolekyler

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 26.08.2016 1 Biologiske makromolekyler DNA PROTEIN t-rna 26.08.2016 2 Biologiske makromolekyler

Detaljer

Dette gir ingen informasjon om hvor en nukleofil vil angripe.

Dette gir ingen informasjon om hvor en nukleofil vil angripe. FY1006/TFY4215 Innføring i kvantefysikk Våren 2016 Molekylfysikk Løsningsforslag til Øving 13 S N 2-reaksjon. 2. a) Flate med konstant elektrontetthet for molekylet ClC3: Dette gir ingen informasjon om

Detaljer

TKJ4170 Midtsemesterrapport

TKJ4170 Midtsemesterrapport TKJ4170 Midtsemesterrapport Forord Denne rapporten er skrevet i forbindelse med et midtsemesterprosjekt i faget TKJ4170 Kvantekjemi på NTNU. Prosjektet går ut på å studere et selvvalgt molekyl ved å gjøre

Detaljer

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Basissett - repetisjon 15. mars 2004 KJM3600 - Molekylmodellering p.1/44 Basissett - repetisjon p.2/44 Basissett oppsummert Hartree Fock-grensen

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers Forelesningsnotat om molekyler, FYS Susanne Viefers. mai De fleste grunnstoffer (unntatt edelgassene) deltar i formingen av molekyler. Molekyler er sammensatt av enkeltatomer som holdes sammen av kjemiske

Detaljer

S N 2-reaksjon. Dette gir ingen informasjon om hvor en nukleofil vil angripe.

S N 2-reaksjon. Dette gir ingen informasjon om hvor en nukleofil vil angripe. FY1006/TFY4215 Innføring i kvantefysikk Våren 2012 Kjemisk fysikk Løsningsforslag til Øving 2 S N 2-reaksjon. 2. a) Flate med konstant elektrontetthet for molekylet ClCH 3 : Dette gir ingen informasjon

Detaljer

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll Eksperiment 2 Ina Molaug og Anders Leirpoll 1 1 Innhold 2 Formål... 1 3 Beregningsoppgave... 1 3.1 Oppgave 1: Beregninger på etenmolekylet... 1 3.1.1... 1 3.1.2... 2 3.1.3... 2 3.1.4... 3 3.2 Isomerisme

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc.

Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 7 Mandag 12.02.07 Materialer og elektriske egenskaper Hovedinndeling av materialer med hensyn på deres elektriske egenskaper:

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 26. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/48 Introduksjon Introduksjon p.2/48 Introduksjon p.3/48

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Kvantekjemiske metoder. Basissett oppsummert

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Kvantekjemiske metoder. Basissett oppsummert KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Repetisjon 2. september 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/50 Repetisjon p.2/50 Kvantekjemiske metoder

Detaljer

Overflateladningstetthet på metalloverflate

Overflateladningstetthet på metalloverflate 0.0.08: Rettet opp feil i oppgave 4 og løsningsforslag til oppgave 8b. Overflateladningstetthet på metalloverflate. Ei metallkule med diameter 0.0 m har ei netto ladning på 0.50 nc. Hvor stort er det elektriske

Detaljer

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding.

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding. Kapittel 9 Kovalent binding Repetisjon 1 (11.11.03) 1. Kovalentbinding Deling av elektron mellom atom for å danne binding o vorfor blir denne type binding dannet? Det enkleste svaret: Den potensielle energien

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Geometrioptimering. Hartree Fock

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Geometrioptimering. Hartree Fock KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Repetisjon 27. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/45 Repetisjon p.2/45 Hartree Fock Geometrioptimering

Detaljer

BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI KJ1041 KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK HØSTEN 2010

BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI KJ1041 KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK HØSTEN 2010 BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI KJ1041 KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK HØSTEN 2010 Onsdag 8. Desember 2010 Tid: 15.00 19.00 Faglig kontakt under eksamen:

Detaljer

Angir sannsynligheten for å finne fordelingen av elektroner i rommet

Angir sannsynligheten for å finne fordelingen av elektroner i rommet Atom Orbitaler Angir sannsynligheten for å finne fordelingen av elektroner i rommet Matematisk beregning gir formen og orientering av s, p, d og f orbitaler Kun s og p orbitalene viktige i organisk kjemi

Detaljer

Atommodeller i et historisk perspektiv

Atommodeller i et historisk perspektiv Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal

Detaljer

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

FYS1120 Elektromagnetisme, Ukesoppgavesett 1

FYS1120 Elektromagnetisme, Ukesoppgavesett 1 FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 27. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/45 Repetisjon Repetisjon p.2/45 Repetisjon p.3/45 Hartree

Detaljer

Kjemiske bindinger. Som holder stoffene sammen

Kjemiske bindinger. Som holder stoffene sammen Kjemiske bindinger Som holder stoffene sammen Bindingstyper Atomer Bindingene tegnes med Lewis strukturer som symboliserer valenselektronene Ionebinding Kovalent binding Polar kovalent binding Elektronegativitet,

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014

LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet naturvitenskap og teknologi Institutt for materialteknologi TMT4110 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014 OPPGAVE 1 a) Kovalent binding:

Detaljer

elementpartikler protoner(+) nøytroner elektroner(-)

elementpartikler protoner(+) nøytroner elektroner(-) All materie, alt stoff er bygd opp av: atomer elementpartikler protoner(+) nøytroner elektroner(-) ATOMMODELL (Niels Bohr, 1913) - Atomnummer = antall protoner i kjernen - antall elektroner e- = antall

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet

Detaljer

KJM2600-Laboratorieoppgave 2

KJM2600-Laboratorieoppgave 2 KJM2600-Laboratorieoppgave 2 Sindre Rannem Bilden Gruppe 1 12. mars 2015 1 Hensikt Utdypning av kvantekjemiske begreper ved hjelp av Hückelberegninger. 2 Teori Hückel-teorien bruker den tidsuavhengige

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019 Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet

Detaljer

TMA4105 Matematikk 2 Vår 2008

TMA4105 Matematikk 2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2008 Øving 1 Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1.

Detaljer

KJM3000 vår 2014 Løsningsforslag

KJM3000 vår 2014 Løsningsforslag KJM3000 vår 2014 Løsningsforslag 1a O-H signalet forsvinner ved risting med D 2 O. Koblingskonstanten mellom de to vinylidene protonene er veldig liten og signalene fremstår som singletter. 1b 3523 cm

Detaljer

Eten % 1.2%

Eten % 1.2% TFY4215 Innføring i kvantefysikk Molekylfysikk Løsningsforslag til Øving 11 Eten. 6. Med Hartree-Fock-metoden og basissettet 3-21G finner man en likevektsgeometri for eten med bindingslengdene C-H = 1.074

Detaljer

Prosjekt 2 - Introduksjon til Vitenskapelige Beregninger

Prosjekt 2 - Introduksjon til Vitenskapelige Beregninger Prosjekt - Introduksjon til Vitenskapelige Beregninger Studentnr: 755, 759 og 7577 Mars 6 Oppgave Feltlinjene for en kvadrupol med positive punktladninger Q lang x-aksen i x = ±r og negative punktladninger

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 3. mai 2004 KJM3600 - Molekylmodellering p.1/43 Eksiterte tilstander - repetisjon Eksiterte tilstander - repetisjon p.2/43 Eksiterte tilstander

Detaljer

Nano, mikro og makro. Frey Publishing

Nano, mikro og makro. Frey Publishing Nano, mikro og makro Frey Publishing 1 Nivåer og skalaer På ångstrømnivået studere vi hvordan atomer er bygd opp med protoner, nøytroner og elektroner, og ser på hvordan atomene er bundet samen i de forskjellige

Detaljer

FYS2140 Hjemmeeksamen Vår 2014

FYS2140 Hjemmeeksamen Vår 2014 FYS2140 Hjemmeeksamen Vår 2014 18. mars 2014 Viktig info: Merk besvarelsen med kandidatnummer, ikke navn! Innleveringsfrist fredag 28. mars kl. 14.30 i skranken på ekspedisjonskontoret. (Ikke oblighylla!)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen (utsatt prøve) i: KJM 1110 Organisk kjemi I Eksamensdag: 19. august 2010 Tid for eksamen: 14:30-17:30 Oppgavesettet er på

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 9. E dl = 0. q i q j 4πε 0 r ij. U = i<j

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 9. E dl = 0. q i q j 4πε 0 r ij. U = i<j TFY404 Fysikk. Institutt for fysikk, NTNU. Høsten 207. Løsningsforslag til øving 9. Oppgave. a) C V = E dl = 0 dersom dl E b) B U = e2 4πε 0 r = e e 4πε 0 r = e.6 0 9 9 0 9 0 0 = 4.4 ev c) D Total potensiell

Detaljer

Elektrisk potensial/potensiell energi

Elektrisk potensial/potensiell energi Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 2. september 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/50 Repetisjon Repetisjon p.2/50 Repetisjon p.3/50

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO

Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO La oss starte med lyttingen... Vi spiller fire ulike lydprøver. Oppgaven er å bestemme tonehøyden.

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling

Detaljer

KJM3000 H-2018 løsningsforslag

KJM3000 H-2018 løsningsforslag KJM3000-2018 løsningsforslag 1a) 1 I første omgang ser vi kun på de kjemiske skiftene. Vi ser da at vi har et alken med to protoner. Disse kommer ved hhv. 6.84 og 6.87 ppm. Vi ser også at disse kobler

Detaljer

Tirsdag 15. april. et stykke materie er bygd opp av atomer, dvs av atomære magnetiske dipoler med magnetisk dipolmoment j = 1...n. m j. m

Tirsdag 15. april. et stykke materie er bygd opp av atomer, dvs av atomære magnetiske dipoler med magnetisk dipolmoment j = 1...n. m j. m Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 16 Tirsdag 15. april agnetisme [FGT 31.1-31.4; YF 28.8; T 27.5; AF 26.3; LHL 26.1-26.5; DJG 6.4] Atomer er små magnetiske

Detaljer

Onsdag og fredag

Onsdag og fredag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0

Detaljer

KAPITEL 2. POLARE BINDINGER OG KONSEKVENSEN AV DEM.

KAPITEL 2. POLARE BINDINGER OG KONSEKVENSEN AV DEM. KAPITEL 2. PLARE BIDIGER G KSEKVESE AV DEM. 1. PLARE KVALETE BIDIGER G ELEKTREGATIVITET T12 Elektronegativitet oen kjemiske bindinger er fullstendig ioniske og noen kovalente, men de fleste er polar kovalente.

Detaljer

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på

Detaljer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer FYS2140 Hjemmeeksamen Vår 2016 Ditt kandidatnummer 8. mars 2016 Viktig info: Elektronisk innlevering på devilry med frist fredag 18. mars kl. 16.00. Leveringsfristen er absolutt. Bevarelsen må merkes tydelig

Detaljer

MENA1001 Deleksamen 2017 Forside

MENA1001 Deleksamen 2017 Forside MENA1001 Deleksamen 2017 Forside MENA1001 Tidspunkt: Onsdag 11. oktober 2017, kl. 9.00-10.00 Alle 20 oppgaver skal besvares. Hver oppgave teller likt. Det er 1 poeng for korrekt svar, 0 poeng for feil

Detaljer

Kondenserte fasers fysikk Modul 2

Kondenserte fasers fysikk Modul 2 FYS3410 Kondenserte fasers fysikk Modul Sindre Rannem Bilden 1. mai 016 Oppgave 1 - Endimensjonal krystall (Obligatorisk Se på vibrasjoner i en uendelig lang endimensjonell krystall med kun ett atom i

Detaljer

Introduction to thermal physics - Short course in thermodynamics

Introduction to thermal physics - Short course in thermodynamics Introduction to thermal physics - Short course in thermodynamics Anders Malthe-Sørenssen 19. august 2013 1 1 Introduction Vi ønsker å forstå makroskopiske objekter basert på de mikroskopiske vekselvirkningene.

Detaljer

MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo

MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo MNF, UiO 24 mars 2014 Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Kjemi: et mangepar.kkelproblem Molekyler er enkle: ladete partikler i bevegelse styrt av kvantemekanikkens lover HΨ=EΨ men

Detaljer

Kapittel 2 Atom, molekyl og ion. 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff

Kapittel 2 Atom, molekyl og ion. 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff Kapittel 2 Atom, molekyl og ion 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff 2. Introduksjon til det periodiske systemet 3. Molekyl og ioniske forbindelser.

Detaljer

1.1. Tegn opp et to-dimmensjonalt mønster av tettest mulige pakkede kuler. Identifiser den todimensjonale

1.1. Tegn opp et to-dimmensjonalt mønster av tettest mulige pakkede kuler. Identifiser den todimensjonale Sett 3: Oppgave 1 og 2 omfatter mange av eksemplene som er gitt i kompendiet. Krystallstrukturer som er avledet av kulepakkingsmodellen opptrer for metaller (se oppgave 2), for ioniske forbindelser (f.eks.

Detaljer

TFY4215_S2018_Forside

TFY4215_S2018_Forside Kandidat I Tilkoblet TFY4215_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 6. august

Detaljer

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Løsningsforslag Eksamen i: KJM 1110 Organisk kjemi I Eksamensdag: 9. juni 2017 Tid for eksamen: 14:30-18:30 Oppgavesettet er på 4

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 19. april 2004 KJM3600 - Molekylmodellering p.1/36 Tetthetsfunksjonalteori (DFT) - repetisjon Tetthetsfunksjonalteori (DFT) - repetisjon

Detaljer

FYS1120 Elektromagnetisme - Ukesoppgavesett 2

FYS1120 Elektromagnetisme - Ukesoppgavesett 2 FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene

Detaljer

1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?

1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven? Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NTURVITENSKPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSMEN I KJ 2031 UORGNISK KJEMI VK Torsdag 16. mai 2013 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karsten Kirste tlf. 93825195 Institutt

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Åpen dag, 10. mars 2011 Trygve Helgaker (Kjemisk institutt, UiO) Kvantemekanikk på datamaskiner

Detaljer

University of Oslo. Department of Physics. FYS 3710 Høsten EPR spektroskopi. EPR-Labotratory

University of Oslo. Department of Physics. FYS 3710 Høsten EPR spektroskopi. EPR-Labotratory EPR-Labotratory FYS 3710 Høsten 2010 EPR spektroskopi Department of Physics EPR Electron Paramagnetic Resonance (alt. ESR Electron Spin Resonance) NMR spektroskopi for alle molekyler er bare avhengig av

Detaljer

FYS1120 Elektromagnetisme

FYS1120 Elektromagnetisme Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS112 Elektromagnetisme Løsningsforslag til ukesoppgave 2 Oppgave 1 a) Gauss lov sier at den elektriske fluksen Φ er lik den totale ladningen

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen (utsatt prøve) i: KJM 1110 Organisk kjemi I Eksamensdag: 19. august 2010 Tid for eksamen: 14:30-17:30 Oppgavesettet er på

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 NTNU Norges teknisk-naturvitenskaelige universitet Fakultet for naturvitenska og teknologi Institutt for materialteknologi TMT4112 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 OPPGAVE 1 Ved bruk av

Detaljer

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 2 Innleveringsfrist: Mandag

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 2 Innleveringsfrist: Mandag FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 2 Innleveringsfrist: Mandag 04.05.09 S N 2-reaksjon. Innledning En lang rekke kjemiske reaksjoner

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl. 10:00 og kl. 12:30

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl. 10:00 og kl. 12:30 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1005 Grunnleggende Fysikalsk Kjemi Dato: Fredag 01. juni 2018 Klokkeslett: 09:00-14:00 Sted: KRAFT I og II Hall del 3 Kraft sportssenter

Detaljer

Det er 20 avkryssingsoppgaver. Riktig svar gir 1 poeng, feil eller ingen svar gir 0 poeng.

Det er 20 avkryssingsoppgaver. Riktig svar gir 1 poeng, feil eller ingen svar gir 0 poeng. UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1002 - Innføring i kjemi Eksamensdag: 8. desember kl. 14:30 Tid for eksamen: 4 timer Det er 20 avkryssingsoppgaver. Riktig

Detaljer

BOKMAL EKSAMENSOPPGAVE. Oppgavesettet er pi 4 sider inkl. forside

BOKMAL EKSAMENSOPPGAVE. Oppgavesettet er pi 4 sider inkl. forside EKSAMENSOPPGAVE BOKMAL Eksamen i : KJE-2002 Molekylaer Strukturkjemi Dato : 19. desember 2005 Tid : 09.00-13.00 Sted : Wsgirdveien 9. Tillatte hjelpemidler : Lommekalkulator, linjal, transportsr, molekylmodell-byggesett

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer