FYS-MEK1110 Oblig 2 [Type text] [Type text]
|
|
- Else Brekke
- 6 år siden
- Visninger:
Transkript
1 a) b) F = a a z = B + G B + G = a B g = = B g a z = B g c) v(t) v(0)= a z dt = B gdt v(t) = ( b g) t + v 0 z(t) z(0) = v(t)dt = ( B g) t + v 0 dt z(t) = 1 2 (B g) t2 + v 0 t + z 0 1
2 d) a z = F z = B + G + F D = B g D v z v z = B g D v z v z a z = B g D v z v z e) Dette er et plot ed realistiske verdier so vi kjørte i python ed prograet i k) f) a=0 a z = 0 = B g D v z v z B g = v D z g) Generelt uttrykk for luftotstand gis ved. F D = D v v Med vind vil uttrykket dered bli. Dette fordi vinden beveger seg ed en fart,w, rundt legeet. O vind retningen er lik fartsretning, vil derfor luftotstanden bli indre. F D = D v w (v w) Siden luftotstanden er avhengig av både fart og vind, og disse står noralt på hverandre, kan vi se på denne likningen so en koponering av to likninger i henholdsvis x- og z-retning. F Dx = D v x w x (v x w x ) F Dz = D v z w z (v z w z ) Hvor wz=0 siden vinden kun virker i x-retning. 2
3 h) i) Krefter i x-retning: FDx Krefter i z-retning: FDz, B og G Newtons 2. Lov gir: a z = B+G+F Dz = B g D v z (v x w x ) 2 +v2 z a x = F Dx = D (v x w x) (v x w x)2 +v2 z j) Grunnen til at vi i dette tilfellet kan kalle bevegelsene i x- og z-retning for koplete, er at de saen beskriver bevegelsen til ballongen. k) fro pylab iport * # PARAMETERS dt = g = = 1 R = 0.5 rho = 1.2 D = 12.0*rho*R**2 # s # /s^2 # kg # # kg/^3 3
4 end = 500 w = [1,0,0] B = [0,0,5] G = [0,0,*g] # Nuber of steps # Windspeed - /s # N # N # FUNCTIONS def Fd(vi,wi): return -D*abs(vi-wi)*(vi-wi) def F_tot(xi,i): return B[xi]+G[xi]+Fd(v[xi][i],w[xi]) def Acc(xi,i): return F_tot(xi,i)/ def Eul(x,xd): return x + xd*dt # LISTS # StartPosission X = [0] Y = [0] Z = [0] r = [X,Y,Z] # StartVelocity vx = [0] vy = [0] vz = [0] v = [vx,vy,vz] ax = [Acc(0,0)] ay = [Acc(1,0)] az = [Acc(2,0)] a = [ax,ay,az] # StartTie t = [0] # Graphics gr = ['x','y','z']
5 i = 0 for i in range(0,end): t.append(t[i]+i*dt) for xi in range(0,3): a[xi].append(acc(xi,i)) v[xi].append(eul(v[xi][i],a[xi][i])) r[xi].append(eul(r[xi][i],(v[xi][i]))) if xi == 0: print " " print "G= %.2f B= %.2f Fd=%.10f" %(G[xi],B[xi],Fd(v[xi][i],w[xi])) print "Ftot= %.2f" %(B[xi]+G[xi]+Fd(v[xi][i],w[xi])) print "t=%.3f a%s= %.3f v%s= %.3f r%s= %.3f"%(t[i],gr[xi],a[xi][i],gr[xi],v[xi][i],gr[xi],r[xi][i]) print " " # Posission subplot(3,2,1) plot(t,r[0],'r') ylabel('posission X [r] ') subplot(3,2,2) plot(t,r[2],'r') ylabel('posission Z [r] ') # Velocity subplot(3,2,3) plot(t,v[0],'g') ylabel('velocity X [v] /s') subplot(3,2,4) plot(t,v[2],'g') ylabel('velocity Z [v] /s') subplot(3,2,5) plot(t,a[0],'y') ylabel('acceleration X [a] /s^2') subplot(3,2,6) 5
6 plot(t,a[2],'y') ylabel('acceleration Z [a] /s^2') show() l) Ballongen slippes ved t0 =0 i possisjon r0=(0,0) og akselerer grunnet B > G. Farten øker inntil FDz v blir så stor at B=G+FDz. Dette gir oss a=0, og farten holder seg konstant i z-retning. I x-retning vil w>0 gi oss FDx v,w>0, og ballongen vil akselerere i x-retning. ) V Tx 5. s 1 V Tz 7. s 1 V T = 8,6. s 1 n) fro pylab iport * # PARAMETERS dt = g = = 1 R = 0.5 rho = 1.2 D = 12.0*rho*R**2 end = 500 w0 = [1,0,0] d = 10 # s # /s^2 # kg # # kg/^3 # Nuber of steps # StartWindspeed - /s # B = [0,0,2**-g] G = [0,0,*g] # N # N # FUNCTIONS def wind(xi,zi): return w0[xi]*(1-exp(-zi/d)) def Fd(vi,xi,zi): return -D*abs(vi-wind(xi,zi))*(vi-wind(xi,zi)) def F_tot(xi,zi,i): return B[xi]+G[xi]+Fd(v[xi][i],xi,zi) def Acc(xi,zi,i): 6
7 return F_tot(xi,zi,i)/ def Eul(x,xd): return x + xd*dt # LISTS # StartPosission X = [0] Y = [0] Z = [0] r = [X,Y,Z] # StartVelocity vx = [0] vy = [0] vz = [0] v = [vx,vy,vz] ax = [Acc(0,r[2][0],0)] ay = [Acc(1,r[2][0],0)] az = [Acc(2,r[2][0],0)] a = [ax,ay,az] # StartTie t = [0] # Graphics gr = ['x','y','z'] i = 0 for i in range(0,end): t.append(t[i]+i*dt) for xi in range(0,3): a[xi].append(acc(xi,r[2][i],i)) v[xi].append(eul(v[xi][i],a[xi][i])) r[xi].append(eul(r[xi][i],(v[xi][i]))) if xi == 0: print "t=%.3f a%s= %.3f v%s= %.3f r%s= %.3f"%(t[i],gr[xi],a[xi][i],gr[xi],v[xi][i],gr[xi],r[xi][i]) print " " # Posission 7
8 subplot(3,2,1) plot(t,r[0],'r') ylabel('posission X [r] ') subplot(3,2,2) plot(t,r[2],'r') ylabel('posission Z [r] ') # Velocity subplot(3,2,3) plot(t,v[0],'g') ylabel('velocity X [v] /s') subplot(3,2,4) plot(t,v[2],'g') ylabel('velocity Z [v] /s') subplot(3,2,5) plot(t,a[0],'y') ylabel('acceleration X [a] /s^2') subplot(3,2,6) plot(t,a[2],'y') ylabel('acceleration Z [a] /s^2') show() o) a = 0 B G = D v w 0 (1 e z d) (v w 0 (1 e z d)) B G D = v w 0 (1 e z d) (v w 0 (1 e z d)) 8
9 p) Drivkraften oppover er avhengig av differansen i teperatur ello ballongen og ogivelsene. Dette gir: B (T s (t) T 0 ) Når flaen blir slukket vil teperaturen i ballongen gå ot teperaturen i ogivelsene, og vi får dered B=0 etter en viss tid. Dette vil igjen føre til at ballongen daler nedover. 9
10 Alternativt progra ed atriseregning: # OBLIG 2 fro pylab iport * # PARAMETERS dt = g = = 1 R = 0.1 rho = 1.2 D = 12.0*rho*R**2 tie = 10 d = 10 n = int((tie/dt)) # s # /s^2 # kg # # kg/^3 # seconds # # FUNCTIONS def Acc(v): return F_tot(v)/ def F_tot(v): return B+G+Fd(v) def Fd(v): return -D*abs(v-w0)*(v-w0) def wind(r): return w0*(1-exp(-r[i][2]/d)) def Eul(x,xd): return x + xd*dt # VECTORS w0 = zeros((3)) w0[0]= 25 # X w0[1]= 0 # Y w0[2]= 0 # Z B = zeros((3)) B[0]= 0 # X B[1]= 0 # Y B[2]= 200 # Z G = zeros((3)) G[0] = 0 # X G[1] = 0 # Y G[2] = *g # Z r = zeros((n,3)) r[0] = 0 # X r[1] = 0 # Y r[2] = 0 # Z v = zeros((n,3)) v[0] = 0 # X v[1] = 0 # Y v[2] = 0 # Z a = zeros((n,3)) a[0]=acc(v[0]) t = zeros((n,1)) t[0] = 0 # StartWindspeed - /s # Boyancy # Gravity # Possision # Velocity # Tie
11 for i in range(0,n-1): t[i+1]=i*dt for xi in range(0,3): a[i+1]=acc(v[i]) v[i+1]=eul(v[i],a[i]) r[i+1]=eul(r[i],v[i]) # Posission subplot(3,1,1) plot(t,r,'r-') ylabel('posission X [r] ') # Velocity subplot(3,1,2) plot(t,v,'g-') ylabel('velocity X [v] /s') subplot(3,1,3) plot(t,a,'y-') ylabel('acceleration X [a] /s^2') show() fro atplotlib iport pyplot iport pylab fro pl_toolkits.plot3d iport Axes3D iport rando fig = pylab.figure() ax = Axes3D(fig) rx = [] ry = [] rz = [] for i in range(0,n): rx.append(r[i][0]) ry.append(r[i][1]) rz.append(r[i][2]) ax.plot(rx,ry,rz,'-r') pyplot.show() Der en kjøring gir: 11
Oblig 6 i Fys-Mek1110
Sindre Ranne Bilden, Idun Osnes & Ingrid Marie Bergh Bakke Oblig 6 i Fys-Mek1110 a) Akselerasjon Fart Siden det ikke er noen for for friksjon eller andre ikke-konservative krefter i bildet, vil forholdet
DetaljerFYS-MEK1110 Oblig Ingrid Marie Bergh Bakke, Heine H. Ness og Sindre Rannem Bilden
a) Figur 1 b) F = m a a = F m a(t) = 5 m/s 2 400 N = = 5 80 kg m/s2 a(t)dt = v(t) = 5t + v 0 v(t) = 5t + v 0 v(t)dt = x(t) = 1 2 5t2 + v 0 t + x 0 Antar at løperen starter i punktet null med hastigheten
DetaljerFYSMEK1110 Oblig 5 Midtveis Hjemmeeksamen Sindre Rannem Bilden
Oblig 5 Midtveis Hjemmeeksamen a) Om man tenker seg en trekant med side d, y og l. Vil l uttrykkes gjennom Pytagoras setning som l = y 2 + d 2. b) c) Fjærkraft er definert ved F = ± k l der l = l - l 0
DetaljerFysikkmotorer. Andreas Nakkerud. 9. mars Åpen Sone for Eksperimentell Informatikk
Åpen Sone for Eksperimentell Informatikk 9. mars 2012 Vektorer: posisjon og hastighet Posisjon og hastighet er gitt ved ( ) x r = y Ved konstant hastighet har vi som gir likningene v= r = r 0 + v t x =
DetaljerFysikk-OL Norsk finale 2004
Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 004 3. uttakingsrunde Fredag. april kl 09.00 til.00 Hjelpeidler: abell/forelsaling og loeregner Oppgavesettet består av 6 oppgaver
DetaljerLøsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008
Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene
DetaljerTDT4105 IT Grunnkurs Høst 2014
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Side 1 av 11 Løsningsforslag Eksamen i ys-mek111 våren 8 Oppgave 1 Vi skal i denne oppgaven studere bevegelsen til en (fugle-)fjær i en tornado. Vi begynner med å finne ut hvordan vi kan modellere fjæras
DetaljerFra UiO sine websider (med tentativt antall poeng):
Generelle ting Fra UiO sine websider (med tentativt antall poeng): A Framifrå, >90%, >207 p: Framifrå prestasjon som skil seg klart ut. Kandidaten syner særs god vurderingsevne og stor grad av sjølvstende.
DetaljerLøsningsforslag Fysikk 2 V2016
Løsningsforslag Fysikk, Vår 016 Løsningsforslag Fysikk V016 Oppgave Svar Forklaring a) B Faradays induksjonslov: ε = Φ, so gir at Φ = ε t t Det betyr at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04
DetaljerStivt legemers dynamikk
Stvt legeers dnakk 7.04.05 Resultater fra veseksaen på seestersden. Eneste krav for å ta slutteksaen: 7 av 0 oblger. Gruppete dag: Gruppe 5 (Ø394) slås saen ed gruppe 7 på Ø443 FYS-MEK 0 7.04.05 kraftoent:
DetaljerBevegelsesmengde og kollisjoner
eegelsesengde og kollisjoner 4.4.6 Midteisealuering: https://nettskjea.uio.no/answer/7744.htl Oblig 4: nye initialbetingelser i oppgaedel i og j FYS-MEK 4.4.6 Konseratie krefter potensiell energi: U r
DetaljerFysikkolympiaden 1. runde 28. oktober 8. november 2013
Norsk Fysikklærerforening i saarbeid ed Skolelaboratoriet Universitetet i Oslo Fysikkolypiaden 1. runde 8. oktober 8. noveber 013 Hjelpeidler: Tabell og forelsalinger i fysikk og ateatikk Loeregner Tid:
DetaljerProFag Realfaglig programmering
Det matematisk-naturvitenskapelige fakultet ProFag Realfaglig programmering Andre samling 1. september 018 Kompetansesenter for Undervisning i Realfag og Teknologi www.mn.uio.no/kurt Det matematisk-naturvitenskapelige
DetaljerEksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >
DetaljerRepetisjonsoppgaver kapittel 4 løsningsforslag
epetisjonsoppgaver kapittel 4 løsningsforslag nergi Oppgave a) Arbeidet gjort av kraften har forelen: s cos Her er s strekningen kraften virker over, og vinkelen ello kraftverktoren og strekningen. b)
DetaljerTTK4100 Kybernetikk introduksjon Øving 1 - Løsningsforslag
TTK4100 Kybernetikk introduksjon Øving 1 - Løsningsforslag Oppgave 1: UAV En AUV (Autonoous Underwater Vehicle) er et ubeannet undervannsfartøy so kan utføre selvstendige oppdrag under vann. I denne oppgaven
DetaljerSensurveiledning for eksamen i lgu52003 våren 2015
Sensurveiledning for eksamen i lgu5200 våren 205 Oppgave a) Gjennomsnittsfart fra 0-0 minutt: tilbakelagt strekning etter 0 min tilbakelagt strekning ved start tid = Gjennomsnittsfart fra 5-0 minutt: (5
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske
DetaljerUDIRs eksempeloppgave høsten 2008
UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e
DetaljerKap 5 Anvendelser av Newtons lover
Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket
DetaljerAlternativ II: Dersom vi ikke liker å stirre kan vi gå forsiktigere til verks. Først ser vi på komponentlikninga i x-retning
Forelesning / 8 Finne skalarfunksjon når gradienten er kjent. Se GF kap..3.4. Ta som eksempel β = yi + xj + k. Vi vet at β = x i + j + z k og følgelig ser vi at vi må løse et system av tre likninger som
DetaljerKurveintegraler, fluks, sirkulasjon, divergens, virvling
Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kap 4 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Kurveintegraler
DetaljerFAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
DetaljerImpuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Side 1 a 9 Løsningsforslag Esaen i Fys-e111 åren 8 På denne esaenen sal i studere en ollisjon ello to identise partiler (atoer) so begge påires a refter fra en assi, stasjonær partiel (f.es. et oleyl).
DetaljerTermodynamikk og statistisk fysikk Oblig 7
FYS2160 Termodynamikk og statistisk fysikk Oblig 7 Sindre Rannem Bilden 4. november 2015 Oppgave 0.11 - Fase likevekt i en van der Waals system a) is at trykket, p(n,, T ), til van der Waals gassen er
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsningsforslag Ogae a) D Saenhengen ello kraft og arbeid er W = Fs der s er strekning. Da har i for enhetene at J = N. J N N b) C Feltet fra den negatie ladningen Q e har retning radielt inn
DetaljerEksamen i TMA4123/TMA4125 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.
DetaljerVektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen
Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui + vj + wk. Divergensen til v er definert som v = u + v + w z og virvlingen er gitt ved determinanten
DetaljerStivt legemers dynamikk
Stvt legees dnakk 8.04.06 FYS-MEK 0 8.04.06 Spnn spnn o punkt fo en patkkel ed asse og bevegelsesengde p: l p spnnsats: net d l Newtons ande lov: F net d p uten netto kaftoent e spnn bevat l kˆ l kˆ ˆj
DetaljerFysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsforslag Oppgae a) C Q Det elektriske feltet fra en punktladning Q er gitt ed E ke r, og feltstyrken il ata ed astand til ladningen. Retningen til feltet er definert slik at det peker i
DetaljerKap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje
Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje 2.1 Vi skal gjennomføre en enkel bestemmelse av gjennomsnittshastighet ved å simulere en luftputebenk. En vogn kan gli tilnærmet
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
Kap. 6+7 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. F F x Arbeid = areal under
DetaljerPrøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...
Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerDagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470
Dagens temaer Time 4: z-transformasjonen Andreas Austeng@ifi.uio.no, INF3470 z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper Ifi/UiO September 2009 H(z); systemfunksjonen og
DetaljerLøsningsforslag til midtveiseksamen i FYS1001, 26/3 2019
Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Oppgave 1 Løve og sebraen starter en avstand s 0 = 50 m fra hverandre. De tar hverandre igjen når løven har løpt en avstand s l = s f og sebraen
DetaljerEksamensoppgåve i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne
DetaljerFysikk for ingeniører. 9. Fluidmekanikk. Løsninger på blandede oppgaver. Side 8-1
Fysikk for ingeniører 9 Fluidekanikk Løsninger på blandede oppgaer Side 8 - Oppgae 9: Tetteten til etallstykket er Finner først assen : Når legeet er i luft, ar i at F 3N F g 5kg g 98/s Deretter finner
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerFYS1120 Elektromagnetisme, Oppgavesett 4
FYS1120 Elektromagnetisme, Oppgavesett 4 20. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene
Detaljer4 Differensiallikninger R2 Oppgaver
4 Differensiallikninger R2 Oppgaver 4.1 Førsteordens differensiallikninger... 2 4.2 Modellering... 7 4.3 Andreordens differensiallikninger... 13 Aktuelle eksamensoppgaver du finner på NDLA... 16 Øvingsoppgaver
DetaljerMandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.
Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)
DetaljerObligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 3 FYS-13 Lars Kristian Henriksen UiO 11. februar 15 Diskusjonsoppgaver 1 Fjerde ordens Runge-Kutta fungerer ofte bedre enn Euler fordi den tar for seg flere punkter og stigningstall
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
DetaljerFiktive krefter
Fiktie krefter 8.04.014 FYS-MEK 1110 8.04.014 1 Fiktie krefter proble: Newtons loer gjelder bare i inertialsysteer hordan analyserer i en beegelse i et akselerert syste? z z x y transforasjon transforasjon
DetaljerLøsningsforslag for øvningsoppgaver: Kapittel 14
Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg 15.05.015 14.01 En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet
DetaljerDel 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( )
Del Oppgave a) Deriver funksjonen f( x) = x cos( x) b) Deriver funksjonen ( ) ( 4 x f x = e + ) c) Gitt funksjonen f( x) = x 4x + x+ ) Ligger grafen over eller under x-aksen når x =? ) Stiger eller synker
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerStivt legemers dynamikk
Stvt legeers dynakk 9.4. FYS-EK 9.4. Repetsjon Newtons andre lov for flerpartkkelsysteer: F ext hvor: r R d R (assesenter) dt separasjon: bevegelse tl assesenter bevegelse relatv tl assesenter K V N v
DetaljerObligatorisk oppgave 1
Obligatorisk oppgave 1 a) Oppgaveteksten oppgir et vektorfelt f(x, y) F x, y = g x, y der f og g er oppgitt ved f x, y = x 3 3xy 1 og g x, y = y 3 + 3x y. Vi kan med dette regne ut Jacobimatrisen F x,
DetaljerKinematikk i to og tre dimensjoner
Kinemtikk i to og tre dimensjoner 3.1.218 Innleveringsfrist oblig 1: Mndg, 5.eb. kl.18 Innlevering kun vi: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Pizz ved spørsmål
DetaljerHeldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1.
Heldagsprøve R Våren 015 Onsdag 6. Mai 09.00-14.00 Løsningsskisser - Versjon 1.05.15 Del 1 - Uten hjelpemidler - timer Oppgave 1 Deriver funksjonene: a) fx tanx Kjerneregel: fx tanu, u x f 1 x cos u x
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
DetaljerFysikkolympiaden 1. runde 29. oktober 9. november 2007
Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden. runde 9. oktober 9. november 007 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid
DetaljerKjerneregelen. variabelbytte. Retningsderivert MA1103. gradienter 7/2 2013
MA1103 7/2 2013 U R n åpen V R m åpen g : U R n R m g : V R m R p g(u) V (dermed er f g = f (g) definert) U R n åpen V R m åpen g : U R n R m g : V R m R p g(u) V (dermed er f g = f (g) definert) x 0 U
Detaljere x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),
DetaljerMotor - generatoroppgave II
KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.17 OPPG.NR.: R113 Motor - generatoroppgave II Et reguleringssyste består av en svitsjstyrt (PWM) otor-generatorenhet og en ikrokontroller (MCU) so åler
DetaljerMAT Oblig 1. Halvard Sutterud. 22. september 2016
MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker
DetaljerI dag skal vi ved hjelp av ganske enkel Python-kode finne ut om det er mulig å tjene penger på å selge og kjøpe en aksje.
Trading-algoritme I dag skal vi ved hjelp av ganske enkel Python-kode finne ut om det er mulig å tjene penger på å selge og kjøpe en aksje. Vi skal gjøre dette ved å lage et Python-program (med noen for-løkker)
DetaljerFremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet
1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate
DetaljerPartielle differensialligninger. Problemstilling. Anne Kværnø
Partielle differensialligninger Anne Kværnø Problemstilling I dette notatet skal vi diskutere hvordan partielle differensialligninger kan diskretiseres ved hjelp av en endelig differansemetode, og litt
DetaljerLøsningsforslag Obligatorisk oppgave 1 i FO340E
Løsningsforslag Obligatorisk oppgave i FO340E 0. februar 2009 Det er nt om dere har laget gurer hvor kreftene er tegnet inn, selv om det er utelatt i dette notatet av praktiske årsaker. En oppgave kan
DetaljerBevegelsesmengde Kollisjoner
eegelsesengde Kollisjoner 4.3.3 neste uke: ingen forelesning ingen gruppeunderisning ingen datalab på grunn a idteiseksaen FYS-MEK 4.3.3 Energibearing energi i systeet er beart: E tot = K +U + E T arbeid
DetaljerLøs likningssystemet ved å få totalmatrisen på redusert trappeform
Emne: IRF 10014 Matematikk 1. Lærer: Øystein Holje og Kent Ryne Grupper: Diverse. Dato: 04.1.015 Tid: 9.00 13.00. Antall oppgavesider:. Antall vedleggsider: 3, formelark. Sensurfrist: Hjelpemidler: Godkjent
DetaljerHøgskolen i Agder Avdeling for EKSAMEN
Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,
DetaljerProgrammering for fysikkens skyld
Prograering for fysikkens skyld Prograering er på vei inn i skolen og det er ange so arguenterer både for og iot dette. I denne artikkelen vil vi vise hvordan prograering kan styrke fysikkfaget og hvordan
DetaljerFysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
DetaljerSteg 1: Tekst på flere linjer
Skilpaddetekst Skrevet av: Ole Kristian Pedersen, Kodeklubben Trondheim Kurs: Python Tema: Tekstbasert Fag: Programmering Klassetrinn: 8.-10. klasse Introduksjon I denne oppgaven skal vi skrive kode, slik
DetaljerVektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen
Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt Divergensen til v er definert som v = ui+vj +wk. v = u x + v y + w og virvlingen er gitt ved determinanten
DetaljerMAT 1110: Oblig 1, V-12, Løsningsforslag
MAT 0: Oblig, V-2, Løsningsforslag Oppgave: a Jacobi-matrisen er F (x, y u x v x u y v y 3x 2 2 3y 2 b Lineariseringen i punktet a er gitt ved T a F(x F(a + F (a(x a. I vårt tilfelle er a ( 2, 2, og vi
DetaljerTMA4110 Matematikk 3 Høst 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y
DetaljerLøsning, Stokes setning
Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k
DetaljerAlgDat - Øvingsforelesning 1 Introduksjon til Python, lenkede lister og øving 1
AlgDat - Øvingsforelesning 1 Introduksjon til Python, lenkede lister og øving 1 Ole Kristian Pedersen, Høst 2016 Agenda Introduksjon til Python for begynnere Intro til øving 1 Litt om lenkede lister Øvingssystemet
DetaljerØvingsforelesning 7 i Python (TDT4110)
Øvingsforelesning 7 i Python (TDT4110) Lister, Strenger, Funksjoner Vegard Hellem Oversikt Praktisk Info Gjennomgang av Øving 5 Programmering til Øving 7 2 Praktisk info Kollokviegrupper Snakk med studassen
DetaljerAnbefalte oppgaver - Løsningsforslag
Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24
DetaljerDet matematisk-naturvitenskapelige fakultet. Del 2. Numeriske metoder
Det matematisk-naturvitenskapelige fakultet Del 2 Numeriske metoder Numeriske metoder Idé: Bruk regnekraft i stedet for hjernekraft - der det er hensiktsmessig Finn tilnærmede resultater - 3,14 i stedet
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 2 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:
DetaljerFYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4
FYS240 Kvantefysikk, Oblig 8 Sindre Rannem Bilden, Gruppe 4 9. april 205 Obliger i FYS240 merkes med navn og gruppenummer! Denne obligen dreier seg om partikkel i en endelig brønn. Dere får bruk for Python
DetaljerKap : Derivasjon 1.
Ukeoppgaver, uke 36, i Matematikk 0, Kap. 3.-3.4: Derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 36 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/ing/allmennfag/emnesider/rea042
DetaljerScience fiction er virkelighet, nå!
Science fiction er virkelighet, nå! Science fiction er virkelighet, nå! Frammøte på rom FV329 eller i vestibylen ( ved pendelen ) i Fysikkbygget kl 17:00 den dagen du har meldt deg på. Alternativ oblig
DetaljerOPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39
OPPGAVESETT MAT111-H16 UKE 38 Oppgaver til seminaret 23/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39
DetaljerLøsningsforslag for MAT-0001, desember 2009, UiT
Løsningsforslag for MAT-1, desember 29, UiT av Kristian Hindberg Oppgave 1 a) Bestem grenseverdien e x 1 x lim x x 2 e x 1 x lim x x 2 = lim x e x 1 2x e = x lim x 2 = 1 2 b) Finn det ubestemte integralet
DetaljerTest, 4 Differensiallikninger
Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens
DetaljerFront page. 1.1 What is printed?
Front page UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: IN-KJM1900 Grunnkurs i programmering for naturvitenskapelige anvendelser Eksamensdag: 18. desember 2017 Tid for eksamen:
DetaljerVektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen
Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui+vj +wk. Divergensen til v er definert som v = u x + v y + w z og virvlingen er gitt ved determinanten
DetaljerLøsninger til forkursstartoppgaver
Løsninger til forkursstartoppgaver Prosent: Oppgave 1. Prisforskjell er 20. 20 100 Kylling er da =66 2 prosent dyrere. 30 3 Vi beregner hvor mange prosent 20 er av 30. Kylling er også 20 100 =40 prosent
DetaljerLøsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax
DetaljerTMA4105 Matematikk2 Vår 2008
TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2
Detaljer"#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H ( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *H X )* c# N<. G # X& PU a# / Q #K KB A
"#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *HX )* c# N
DetaljerKONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK
BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE
Detaljer