ProFag Realfaglig programmering
|
|
- Victor Eggen
- 6 år siden
- Visninger:
Transkript
1 Det matematisk-naturvitenskapelige fakultet ProFag Realfaglig programmering Andre samling 1. september 018 Kompetansesenter for Undervisning i Realfag og Teknologi
2 Det matematisk-naturvitenskapelige fakultet eduroam Brukernavn: guest** Passord: ************
3 Program 1. Programmering i Python basisopplæring. Algoritmisk tenkning 3. Didaktiske utfordringer 4. Programmering for fagets skyld 5. Programmering endrer fagene Læringsressursene ligger på
4 ProFag dag Numeriske metoder Algoritmisk tenkning Didaktiske refleksjoner Programmering koding Dybdelæring i dagens realfag Realfag i fremtiden Dybdelæring innebærer at elevene bruker sine evner til å analysere, løse problemer og reflektere over egen læring til å konstruere en varig forståelse. Sten Luigsen
5
6 Det matematisk-naturvitenskapelige fakultet Del Programmering endrer realfagene
7 Matematikk som begrensende faktor - La oss slippe en muffinsform og se på bevegelsen! Kanskje snakke litt om ulike energiformer! (kompetansemål ungdomsskole/fysikk 1) - Hva om vi logger farten og posisjonen? (kompetansemål ungdomsskole/fysikk 1) G=mg L=kv - Kult! Skal vi ta med luftmotstand? - Ja det må vi jo! Du ser vel at den er av betydning (Galileos fall-lov: alle gjenstander faller like fort til jorden dersom vi ser bort fra luftmotstanden) S F = ma G- L= ma mg - kv = ma = m dt dt kv = g - m - Vi får bruke Newtons. lov for summen av kreftene (kompetansemål fysikk 1) - Oj det ble visst en difflikning Da må vi vente til R - Men, vi lærer jo ikke difflikninger før helt på slutten av R og da holder vi ikke på med mekanikk i fysikken. Vi får visst vente til universitetet (for de som skal dit )
8 Hva om vi bare lager en tunnel? Det fordrer fornyelse av fagene, og åpner for nye utfordringer og muligheter.
9 Det matematisk-naturvitenskapelige fakultet Vi prøver Programmering av fall med luftmotstand Difflikninger og Eulers metode
10 Fall med luftmotstand from pylab import * L=kv G=mg S F = ma G- L= ma mg - kv = ma = m dt kv a = g- m #Fysiske størrelser g=9.81 #tyngdeakselerasjon i m/s/s m=0.5 #masse i kg k=0. #luftmotstandskoeffisient i Nss/m/m #Tidsintervaller N=10000 #antall intervaller tid= #antall sekunder dt=tid/(n) #Vektorer a=zeros(n) #akselerasjon i m/s/s v=zeros(n) #fart i m/s t=zeros(n) #tid i sekunder #Initialbetingelser v[0]=0 #startfart 0 m/s
11 Fall med luftmotstand L=kv G=mg S F = ma G- L= ma mg - kv = ma = m dt kv a = g- m! =! # + %& Men nå er ikke akselerasjonen konstant La oss anta at den er konstant i et lite tidsintervall dt:! '() =! ' + % ' *& Oppgave La oss anta at startfarten er null (! # = 0) Hvordan kan du finne farten etter første tidsstep,! )? Tenk par del
12 Fall med luftmotstand L=kv G=mg S F = ma G- L= ma mg - kv = ma = m dt a = g- kv m! "#$ =! " + ' " () v[0]=0 #startfart 0 m/s for i in range(n-1): a[i]=g-k*v[i]**/m v[i+1]=v[i]+a[i]*dt t[i+1]=t[i]+dt Hvorfor en for-løkke og ikke en while-løkke? Hvorfor går løkken til N-1 og ikke til N? Fyll ut tabellen en farge for hver runde i løkka Variabel i=0 i=1 i= a (akselerasjon) v (fart) v[0]=0 t (tid)
13 Fall med luftmotstand L=kv G=mg S F = ma G- L= ma mg - kv = ma = m dt a = g- kv m v[0]=0 #startfart 0 m/s for i in range(n-1): a[i]=g-k*v[i]**/m v[i+1]=v[i]+a[i]*dt t[i+1]=t[i]+dt Fyll ut tabellen en farge for hver runde i løkka Variabel i=0 i=1 i= a (akselerasjon) a[0]=9.8 a[1]= v (fart) v[0]=0 v[1]= v[]= t (tid) t[0]=0 t[1]=0.000 t[]=0.0004
14 Utfordringer med utgangspunkt i muffinsformen S F = ma G- L= ma mg - kv = ma = m dt Hvilke utfordringer ser du for deg om du tar dette i en Fysikk 1 klasse? Tenk par del. dt kv = g - m #Eulers metode for i in range(n-1): a[i]=g-(k/m)*v[i]** v[i+1]=v[i]+a[i]*dt t[i+1]=t[i]+dt
15 Utfordringer med utgangspunkt i muffinsformen S F = ma G- L= ma mg - kv = ma = m dt dt kv = g - m Forståelse av a, v og s som funksjoner av tid: a(t), v(t), s(t) Fra! =! 0 + %& og ) = ) 0 +!& til! *+, =! * + % *.& ) *+, = ) * +! *.& Dybdeforståelse av den deriverte t, s, v og a som diskrete verdier og ikke kontinuerlige variable x(t) istedenfor y(x) Stykkevis konstante eller lineære funksjoner Tolkning av resultat, vurdering av gyldighet for modell, forstå den fysiske problemstillinger på mange ulike måter
16 Modellering Enkelt å endre til f.eks. å være på månen Sammenlikne med eksperimenter datalogging. Hvilken k er best? Vurdere begrensninger Og alltid: skrive robuste og lesbare programmer
17 Programmering endrer fagene Vi kan ta med mer realistiske problemstillinger. Vi kan ta med andre problemstillinger enn før. Tilfeldige prosesser (diffusjon, statistisk dynamikk). Behandling av store datamengder. Bruk av utvidede modeller og av flere modeller for å beskrive samme ting. Vi kan bruke kjente problemstillinger med Newtons. lov, eller nye der analytiske løsninger er svært vanskelig eller umulige. Med Euler er i utgangspunkt alt like lett!
18 ProFag for hvilket fag? Skolefag Disiplinfag Vitenskapsfag
Det matematisk-naturvitenskapelige fakultet Programmering i naturfag ProFag Realfaglig programmering Naturfagkonferansen 2018
Det matematisk-naturvitenskapelige fakultet Programmering i naturfag ProFag Realfaglig programmering Naturfagkonferansen 2018 Knut M. Mørken Cathrine W. Telllefsen Situasjonsbeskrivelse Naturfaglæreren
Det matematisk-naturvitenskapelige fakultet Økt forståelse for matematikk ved bruk av programmering Sinusseminar 2019
Det matematisk-naturvitenskapelige fakultet Økt forståelse for matematikk ved bruk av programmering Sinusseminar 2019 Henrik Hillestad Løvold Institutt for Informatikk, UiO Program 1. Hva er programmering?
Det matematisk-naturvitenskapelige fakultet. Del 2. Numeriske metoder
Det matematisk-naturvitenskapelige fakultet Del 2 Numeriske metoder Numeriske metoder Idé: Bruk regnekraft i stedet for hjernekraft - der det er hensiktsmessig Finn tilnærmede resultater - 3,14 i stedet
Læreplan i Programmering og modellering - programfag i studiespesialiserende utdanningsprogram
2.12.2016 Læreplan i - programfag i studiespesialiserende utdanningsprogram Formål Programmering er et emne som stadig blir viktigere i vår moderne tid. Det er en stor fordel å kunne forstå og bruke programmering
Forsøkslæreplan i valgfag programmering
Forsøkslæreplan i valgfag programmering Gjelder bare for skoler som har fått innvilget forsøk med programmering valgfag fra 1.8.2016 Formål Valgfagene skal bidra til at elevene, hver for seg og i fellesskap,
Simulerings-eksperiment - Fysikk/Matematikk
Simulerings-eksperiment - Fysikk/Matematikk Tidligere dette semesteret er det gjennomført et såkalt Tracker-eksperiment i fysikk ved UiA. Her sammenlignes data fra et kast-eksperiment med data fra en tilhørende
Det matematisk-naturvitenskapelige fakultet. Del 4. Modellering
Det matematisk-naturvitenskapelige fakultet Del 4 Modellering Modellering Modellering er en prosess for å finne en forenklet representasjon av et fenomen i virkeligheten. Modellering styrker: Kreativitet
Repetisjonsoppgaver kapittel 3 - løsningsforslag
Repetisjonsoppgaer kapittel 3 - løsningsforslag Krefter Oppgae 1 a) De tre setningene er 1. En kraft irker på et legeme fra et annet legeme.. En kraft som irker på et legeme, kan endre beegelsen til legemet
Kan vi forutse en pendels bevegelse, før vi har satt den i sving?
Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,
FYS-MEK1110 Oblig Ingrid Marie Bergh Bakke, Heine H. Ness og Sindre Rannem Bilden
a) Figur 1 b) F = m a a = F m a(t) = 5 m/s 2 400 N = = 5 80 kg m/s2 a(t)dt = v(t) = 5t + v 0 v(t) = 5t + v 0 v(t)dt = x(t) = 1 2 5t2 + v 0 t + x 0 Antar at løperen starter i punktet null med hastigheten
6.201 Badevekt i heisen
RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke
Differensiallikninger definisjoner, eksempler og litt om løsning
Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning
Newtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
Newtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
Newtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
Fysikkmotorer. Andreas Nakkerud. 9. mars Åpen Sone for Eksperimentell Informatikk
Åpen Sone for Eksperimentell Informatikk 9. mars 2012 Vektorer: posisjon og hastighet Posisjon og hastighet er gitt ved ( ) x r = y Ved konstant hastighet har vi som gir likningene v= r = r 0 + v t x =
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet
4 Differensiallikninger R2 Oppgaver
4 Differensiallikninger R2 Oppgaver 4.1 Førsteordens differensiallikninger... 2 4.2 Modellering... 7 4.3 Andreordens differensiallikninger... 13 Aktuelle eksamensoppgaver du finner på NDLA... 16 Øvingsoppgaver
UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1
Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter
Informasjon om studieprogrammet Beregningsorientert informatikk
Informasjon om studieprogrammet Beregningsorientert informatikk Beregningsorientert informatikk kombinerer kunnskaper og ferdigheter i matematikk og informatikk, og legger spesielt vekt på utvikling av
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl 23.9. Volleyball på kvartsirkel Kvalitativ beskrivelse φ f r+r N Mg R Vi er
Vektorstørrelser (har størrelse og retning):
Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har
Mål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva
UNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( )
Del Oppgave a) Deriver funksjonen f( x) = x cos( x) b) Deriver funksjonen ( ) ( 4 x f x = e + ) c) Gitt funksjonen f( x) = x 4x + x+ ) Ligger grafen over eller under x-aksen når x =? ) Stiger eller synker
Fysikkolympiaden 1. runde 27. oktober 7. november 2008
Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner
UNIVERSITETET I OSLO
UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Repetisjonsoppgaver kapittel 0 og 1 løsningsforslag
Repetisjonsoppgaver kapittel 0 og løsningsforslag Kapittel 0 Oppgave a) Gjennomsnittet er summen av måleverdiene delt på antallet målinger. Summen av målingene er,79 s. t sum av måleverdiene antallet målinger,79
a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.
Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.
Mål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise
DATALOGGING AV BEVEGELSE
Elevverksted: DATALOGGING AV BEVEGELSE Astrid Johansen, 2009 Grafisk framstilling av en fysisk størrelse er viktig og brukes mye i realfag, og kanskje spesielt mye i fysikk. Det å kunne forstå hva en graf
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger
Fysikkolympiaden 1. runde 29. oktober 9. november 2007
Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden. runde 9. oktober 9. november 007 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner
Løysingsforslag for oppgåvene veke 17.
Løysingsforslag for oppgåvene veke 17. Oppgåve 1 Retningsfelt for differensiallikningar gitt i oppg. 12.6.3 med numeriske løysingar for gitt initalkrav (og eit par til). a) b) c) d) Oppgåve 2 a) c) b)
Eksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Fysikkonkurranse 1. runde 6. - 17. november 2000
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100
Newtons (og hele universets...) lover
Newtons (og hele universets...) lover Kommentarer og referanseoppgaver (2.25, 2.126, 2.136, 2.140, 2.141, B2.7) Newtons 4 lover: (Gravitasjonsloven og Newtons første, andre og tredje lov.) GL: N I: N III:
Løsningsforslag Obligatorisk oppgave 1 i FO340E
Løsningsforslag Obligatorisk oppgave i FO340E 0. februar 2009 Det er nt om dere har laget gurer hvor kreftene er tegnet inn, selv om det er utelatt i dette notatet av praktiske årsaker. En oppgave kan
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK
Fy1 - Prøve i kapittel 5: Bevegelse
Fy1 - Prøve i kapittel 5: Bevegelse Løsningsskisser Generelt: Alle svar skal avrundes korrekt med samme antall gjeldende siffer som er gitt i oppgaven. Alle svar skal begrunnes: - Tekst/figur/forklaring
Oppgaver om fart, strekning og akselerasjon. Løsningsforslag. Oppgave 1
1 Oppgaver om fart, strekning og akselerasjon Løsningsforslag Oppgave 1 s(t) = t + sin(πt) v(t) = s (t) = + cos(πt) (πt) = + π cos(πt) a(t) = v (t) = π( sin(πt)) π = π 2 sin(πt) Dette kan kanskje fungere
Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011
NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
Oppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
Kollisjon - Bevegelsesmengde og kraftstøt (impuls)
Institutt for fysikk, NTNU FY11 Mekanisk fysikk, høst 7 Laboratorieøvelse Kollisjon - Bevegelsesmengde og kraftstøt (impuls) Hensikt Hensikten med øvelsen er å studere elastiske og uelastiske kollisjoner
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte
Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100
Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
Programmering i naturfag. Av Emil Thune
Programmering i naturfag Av Emil Thune Grunnleggende ferdigheter i faget (forslag) Digitale ferdigheter i naturfag er å bruke digitale verktøy til å utforske, registrere, gjøre beregninger, visualisere,
Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...
Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................
Kap. 1 Fysiske størrelser og enheter
Fysikk for Fagskolen, Ekern og Guldahl samling (kapitler 1, 2, 3, 4, 6) Kap. 1 Fysiske størrelser og enheter Størrelse Symbol SI-enhet Andre enheter masse m kg (kilogram) g (gram) mg (milligram) tid t
Beregningsperspektiv i ingeniørutdanningen? Knut Mørken Institutt for informatikk Senter for matematikk for anvendelser Universitetet i Oslo
Beregningsperspektiv i ingeniørutdanningen? Knut Mørken Institutt for informatikk Senter for matematikk for anvendelser Universitetet i Oslo Fagmøte Ingeniørfaglig innføring/samfunnsfag, NTNU, 25/10-2011
Fysikkolympiaden 1. runde 31. oktober 11. november 2011
Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 31. oktober 11. november 011 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. Oppgave 1 Nettokraften pa en sokk som sentrifugeres ved konstant vinkelhastighet pa vasketrommelen er A null B rettet radielt utover C rettet radielt
KAPITTEL 8 Differensialligninger
KAPITTEL 8 Differensialligninger Svært mange fenomener i våre omgivelser kan modelleres matematisk ved hjelp av differensialligninger. De vanligste og mest kjente eksemplene på dette finner vi i de tradisjonelle
Viktig informasjon. Taylorrekker
Viktig informasjon MAT-IN1105 - Programmering, modellering og beregninger Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I
Breivika Tromsø maritime skole
Breivika Tromsø maritime skole F-S-Fremdriftsplan 00TM01F - Fysikk på operativt nivå Utgave: 1.01 Skrevet av: Knut Magnus Sandaker Gjelder fra: 18.09.2015 Godkjent av: Jarle Johansen Dok.id.: 2.21.2.4.3.2.6
Oblig 3 i FYS mars 2009
Oblig 3 i FYS230 2. mars 2009 Innledning [Copyright 2009: D.S.Amundsen og A.I.Vistnes.] David Skålid Amundsen har laget hovedskissen til denne obligen i en sommerjobb han utførte for oss sommeren 2008.
MÅLING AV TYNGDEAKSELERASJON
1. 9. 2009 FORSØK I NATURFAG HØGSKOLEN I BODØ MÅLING AV TYNGDEAKSELERASJON Foto: Mari Bjørnevik Mari Bjørnevik, Marianne Tymi Gabrielsen og Marianne Eidissen Hansen 1 Innledning Hensikten med forsøket
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Krefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
Løsning, gruppeoppgave om corioliskraft og karusell, oppgave 7 uke 15 i FYS-MEK/F 1110 våren 2005
1 Løsning, gruppeoppgave om corioliskraft og karusell, oppgave 7 uke 15 i FYS-MEK/F 1110 våren 2005 Oppgaven lød: To barn står diamentralt i forhold til hverandre ved ytterkanten på en karusell med diameter
FYS1120: Oblig 2 Syklotron
FYS1120: Oblig 2 Syklotron Obligatorisk oppgave i FYS1120-Elektromagnetisme gitt ved UiO høsten 2015. Obligen begynner med noen innledende oppgaver som tar for seg partikler i elektrisk og magnetisk felt
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
Kapittel 4. Algebra. Mål for kapittel 4: Kompetansemål. Mål for opplæringen er at eleven skal kunne
Kapittel 4. Algebra Mål for kapittel 4: Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere resultatene
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
Eksperimentell partikkelfysikk. Kontakt :
Eksperimentell partikkelfysikk Kontakt : alex.read@fys.uio.no farid.ould-saada@fys.uio.no Eksperimentell partikkelfysikk Hva er verden laget av, og hva holder den sammen? Studier av naturens minste byggesteiner
Lokal læreplan i valgfag programmering Utkast august 2018
Lokal læreplan i valgfag programmering Utkast august 2018 1. Modellering Mål for opplæringen er at eleven skal kunne: 1.1. gjøre rede for hvordan datamaskiner og programmer fungerer, inkludert et utvalg
Eksamen REA3024 Matematikk R2
Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8
Realfaglig programmering
Realfaglig programmering av Cathrine Wahlstrøm Tellefsen Hentet fra https://www.uv.uio.no/forskning/satsinger/fiks/kunnskapsbase/realfagligprogrammering/index.html Med fagfornyelsen blir programmering
Matematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF3100 Øving 20. mars 2015 Tidsfrist: 7.april 2015, klokken 23.55 Onsdag 25. mars kom det til en ekstraoppgave: Oppgave 4. Denne kan du velge å gjøre istedenfor oppgave 3. Det
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 2 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:
Emne 11 Differensiallikninger
Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi
9 + 4 (kan bli endringer)
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5
FY0001 Brukerkurs i fysikk
NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F
Viktige læringsaktiviteter
Viktige læringsaktiviteter Læringsaktiviteter som dekkes av Aktiviteter Stille spørsmål. Utvikle og bruke modeller. = dekkes Planlegge og gjennomføre undersøkelser. Analysere og tolke data. Bruke matematikk,
Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål
Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:
Løsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
Modul nr Måling og funksjoner kl
Modul nr. 1442 Måling og funksjoner 8.-10. kl Tilknyttet rom: Energi og miljørom, Harstad 1442 Newton håndbok - Måling og funksjoner 8.-10. kl Side 2 Kort om denne modulen Denne modulen tar for seg flere
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 31. mars 2011 Tid for eksamen: 15:00-17:00, 2 timer Oppgavesettet er på 6 sider Vedlegg:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 21. mars 2013 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 5 sider Vedlegg: Formelark
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider
Kap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
Matematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon
Status for CSE-prosjektet
Status for CSE-prosjektet CSE = Computing in Science Education Knut Mørken Institutt for informatikk Senter for matematikk for anvendelser Universitetet i Oslo Nasjonalt forum for realfag Kunnskapsdepartementet
Computers in Technology Education
Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles
IN-KJM1900 Forelesning 3
IN-KJM1900 Forelesning 3 Simen Kvaal Onsdag 8/11/2017 Simen Kvaal IN-KJM1900 Forelesning 3 Onsdag 8/11/2017 1 / 43 Dagens plan 1 Beskjeder og litt av hvert Beskjeder Gjennomgang av hjelpefiler laget av
Fysikk 1-16.09.14 - Kapittel 1,5 og 8
Fysikk 1-16.09.14 - Kapittel 1,5 og 8 Løsningsskisser og kommentarer. Oppgave 1 Oppgave 2 Forklar hva vi legger i begrepet fysikk. Fysikk er et fagområde som tar for seg stoff og energi, og prøver å beskrive
Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
UDIRs eksempeloppgave høsten 2008
UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e
FYS1120: Oblig 2 Syklotron
FYS1120: Oblig 2 Syklotron Obligatorisk oppgave i FYS1120-Elektromagnetisme gitt ved UiO høsten 2017. Obligen begynner med noen innledende oppgaver som tar for seg partikler i elektrisk og magnetisk felt