DATALOGGING AV BEVEGELSE

Størrelse: px
Begynne med side:

Download "DATALOGGING AV BEVEGELSE"

Transkript

1 Elevverksted: DATALOGGING AV BEVEGELSE Astrid Johansen, 2009

2 Grafisk framstilling av en fysisk størrelse er viktig og brukes mye i realfag, og kanskje spesielt mye i fysikk. Det å kunne forstå hva en graf framstiller og trekke ut informasjon fra den, er derfor en viktig kompetanse elevene skal beherske. Her følger 4 uavhengige forsøk som kan velges ut fra hvilket nivå eleven er på. Her er forsøkene gjort ved hjelp av Pascos nyeste datalogger, Xplorer GLX, og programvaren DataStudio. Man kan også bruke de gamle, svarte boksene, dvs. Science Workshop 500, 600 eller 750. Forsøkene kan også godt utføres med andre loggersystemer. Hovedtrekkene vil være de samme, men noen detaljer må man tilpasse selv. Forsøk 1: Grafisk framstilling av ulike typer bevegelse Hensikt med forsøket: Å bli kjent med dataloggerutstyret og programvaren DataStudio Å se hvordan en bevegelse kan framstilles grafisk Å bli kjent med s-t-grafer Å bli kjent med v-t-grafer Læreplanmål: Å kunne bruke digitale verktøy i naturfag dreier seg om å kunne benytte slike verktøy til utforskning, måling, visualisering, simulering, registrering, dokumentasjon og publisering ved forsøk og i feltarbeid. I tillegg skal elevene etter 10.trinn i naturfag kunne gjøre rede for begrepene fart og akselerasjon, måle størrelsene med enkle hjelpemidler og gi eksempler på hvordan kraft er knyttet til akselerasjon. Og etter vg1 i naturfag skal elevene kunne gjennomføre enkle datasimuleringer for å illustrere naturfaglige fenomener og teste hypoteser. Passer for ungdomsskoleelever, men også for naturfag- og Fysikk 1-elever i videregående skole.

3 Utstyr: - Pasco datalogger - Pasport bevegelsessensor - PC med programvaren DataStudio - Basketball - Stativ - Sytråd - Lodd Fremgangsmåte: 1) Oppsett av logger og PC - Koble datalogger til USB-inngangen på datamaskinen (svart kabel) - Koble bevegelsessensoren til en av inngangene på toppen av dataloggeren. - Start programmet DataStudio. - Velg Sett opp eksperiment. Da skal et standard DataStudio-skjermbilde vises. Merk at programmet automatisk registrerer hvilken sensor som er koblet til.

4 - Klikk på Innstillinger og sett målefrekvensen til 100 Hz. Legg ned vinduet etterpå og maksimer graf-vinduet. - Når det er klart til å begynne å logge klikker du på Start 2) Gjennomføring av selve forsøket A. Logging av egen bevegelse 1. Still deg opp noen meter fra en vegg med klar bane mellom deg og veggen. Hold bevegelsessensoren i hendene og la den se mot veggen. 2. Start loggeren og beveg deg mot veggen. Stopp og rygg tilbake fra veggen. Stopp loggingen. 3. Kjør en ny logging, men nå beveger du deg raskere enn den første gangen. 4. Lagre grafene og skisser dem i koordinatsystemet under. Oppgi strekningen s I meter og tida t i sekunder.

5 Bruk grafene og svar på spørsmålene under. a) Hvor langt unna veggen startet du i hvert tilfelle? b) Hvor langt unna veggen stoppet du i hvert tilfelle? c) Hvordan kan du se av posisjonsgrafene at farten var større i tilfelle 2 enn i tilfelle 1?

6 B. s-t-graf til en ball som spretter 1. Fest bevegelsessensoren så høyt som mulig og la den se nedover mot gulvet 2. Hold basketballen ca. 0,2 m under sensoren, start loggeren og slipp basketballen. La den sprette noen ganger før du stopper loggingen 3. Lagre og skriv ut grafen når du har fått en du er fornøyd med. Skisser s-tgrafen her. Oppgi strekningen s i meter og tida t i sekunder. Skriv tallverdier på aksene Bruk grafen og svar på spørsmålene under. Marker på grafen hvordan du finner svar på spørsmålene. a) Hvor langt under sensoren ble ballen sluppet? b) Hvor høyt var sensoren festet? c) Hvor lang tid var ballen i lufta mellom hver kontakt med bakken?

7 d) Hvor høyt spratt ballen første gang? e) Kan du finne ut hvor mye energi som går tapt i en sprett? Forklar hvordan. C. v-t-graf til en ball som spretter 1. Gjenta forsøket fra B., men nå ser du på v-t-grafen i stedet. Gå inn på Innstillinger og hak av for Fart i tillegg til Posisjon.

8 2. Lagre og skriv ut begge grafene. Skisser dem i koordinatsystemet under. Oppgi strekningen s i meter,farten v i meter pr sekund og tida t i sekunder. Skriv tallverdier på aksene. Bruk grafene til å svare på spørsmålene under. Marker på grafen(e) hvordan du finner svaret. a) Hvor stor var farten i det ballen ble sluppet? b) Hvor lang tid tar det før ballen treffer bakken? c) Hvor stor var farten rett før ballen traff bakken?

9 d) Når er ballen på det høyeste punktet? Hva er farten da og hvor høyt er den? e) Diskusjonsspørsmål: Hva betyr det at farten er positiv og negativ? (Ta utgangspunkt i hva som skjer med ballen der fortegnet til farten skifter.) D. s-t-graf og v-t-graf til en pendel som svinger 1. Koble opp en planpendel ved hjelp av stativ, sytråd og et lodd. 2. Gjør fast bevegelsessensoren til benken og la den se vannrett mot loddet. 3. Sett i gang pendelen og start loggeren. 4. Skisser s-t-grafen og v-t-grafen i koordinatsystemet under. Ha felles tidsskala for begge grafene.

10 Bruk grafene til å svare på spørsmålene under. Marker på grafen(e) og forklar hvordan du finner svaret. a) Hvor stor er avstanden når pendelen skifter bevegelsesretning? b) Hva er farten da? c) Hvor er pendelen når farten er størst? d) Hvor lang er svingeperioden?

11 e) Avtar svingeperioden etter hvert som tida går? f) Diskusjonsspørsmål: 1. Hvorfor skifter farten fortegn, mens strekningen hele tida er positiv? 2. Hvilke sammenhenger ser dere mellom s-t- og v-t-grafen?

12 Forsøk 2: Grafisk framstilling av bevegelse med konstant akselerasjon Hensikt med forsøket: Å bli kjent med dataloggerutstyret og programvaren DataStudio Å se hvordan en bevegelse med konstant akselerasjon ser ut grafisk Å bli kjent med v-t-grafer Se sammenhengen mellom posisjon, fart og akselerasjon Bli kjent med bevegelse i fritt fall Læreplanmål: Grunnleggende ferdigheter: Å kunne lese i fysikk innebærer å trekke ut, tolke og reflektere over informasjon i fysikkfaglige tekster, brosjyrer, aviser, populærvitenskapelige magasiner og bøker og på Internett. Det betyr å forstå bruksanvisninger, tabeller, diagrammer, symboler og fagspesifikke tekster. Videre vil det si å forstå innholdet i tabeller, grafer, bilder, ordinær tekst og likninger. Å kunne bruke digitale verktøy i fysikk innebærer å utforske, måle, registrere, analysere, dokumentere og publisere digitalt. Det betyr å anvende animasjoner og bruke Internett til å hente inn fysikkfaglig informasjon. Å kunne bruke digitale verktøy i fysikk betyr å simulere fenomener og forsøk som det ellers er vanskelig å studere. Kompetansemål i Fysikk 1: - bruke parameterframstilling til å beskrive rettlinjet bevegelse for en partikkel, og bruke derivasjon til å regne ut fart og akselerasjon når posisjonen er kjent, både med og uten digitale verktøy - gjøre rede for situasjoner der friksjon og luftmotstand gjør at den mekaniske energien ikke er bevart, og gjøre beregninger i situasjoner med konstant friksjon - lage en eller flere matematiske modeller for sammenhenger mellom fysiske størrelser som er funnet eksperimentelt - samle inn og bearbeide data og presentere og vurdere resultater og konklusjoner av forsøk og undersøkelser, med og uten digitale verktøy Kompetansemål i Fysikk 2: - bruke Newtons lover på vektorform for bevegelse i homogene magnetiske felt og i homogent gravitasjonsfelt Passer for Fysikk 1-elever (noe også for Fysikk 2)

13 Utstyr: - Pasco datalogger - Pasport bevegelsessensor - PC med programvaren DataStudio - Basketball - Skråplan - Stor lekebil - Trekloss Fremgangsmåte: 2) Oppsett av logger og PC - Koble datalogger til USB-inngangen på datamaskinen (svart kabel) - Koble bevegelsessensoren til en av inngengene på toppen av dataloggeren. - Start programmet DataStudio. - Velg Sett opp eksperiment. Da skal et standard DataStudio-skjermbilde vises. Merk at programmet automatisk registrerer hvilken sensor som er koblet til.

14 - Klikk på Innstillinger. Sett målefrekvensen til 100 Hz og hak av både for posisjon, fart og akselerasjon. Legg ned vinduet etterpå og maksimer graf-vinduet. - Når det er klart til å begynne å logge klikker du på Start. 2) Gjennomføring av selve forsøket A. Akselerasjon i fritt fall 1. Fest bevegelsessensoren så høyt som mulig og la den se ned mot gulvet. 2. Start loggeren og slipp basketballen fra en høyde ca. 0,2 m under sensoren og la den sprette noen ganger før loggingen stanses. 3. Studer s-t-grafen, v-t-grafen og a-t-grafen i DataStudio. Hvilke sammenhenger er det mellom grafene? Hvordan ser du av grafene at a) ballen er på toppen?

15 b) ballen er på bakken? c) ballen er på vei oppover? d) ballen er på vei nedover? 4. Bestem en verdi for akselerasjonen ut fra v-t-grafen og fra a-t-grafen. Fra v-t-grafen: Fra a-t-grafen: a = a = Hva slags akselerasjon er det dere har bestemt her? Hvor stor skal denne akselerasjonen være? Hvor stort avvik har dere fått? Hvilke kilder til usikkerhet finns og i hvilken retning vil de påvirke resultatet?

16 B. Akselerasjon på skråplan med liten friksjon 1. Sett opp et skråplan. Bestem helningsvinkelen til skråplanet høydeforskjell sin lengde av skråplan = 2. Fest bevegelsessensoren på den øvre enden av skråplanet. 3. Send bilen (eller basketballen) oppover skråplanet med en fart slik at den stopper og triller tilbake før den er ca. 0,5 m fra sensoren. 4. Studer s-t-grafen, v-t-grafen og a-t-grafen i DataStudio. Hvilke sammenhenger er det mellom grafene? Skisser grafene og forklar. 5. Bestem en verdi for akselerasjonen ut fra v-t-grafen og fra a-t-grafen. Fra v-t-grafen: Fra a-t-grafen: a = a =

17 6. Teoretisk kan man vise at akselerasjonen er gitt ved a gsin dersom det ikke virker friksjon. Hvordan stemmer dette med resultatene dere fikk? C. Akselerasjon og friksjon på skråplan (Fysikk 2) 1. Gjør det samme som i del B, men nå bruker du en kloss i stedet. Du må ha så stor helningsvinkel at klossen ikke stanse på veien. 2. Studer v-t-grafen nøye. Er akselerasjonen like stor på vei opp som på vei ned? Hvorfor/hvorfor ikke? 3. Sett opp Newtons 2.lov både for tilfellet at klossen er på vei oppover og på vei nedover. Vis at den teoretiske akselerasjonen er a g sin g cos på vei opp og a g sin g cos på vei ned.

18 4. Bestem en verdi for friksjonstallet ut fra dette. = 5. Fra Fysikk 1 vet vi at glidefriksjonen er gitt ved R N. Bestem først N og deretter R. 6. Friksjonsarbeidet er friksjonskraft x strekning ( WR R s ), samtidig som det vil utgjøre mesteparten av tapet i mekanisk energi ( WR Estart Eslutt ). Beregn friksjonsarbeidet på begge disse måtene. Får du samsvarende resultater? Hvis ikke, hva kan være mulige årsaker?

19 Forsøk 3: Er energien bevart i fritt fall? Hensikt med forsøket: Å bli kjent med dataloggerutstyret og programvaren DataStudio Å bli fortrolig med ulike grafiske framstillinger Bruke posisjonsgrafer og fartsgrafer til å bestemme potensiell og kinetisk energi Bli kjent med bevegelse i fritt fall Læreplanmål: Grunnleggende ferdigheter: Å kunne lese i fysikk innebærer å trekke ut, tolke og reflektere over informasjon i fysikkfaglige tekster, brosjyrer, aviser, populærvitenskapelige magasiner og bøker og på Internett. Det betyr å forstå bruksanvisninger, tabeller, diagrammer, symboler og fagspesifikke tekster. Videre vil det si å forstå innholdet i tabeller, grafer, bilder, ordinær tekst og likninger. Å kunne bruke digitale verktøy i fysikk innebærer å utforske, måle, registrere, analysere, dokumentere og publisere digitalt. Det betyr å anvende animasjoner og bruke Internett til å hente inn fysikkfaglig informasjon. Å kunne bruke digitale verktøy i fysikk betyr å simulere fenomener og forsøk som det ellers er vanskelig å studere. Kompetansemål i Fysikk 1: - gjøre rede for energibegrepet og begrepene arbeid og effekt og foreta beregninger og drøfte situasjoner der mekanisk energi er bevart - samle inn og bearbeide data og presentere og vurdere resultater og konklusjoner av forsøk og undersøkelser, med og uten digitale verktøy Passer for Fysikk 1-elever

20 Utstyr: - Pasco datalogger - Pasport bevegelsessensor - PC med programvaren DataStudio - Basketball - Vekt Fremgangsmåte: 1) Oppsett av logger og PC - Koble datalogger til USB-inngangen på datamaskinen (svart kabel) - Koble bevegelsessensoren til en av inngengene på toppen av dataloggeren. - Start programmet DataStudio. - Velg Sett opp eksperiment. Da skal et standard DataStudio-skjermbilde vises. Merk at programmet automatisk registrerer hvilken sensor som er koblet til.

21 - Klikk på Innstillinger. Sett målefrekvensen til 100 Hz og hak av både for posisjon og fart.. Legg ned vinduet etterpå og maksimer graf-vinduet. - Når det er klart til å begynne å logge klikker du på Start. 2) Gjennomføring av selve forsøket Tid, Høyde, h E p = mgh Fart, v E k = ½mv² E p + E k 1. Fest bevegelsessensoren så høyt som mulig og la den se ned mot gulvet. 2. Start loggeren og slipp basketballen fra en høyde ca. 0.6 m under sensoren og la den sprette noen ganger før loggingen stanses. 3. Studer s-t-grafen og v-t-grafen i DataStudio. Velg et nullnivå, og bestem basketballens potensielle og kinetiske energi ved ulike tidspunkt. Fyll ut tabellen under. Basketballens masse: m =..kg Før 1. berøring av bakken Mellom 1. og 2. berøring Mellom 2. og 3. berøring

22 5. Spørsmål: Hva kan du si om bevaring av mekanisk energi ut i fra disse resultatene?

23 Forsøk 4: Fallbevegelse med luftmotstand Hensikt med forsøket: Å bli kjent med dataloggerutstyret og programvaren DataStudio Bruke posisjonsgrafer og fartsgrafer til å bestemme potensiell og kinetisk energi Bli kjent med bevegelse med luftmotstand for fallende gjenstander Få trening i å beskrive fysiske fenomener med matematikk Få trening i å studere matematiske modeller og teste hypoteser Læreplanmål: Grunnleggende ferdigheter: Å kunne lese i fysikk innebærer å trekke ut, tolke og reflektere over informasjon i fysikkfaglige tekster, brosjyrer, aviser, populærvitenskapelige magasiner og bøker og på Internett. Det betyr å forstå bruksanvisninger, tabeller, diagrammer, symboler og fagspesifikke tekster. Videre vil det si å forstå innholdet i tabeller, grafer, bilder, ordinær tekst og likninger. Å kunne bruke digitale verktøy i fysikk innebærer å utforske, måle, registrere, analysere, dokumentere og publisere digitalt. Det betyr å anvende animasjoner og bruke Internett til å hente inn fysikkfaglig informasjon. Å kunne bruke digitale verktøy i fysikk betyr å simulere fenomener og forsøk som det ellers er vanskelig å studere. Kompetansemål i Fysikk 1: - gjøre rede for situasjoner der friksjon og luftmotstand gjør at den mekaniske energien ikke er bevart, og gjøre beregninger i situasjoner med konstant friksjon - identifisere kontaktkrefter og gravitasjonskrefter som virker på legemer, tegne kraftvektorer og bruke Newtons tre lover - samle inn og bearbeide data og presentere og vurdere resultater og konklusjoner av forsøk og undersøkelser, med og uten digitale verktøy - lage en eller flere matematiske modeller for sammenhenger mellom fysiske størrelser som er funnet eksperimentelt - bruke matematiske modeller som kilde for kvalitativ og kvantitativ informasjon, presentere resultater og vurdere gyldighetsområdet for modellene Passer for Fysikk 1-elever

24 Utstyr: - Pasco datalogger - Pasport bevegelsessensor - PC med programvaren DataStudio - Muffinsformer eller store kaffefiltre - Badeball? Teori / bakgrunnsstoff Muffinsformer av papir (eller kaffefiltre av den store, runde typen) vil etter kort fallengde oppnå konstant fart. Grunnen til det er at luftmotstanden øker med farten, dermed vil muffinsformene akselerere helt til luftmotstanden er like stor som tyngden av formene. Da vil summen av kreftene være null, muffinsformene akselererer ikke lengre og farten blir konstant.. Hvor stor denne konstante farten ( v t = terminalfarten) blir, avhenger derfor av massen til det som faller. Vi kan variere massen ved å bruke ulikt antall muffinsformer (eller kaffefiltre) og dermed bestemme hvordan terminalfarten varierer med massen. Vi vet at luftmotstanden øker med farten, men ikke hvordan den øker med farten. Derfor må vi sette opp ulike hypoteser som gir ulike modeller for hvordan terminalfarten avhenger av massen. Her tester vi ut hypotesene 1: Luftmotstanden øker proporsjonalt med massen. Dvs. L kv, der k er en konstant som er bestemt av fasongen til muffinsformene. Terminalfarten får vi når L G mg og dermed blir sammenhengen mellom terminalfarten v t og massen m: g L G k vt mg vt m K m. k (Her slår vi sammen konstanten g k til en ny konstant, K.) 2: Luftmotstanden øker kvadratisk med farten. 2 Dvs. L kv. På tilsvarende måte som over får vi da at konstant. Dermed får vi at 2 g vt m K m. k 2 kvt (Vi bruker v 2 t bevisst for å få en lineær sammenheng med m.) mg når farten er blitt

25 Fremgangsmåte: 1) Oppsett av logger og PC - Koble datalogger til USB-inngangen på datamaskinen (svart kabel) - Koble bevegelsessensoren til en av inngangene på toppen av dataloggeren. - Start programmet DataStudio. - Velg Sett opp eksperiment. Da skal et standard DataStudio-skjermbilde vises. Merk at programmet automatisk registrerer hvilken sensor som er koblet til. - Klikk på Innstillinger. Sett målefrekvensen til 100 Hz og hak av både for posisjon og fart.. Legg ned vinduet etterpå og maksimer graf-vinduet.

26 - Når det er klart til å begynne å logge klikker du på Start. 2) Gjennomføring av selve forsøket 1. Fest bevegelsessensoren så høyt som mulig og la den se ned mot gulvet. 2. Start loggeren og slipp 1 muffinsform/kaffefilter fra ca. 0,2 m under loggeren. 3. Gjenta pkt. 2 til du har et tydelig rettlinjet område i posisjonsgrafen som tilsvarer at muffinsformen faller med konstant fart.

27 4. Velg ut dette området og velg Lineær tilpasning under Tilpass. Den konstante farten til muffinsformen kan da leses av som stigningstallet til det lineære området til posisjonsgrafen. Noter hva farten blir for 1 muffinsform. En kan selvfølgelig også lese av farten direkte fra fartsgrafen, men den grafen blir som regel mer grumsete og det er vanskeligere å finne en nøyaktig verdi. Men det er fint å ha fartsgrafen som kontroll på at stigningstallet man finner stemmer sånn noen lunde med det man ser fra fartsgrafen. 5. Gjenta forsøket med henholdsvis 2, 3, 4 og 5 (hvis du får til!) muffinsformer og noter hva den konstante farten blir i hvert tilfelle. Vi nøyer oss med å oppgi massen m som antall muffinsformer M. Fyll ut tabellen under. Masse, m v t 1M 2M 3M 4M 5M v 2 t 6. Plott resultatene fra tabellen på kalkulator eller i koordinatsystemene under. Hypotese 1: Luftmotstanden øker proporsjonalt med massen. Dvs. at L k v og at den maksimale farten

28 Hypotese 2: Luftmotstanden øker kvadratisk med farten.

29 Spørsmål: a) Hvilken av hypotesene passer best?...og hvorfor? g b) Bestem en verdi for konstanten K fra grafen til den hypotesen som passer k best. Hvordan kan du uttrykke terminalfarten nå?

30 7. Bruk modellen fra 5b) til å estimere terminalfarten dersom det er flere enn 5 muffinsformer. Antall muffinsformer: m =.M Estimat for terminalfarten, v t : 8. Sjekk ut hvordan dette stemmer i virkeligheten. (Her trenger du et sted med stor takhøyde for å få lang nok fallhøyde!)

Læreplan i fysikk 1. Formål

Læreplan i fysikk 1. Formål Læreplan i fysikk 1 185 Læreplan i fysikk 1 Fastsatt som forskrift av Utdanningsdirektoratet 3. april 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og forskningsdepartementet med hjemmel

Detaljer

5.201 Galilei på øret

5.201 Galilei på øret RST 1 5 Bevegelse 20 5.201 Galilei på øret undersøke bevegelsen til en tung sylinder ved hjelp av hørselen Eksperimenter Fure Startstrek Til dette forsøket trenger du to høvlede bordbiter som er over en

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

Datalogging for ungdomstrinnet: Avstand, fart og akselerasjon

Datalogging for ungdomstrinnet: Avstand, fart og akselerasjon Datalogging for ungdomstrinnet: Avstand, fart og akselerasjon Ellen K. Henriksen og Carl Angell Skolelaboratoriet, Fysisk institutt, UiO Læreplanen sier at etter 10. årstrinn skal elevene kunne: planlegge

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1 Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter

Detaljer

Repetisjonsoppgaver kapittel 0 og 1 løsningsforslag

Repetisjonsoppgaver kapittel 0 og 1 løsningsforslag Repetisjonsoppgaver kapittel 0 og løsningsforslag Kapittel 0 Oppgave a) Gjennomsnittet er summen av måleverdiene delt på antallet målinger. Summen av målingene er,79 s. t sum av måleverdiene antallet målinger,79

Detaljer

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid RST 1 7 Arbeid og energi 38 7.201 Levende pendel måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid Eksperimenter Ta en bevegelsessensor og logger med i gymnastikksalen eller et sted

Detaljer

Læreplan i fysikk - programfag i studiespesialiserende utdanningsprogram

Læreplan i fysikk - programfag i studiespesialiserende utdanningsprogram Læreplan i fysikk - programfag i studiespesialiserende Fastsatt som forskrift av Utdanningsdirektoratet 3. april 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og forskningsdepartementet

Detaljer

HARALDSVANG SKOLE Årsplan 8. trinn FAG: NATURFAG

HARALDSVANG SKOLE Årsplan 8. trinn FAG: NATURFAG HARALDSVANG SKOLE Årsplan 8. trinn 2017-2018 FAG: NATURFAG Uke Kompetansemål (K13) Hovedemne Delemne Arbeidsmåte Læremidler 34 Mangfold i naturen 35 36 Forskerspiren 37 38 39 undersøke og registrere biotiske

Detaljer

Er datalogging vanskelig og fali og bare for duppeditteksperter?

Er datalogging vanskelig og fali og bare for duppeditteksperter? Er datalogging vanskelig og fali og bare for duppeditteksperter? Ludvig er et B-menneske med utpreget høysnue og tydelig angst for gjennomgripende forandringer og tekniske innretninger. Er datalogging

Detaljer

Kollisjon - Bevegelsesmengde og kraftstøt (impuls)

Kollisjon - Bevegelsesmengde og kraftstøt (impuls) Institutt for fysikk, NTNU FY11 Mekanisk fysikk, høst 7 Laboratorieøvelse Kollisjon - Bevegelsesmengde og kraftstøt (impuls) Hensikt Hensikten med øvelsen er å studere elastiske og uelastiske kollisjoner

Detaljer

DATALOGGING I REALFAGENE.

DATALOGGING I REALFAGENE. DATALOGGING I REALFAGENE. Av Hans Foosnæs Steinkjer vg skole 1. INNLEDNING I realfagsundervisninga er moderne teknologi og IKT blitt viktige elementer. Digitale ferdigheter er i Kunnskapsløftet en av de

Detaljer

5.201 Modellering av bøyning

5.201 Modellering av bøyning RST 2 5 Kraft og bevegelse 26 5.201 Modellering av bøyning lage en modell for nedbøyning av plastikklinjaler teste modellen Eksperimenter Fest en lang plastikklinjal til en benk med en tvinge e.l. slik

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

HARALDSVANG SKOLE Årsplan 8. trinn FAG: NATURFAG

HARALDSVANG SKOLE Årsplan 8. trinn FAG: NATURFAG HARALDSVANG SKOLE Årsplan 8. trinn 2018-19 FAG: NATURFAG Uke Kompetansemål (K13) Hovedemne Delemne Arbeidsmåte Læremidler 34 Mangfold i naturen Vienskapens og teknologiens historie 35 undersøke og Kap.

Detaljer

Løsningsforslag til ukeoppgave 2

Løsningsforslag til ukeoppgave 2 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =

Detaljer

Fy1 - Prøve i kapittel 5: Bevegelse

Fy1 - Prøve i kapittel 5: Bevegelse Fy1 - Prøve i kapittel 5: Bevegelse Løsningsskisser Generelt: Alle svar skal avrundes korrekt med samme antall gjeldende siffer som er gitt i oppgaven. Alle svar skal begrunnes: - Tekst/figur/forklaring

Detaljer

Arbeid mot gravitasjon mekanisk energi (lærerveiledning)

Arbeid mot gravitasjon mekanisk energi (lærerveiledning) Arbeid mot gravitasjon mekanisk energi (lærerveiledning) Vanskelighetsgrad: Middels, noe vanskelig Short English summary In this exercise we shall measure the work (W) done when a small cart is lifted

Detaljer

Realfagsglede VG2 80 minutter

Realfagsglede VG2 80 minutter Lærerveiledning: Passer for: Varighet: Realfagsglede VG2 80 minutter INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no «Realfagsglede»

Detaljer

Eksamen REA3024 Matematikk R2

Eksamen REA3024 Matematikk R2 Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. Oppgave 1 Nettokraften pa en sokk som sentrifugeres ved konstant vinkelhastighet pa vasketrommelen er A null B rettet radielt utover C rettet radielt

Detaljer

Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning)

Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning) Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning) Vanskelighetsgrad: liten Short English summary This exercise shows a study of the friction between a small wooden block and a horizontal

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

FORSØK MED ROTERENDE SYSTEMER

FORSØK MED ROTERENDE SYSTEMER FORSØK MED ROTERENDE SYSTEMER Laboratorieøvelsen består av 3 forsøk. Forsøk 1: Bestemmelse av treghetsmomentet til roterende punktmasser Hensikt Hensikt med dette forsøket er å bestemme treghetsmomentet

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYPIADEN 0 0 Andre runde: / 0 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: 3 klokketimer Hjelpemidler:

Detaljer

4 Differensiallikninger R2 Oppgaver

4 Differensiallikninger R2 Oppgaver 4 Differensiallikninger R2 Oppgaver 4.1 Førsteordens differensiallikninger... 2 4.2 Modellering... 7 4.3 Andreordens differensiallikninger... 13 Aktuelle eksamensoppgaver du finner på NDLA... 16 Øvingsoppgaver

Detaljer

EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.

EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink. EKSAMEN EMNE: FYS 120 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver:

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Tyngdekraft og luftmotstand

Tyngdekraft og luftmotstand Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget

Detaljer

Løsningsforslag til ukeoppgave 4

Løsningsforslag til ukeoppgave 4 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 23. mars 2017 Tid for eksamen: 14.30-17.30, 3 timer Oppgavesettet er på 8 sider Vedlegg: Formelark

Detaljer

Arbeid mot friksjon 1 (lærerveiledning)

Arbeid mot friksjon 1 (lærerveiledning) Arbeid mot friksjon 1 (lærerveiledning) Vanskelighetsgrad: Liten, middels Short English summary In this exercise we shall measure the work (W) done when a constant force (F) pulls a block some distance

Detaljer

Modul nr Måling og funksjoner kl

Modul nr Måling og funksjoner kl Modul nr. 1442 Måling og funksjoner 8.-10. kl Tilknyttet rom: Energi og miljørom, Harstad 1442 Newton håndbok - Måling og funksjoner 8.-10. kl Side 2 Kort om denne modulen Denne modulen tar for seg flere

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2008

Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 14

Løsningsforslag for øvningsoppgaver: Kapittel 14 Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg 15.05.015 14.01 En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2014

Fysikkolympiaden 1. runde 27. oktober 7. november 2014 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 7. oktober 7. november 014 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

EKSAMEN. Stille lengde. Universitetet i Agder Fakultet for helse- og idrettsfag. Emnekode: Emnenavn: IDR124 Kropp,trening, helse

EKSAMEN. Stille lengde. Universitetet i Agder Fakultet for helse- og idrettsfag. Emnekode: Emnenavn: IDR124 Kropp,trening, helse Universitetet i Agder Fakultet for helse- og idrettsfag EKSAMEN Emnekode: Emnenavn: IDR124 Kropp,trening, helse Dato: 08. mars 2012 Varighet: 3 timer Antallsider inkl.forside 7- Tillatte hjelpemidler:

Detaljer

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999 E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 (ny læreplan) Elever og privatister 28. mai 1999 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016

Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Oppgave 1 Vi har v 0 =8,0 m/s, v = 0 og s = 11 m. Da blir a = v2 v 0 2 2s = 2, 9 m/s 2 Oppgave 2 Vi har v 0 = 5,0 m/s, v = 16 m/s, h = 37 m og m

Detaljer

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00 13:00 Sted: Administrasjonsbygget, 1. etg., rom B.154 Tillatte hjelpemidler:

Detaljer

Gjennomføring av muntlig-praktisk eksamen i Fysikk. Privatister

Gjennomføring av muntlig-praktisk eksamen i Fysikk. Privatister Gjennomføring av muntlig-praktisk eksamen i Fysikk Privatister Utdanningsprogram: Studiespesialisering Realfag, programfag Fagkode og fagnavn: REA3004 Fysikk 1 REA3006 Fysikk 2 Oppgaveproduksjon: Eksaminator

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 017 018 Andre runde: 6. februar 018 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

ProFag Realfaglig programmering

ProFag Realfaglig programmering Det matematisk-naturvitenskapelige fakultet ProFag Realfaglig programmering Andre samling 1. september 018 Kompetansesenter for Undervisning i Realfag og Teknologi www.mn.uio.no/kurt Det matematisk-naturvitenskapelige

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 4

Løsningsforslag for øvningsoppgaver: Kapittel 4 Løsningsforslag for øvningsoppgaver: Kapittel 4 Jon Walter Lundberg.0.05 4.04 Kari og Per trekker i hver sin ende av et tau. Per får en stund godt tak og trekker tauet og Kari etter seg med konstant fart.

Detaljer

Både besvarelsene du leverer inn og det du gjør underveis blir vurdert. (Gruppe 1 starter med oppgave 1, gruppe 2 starter med oppgave 2 osv.) 10.

Både besvarelsene du leverer inn og det du gjør underveis blir vurdert. (Gruppe 1 starter med oppgave 1, gruppe 2 starter med oppgave 2 osv.) 10. INSTRUKS Du har 30 minutter til hver oppgave og skal gå fra stasjon til stasjon. Alle de praktiske øvelsene bortsett fra én kan gjøres i par/grupper. Læreren bestemmer gruppene. Du må levere besvarelsene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is) Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi

Detaljer

Eksamensoppgave våren 2010 Ordinær og ny/utsatt eksamen Bokmål. Naturfag 1 med artsprøve. Eksamensdato: 27. Mai 2010. Studium/klasse: Naturfag 1

Eksamensoppgave våren 2010 Ordinær og ny/utsatt eksamen Bokmål. Naturfag 1 med artsprøve. Eksamensdato: 27. Mai 2010. Studium/klasse: Naturfag 1 Eksamensoppgave våren 2010 Ordinær og ny/utsatt eksamen Bokmål Fag: Naturfag 1 med artsprøve Eksamensdato: 27. Mai 2010 Studium/klasse: Naturfag 1 Emnekode: NAT100-EX2 1 Eksamensform: Skriftlig Antall

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet

Detaljer

Løsningsforslag til midtveiseksamen i FYS1001, 19/3 2018

Løsningsforslag til midtveiseksamen i FYS1001, 19/3 2018 Løsningsforslag til midtveiseksamen i FYS1001, 19/3 2018 Oppgave 1 Figuren viser kreftene som virker på kassa når den ligger på lasteplanet og lastebilen akselererer fremover. Newtons 1. lov gir at N =

Detaljer

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. Kap. 6+7 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. F F x Arbeid = areal under

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer

ÅRSPLAN I NATURFAG FOR 3. OG 4. TRINN

ÅRSPLAN I NATURFAG FOR 3. OG 4. TRINN Skolens navn: Adresse: 9593 Breivikbotn Telefon: 78 45 27 25 / 26 ÅRSPLAN I NATURFAG FOR 3. OG 4. TRINN BREIVIKBOTN SKOLE 2011 2012 LÆRER: June Brattfjord LÆREVERK: CUMULUS 4 av Stig Bjørshol, Sigmund

Detaljer

EKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.

EKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink. EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

Høgskoleni østfold. Avdeling for ingeniorfag. Eksamen ingeniodysikk

Høgskoleni østfold. Avdeling for ingeniorfag. Eksamen ingeniodysikk 3 //i Høgskoleni østfold Avdeling for ingeniorfag Eksamen ingeniodysikk Fag:IRF00 Ingeniørfysikk Faglærer: Per Erik Skogh Nilsen 47 8 85 3 Sensurfrist..4 Dato: 8.desember 03 Tid: 0900 00 Antall oppgavesider:

Detaljer

Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( )

Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( ) Del Oppgave a) Deriver funksjonen f( x) = x cos( x) b) Deriver funksjonen ( ) ( 4 x f x = e + ) c) Gitt funksjonen f( x) = x 4x + x+ ) Ligger grafen over eller under x-aksen når x =? ) Stiger eller synker

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Løsningsforslag til øving 5

Løsningsforslag til øving 5 FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 011. Løsningsforslag til øving 5 Oppgave 1 a) Energibevarelse E A = E B gir U A + K A = U B + K B Innsetting av r = L x i ligningen gir

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

Breivika Tromsø maritime skole

Breivika Tromsø maritime skole Breivika Tromsø maritime skole F-S-Fremdriftsplan 00TM01F - Fysikk på operativt nivå Utgave: 1.01 Skrevet av: Knut Magnus Sandaker Gjelder fra: 18.09.2015 Godkjent av: Jarle Johansen Dok.id.: 2.21.2.4.3.2.6

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 27. mars 2014 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 6 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

Eksamen 1T, Høsten 2011

Eksamen 1T, Høsten 2011 Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Hvor mye koster én flaske vann, og hvor mye

Detaljer

Innholdsfortegnelse. Simulering Sentralt støt2 Veiledning til simulering Sentralt støt3 Simulering Skjevt støt4 Veiledning til simulering Skjevt støt5

Innholdsfortegnelse. Simulering Sentralt støt2 Veiledning til simulering Sentralt støt3 Simulering Skjevt støt4 Veiledning til simulering Skjevt støt5 ERGO Fysikk. 3FY. AA (Reform 94) - 3. Bevegelsesmengde - 3.4 Støt - Fagstoff Innholdsfortegnelse Simulering Sentralt støt2 Veiledning til simulering Sentralt støt3 Simulering Skjevt støt4 Veiledning til

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: YS1000 Eksamensdag: 26. mars 2015 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 7 sider Vedlegg: ormelark (2

Detaljer

Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019

Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Oppgave 1 Løve og sebraen starter en avstand s 0 = 50 m fra hverandre. De tar hverandre igjen når løven har løpt en avstand s l = s f og sebraen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 31. mars 2011 Tid for eksamen: 15:00-17:00, 2 timer Oppgavesettet er på 6 sider Vedlegg:

Detaljer

NY/UTSATT EKSAMEN NATURFAG 1, DEL 2

NY/UTSATT EKSAMEN NATURFAG 1, DEL 2 NY/UTSATT EKSAMEN I NATURFAG 1, DEL Studium: Naturfag 1 Klasse: Naturfag årsstudium Dato: 6.10.10 Tid: 09.00-14.00 Faglig ansvarlig: Frode Henanger Tillatte hjelpemidler: Ingen Antall sider: Vedlegg: 17

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje 2.1 Vi skal gjennomføre en enkel bestemmelse av gjennomsnittshastighet ved å simulere en luftputebenk. En vogn kan gli tilnærmet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 3.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 3. TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 3. Oppgave 1 En takstein med masse 1.0 kg faller ned fra et 10 m yt us. Hvor stort arbeid ar tyngdekraften gjort pa taksteinen nar den treer bakken? A 9.8

Detaljer

Teknostart Prosjekt. August, Gina, Jakob, Siv-Marie & Yvonne. Uke 33-34

Teknostart Prosjekt. August, Gina, Jakob, Siv-Marie & Yvonne. Uke 33-34 Teknostart Prosjekt August, Gina, Jakob, Siv-Marie & Yvonne Uke 33-34 1 Sammendrag Forsøket ble utøvet ved å variere parametre på apparaturen for å finne utslagene dette hadde på treghetsmomentet. Karusellen

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Øving 20. mars 2015 Tidsfrist: 7.april 2015, klokken 23.55 Onsdag 25. mars kom det til en ekstraoppgave: Oppgave 4. Denne kan du velge å gjøre istedenfor oppgave 3. Det

Detaljer