Løsningsforslag ST2301 Øving 11
|
|
- Karl Fosse
- 7 år siden
- Visninger:
Transkript
1 Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen hver generasjon. I den idealiserte diploide Wright-Fisher-modellen er innavlskoeffisienten etter t generasjoner gitt ved ft) Frekvensen av heterozygoter er gitt ved P Aa t) 2p p) ft)) Denne skal reduseres 90%, dvs P Aa t) P Aa 0) 0. 2p p) ft)) 0. 2p p) ft) 0.
2 Setter inn for ft) og løser ut t. ft) ln 0. t ln ) Exercise 2 Hvorfor er ikke prosessen med genetisk drift tilsvarende det å kaste kron/mynt mange ganger med sannsynligheten for kron lik p? I såfall ville vi i det lange løp forventa å se en andel p kron istedet for å få bare kron eller bare mynt fiksering ). Hvor bryter analogien sammen? Genetisk drift innebærer at sannsynligheten for å trekke et allel A fra gametpoolen en gitt generasjon avhenger av hva som skjedde tidligere generasjoner. Når man kaster kron og mynt avhenger ikke kastene av resultatene fra tidligere kast. Exercise 4 En ny mutant oppstår som en enkelt genkopi i en diploid populasjon med størrelse N. Hva er sannsynligheten for fiksering av mutant-allelet pga drift? En ny mutant vil utgjøre en andel av alle allelene i populasjonen ved locuset. Siden fikseringssannsynligheten er lik p 0 likning VI-9 side 20) er den altså. Exercise 5 Ettersom et sjeldent allel blir fiksert ved tilfeldig drift, vil heterozygositeten først øke og deretter minke. Hvordan kan dette forklares samtidig med at f alltid øker over tid? 2
3 Dersom p t tilfeldigvis øker kan det virke uforenlig med at P Aa skal avta. p t er en stokastisk variabel med forventning og varians E[p t ] p 0 Varp t ) p 0 p 0 ) [ ) ] t gitt at vi bare kjenner p 0. Det gir at E[P Aa ] E[2p t p t )] 2E[p t ] 2E[p 2 t ] 2E[p t ] 2Varp t ) 2E[p t ] 2 [ 2p 0 2p 0 p 0 ) ) ] t 2p 2 0 2p 0 2p 0 + 2p p 0 p 0 ) 2p 0 p 0 ) 2p 2 0 Innavlskoeffisienten følger uttrykket f t Denne forteller sannsynligheten for IBD. Har at P Aa 2p 0 p 0 ) f t ) Dermed føger at E[P Aa ] P AB. E[P Aa ] 2p 0 p 0 ) f t ) Det er altså ingen motsetning mellom tilfeldig økning i frekvensen av et sjeldent allel og økning i f. Exercise 7 Hos pelssel vil kanskje 0% av alle hanner reprodusere i hver generasjon. Hvor mye påvirker dette den effektive populasjonsstørrelsen? 3
4 La populasjonsstørrelsen være N, og anta at det er like mange hanner og hunner. Bare 0% av alle hanner reproduserer, men alle hunner reproduserer. Det gir N m N 0 2 N f N 2 Effektiv populasjonsstørrelse blir N e 4N m + 4N f 20 4N + 2 4N N N Den effektive populasjonsstørrelsen er altså mye mindre enn den faktiske størrelsen N. Exercise 0 Se på en stor populasjon med størrelse N. Hver generasjon vil halvparten av individene tilfeldigvis finne gode reirplasser og ha gjennomsnittlig fertilitet på 3, mens den andre halvparten må klare seg med dårlige reirplasser og har fertilitet på. Hver generasjon dør foreldrene, og det er ingen korrelasjon mellom hvor foreldrene og avkommene finner reirplasser. Hva er den effektive populasjonsstørrelsen som funksjon av N? Sannsynligheten for fertiliteten antall videreførte allel n i il individ nummer i er gitt ved P rn i 3)) 2 P rn i )) 2 4
5 Forventa antall videreførte allel for individ i er dermed E[n i ] Siden hvert individ har to foreldre, betyr dette at populasjonsstørrelsen vil være lik N alle generasjoner. Sannsynligheten for at to tilfeldig valgte allel kommer fra samme individ er P ri J) N i n i n i ) ) Den effektive populasjonsstørrelsen er gitt ved VI-55 side 20) [ N ] n i n i ) E N e ) i N i E[n2 i ] E[n i] ) Har at E[n 2 i ] Det gir N i E[n2 i ] E[n i] N e ) N i 4 ) 2 N e N 2 Exercise Blant menn i dette landet opptrer etternavn som om de var Y -koplet. Hva forteller teorien om genetisk drift oss om hvor raskt navnediversiteten vil forsvinne? Et Y -koplet gen vil oppføre seg som et gen i en haploid modell. Sannsynligeten for at et etternavn forsvinner vil være p 0. 5
6 Exercise 2 Hvis en populasjon starter med størrelse N og vokser med 2% hver generasjon, hvor mye innavl vil akkumuleres? Bruk en tilnærming for store N, og sum av geometrisk rekke. Lar vekstraten være a.02. Da er N t Na t Den effektive populasjonsstørrelsen i tidsrommet frem til t er VI-48 side 208) N e t t t j0 N j t j0 Na j t e t a j j0 Den gjenværende andelen av det opprinnelige antallet heterozygoter er h t e t t a j j0 /a)t t /a) t For å finne ut hvor mye innavl som akkumuleres noensinne, la t Se f.eks. Rottmann side 80 for formel). lim h t lim /a)t t t t /a) lim t t /a) ) exp /a) exp 5 ) 6
Matematisk evolusjonær genetikk (ST2301)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det
DetaljerLøsningsforslag ST2301 Øving 4
Løsningsforslag ST301 Øving 4 Kapittel 1 Complement Anta at det er n allel med samme frekvens. Som funksjon av n, hva er andelen homozygoter og heterozygoter i populasjonen? Har at p 1 p... p n p p i p
DetaljerLøsningsforslag ST2301 Øving 2
Løsningsforslag ST2301 Øving 2 Kapittel 1 Exercise 6 Har et utvalg på 200 individer, fra en populasjon med forventet Hardy-Weinbergandeler for et locus med tre alleler, A 1, A 2 og A 3. Antall individer
DetaljerLøsningsforslag ST2301 Øving 2
Løsningsforslag ST2301 Øving 2 Kapittel 1 Exercise 6 Har et utvalg på 200 individer, fra en populasjon med forventa Hardy-Weinbergandeler for et locus med tre alleler, A 1, A 2 og A 3. Antall individer
DetaljerLøsningsforslag ST2301 Øving 7
Løsningsforslag ST230 Øving 7 Kapittel 2 Complement 9 Noen planter reproduserer med selvbestøvning slik at hvert avkom er resultat av et tilfeldig pollenkorn og et tilfeldig frøemne fra samme plante. Anta
DetaljerLøsningsforslag ST2301 Øving 9
Løsningsforslag ST30 Øving 9 Kapittel 5 Exercise Hvis vi har et dominant trekk med genfrekvens 0.3, hva er frekvensen av trekket når f = 0? f = 0.? f = 0.5? f =? La A være frekvensen av genet som gir trekket
DetaljerLøsningsforslag ST2301 Øving 10
Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden
DetaljerLøsningsforslag ST2301 Øving 9
Løsningsforslag ST30 Øving 9 Kapittel 5 Exercise Hvis vi har et dominant trekk med genfrekvens 0.3, hva er frekvensen av trekket når f = 0? f = 0.? f = 0.5? f =? La A være frekvensen av genet som gir trekket
DetaljerLøsningsforslag ST2301 Øving 6
Løsningsforslag ST230 Øving 6 Kapittel 2 Exercise 0 Anta at tre genotyper har fitnesser A A A A 2 A 2 A 2 4 0 3. Hva er likevektsfrekvensen? 2. Er denne stabil? 3. Hvorfor kan vi ikke bare bruke formlene
DetaljerØving 12, ST1301 A: B:
Øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis testen oppfører
DetaljerMatematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Matematisk evolusjonær genetikk, ST30 Onsdag 5. desember 004 Løsningsforslag Oppgave a) Vi setter først navn på de
DetaljerLøsningsforslag ST2301 Øving 5
Løsningsforslag ST2301 Øving 5 Kaittel 2 Exercise 6 Har en diloid oulasjon, ser å et locus med to allel A og a. Fitnessene for genotyene er 1 1 + h 0 Hva er likevektsfrekvensen av A som funksjon av h?
DetaljerLøsningsforslag ST2301 Øving 6
Løsningsforslag ST2301 Øving 6 Kapittel 2 Exercise 10 Anta at tre genotyper har tnesser A 1 A 1 A 1 A 2 A 2 A 2 4 0 3 1. Hva er likevektsfrekvensen? 2. Er denne stabil? 3. Hvorfor kan vi ikke bare bruke
DetaljerLøsningsforslag øving 12, ST1301
Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis
DetaljerLa U og V være uavhengige standard normalfordelte variable og definer
Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser
DetaljerProsjektoppgaver om diusjonsprosesser og diusjonstilnærmelse
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 22, 2007 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal
DetaljerFLERVALGSOPPGAVER EVOLUSJON
FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,
DetaljerObligatorisk innlevering 3kb vår 2004
Obligatorisk innlevering 3kb vår 2004 1 I marsvin er mørk pels farge (F) dominant over albino (f), og hår (K) dominant over langt hår (k). Genene for disse to egenskapene følger prinsippet om uavhengig
DetaljerKap. 5.2: Utvalgsfordelinger for antall og andeler
Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter
DetaljerProsjektoppgaver om diusjonsprosesser og diusjonstilnærmelse
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 13, 2006 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal
DetaljerEKSAMENSOPPGAVE I BI3010 (POPULASJONSGENETIKK)
Norges teknisk-naturvitenskapelige universitet Institutt for (INSTITUTTNAVN) EKSAMENSOPPGAVE I BI3010 (POPULASJONSGENETIKK) - Faglig kontakt under eksamen (Contact persons during exam): J. Mork (909 73
DetaljerEKSAMENSOPPGAVE I BI3010 Populasjonsgenetikk (Population genetics) BOKMÅL SPØRSMÅL 1-7 VEIER LIKT
http://www.ntnu.no/trondheim-marine-ri/ Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI3010 Populasjonsgenetikk (Population genetics) - Faglig kontakt under eksamen
DetaljerKapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
DetaljerKapittel 10, del 2: Klassisk genetikk: Mendels arvelover. -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte:
Kapittel 10, del 2: Klassisk genetikk: Mendels arvelover -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte: 1. Dominansforhold 2. Multiple allel 3. Geninteraksjon 4. Genuttrykk
DetaljerUtvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave X er kontinuerlig fordelt med sannsynlighetstetthet f X (x) = { x exp( x ) x
DetaljerGenetisk variasjon i naturlige populasjoner. grunnlag for foredling. Mari Mette Tollefsrud. Foto: Arne Steffensrem
Genetisk variasjon i naturlige populasjoner grunnlag for foredling Mari Mette Tollefsrud Foto: Arne Steffensrem Genetisk variasjon Summen av forskjeller i genotypene til individene i en populasjon Oppstår
DetaljerLøsningsforslag øving 6, ST1301
Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall
DetaljerFoU prosjekt Elghund. 13.06.2015 Marte Wetten Geninova
FoU prosjekt Elghund 13.06.2015 Marte Wetten Geninova Hovedprosjekt Fra fenotype til genotype -utvikling av avlsprogram for de Norske Elghundrasene Hovedmål Overføre prinsipper fra avl på produksjonsdyr
DetaljerLitt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.
1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling
DetaljerFLERVALGSOPPGAVER ARV
FLERVALGSOPPGAVER ARV Hvert spørsmål har ett riktig svaralternativ. Arv 1 En organisme med to identiske alleler for en egenskap blir kalt A) homozygot B) dominant C) selvpollinerende D) heterozygot Arv
DetaljerLøsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11
Løsningsforslag Eksamen S, våren 014 Laget av Tommy O. Sist oppdatert: 1. september 018 Antall sider: 11 Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source,
DetaljerEKSAMENSOPPGAVE I BI2033 POPULASJONSØKOLOGI
Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI2033 POPULASJONSØKOLOGI - Faglig kontakt under eksamen: Bård Pedersen tlf. 90603468 Vidar Grøtan tlf. 92653244 Eksamensdato:
DetaljerPoissonprosesser og levetidsfordelinger
Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien
DetaljerGenetiske interaksjoner villfisk-oppdrettsfisk
Genetiske interaksjoner villfisk-oppdrettsfisk Jørgen Ødegård og Celeste Jacq Nofima AHA Oppstartkonferanse Leikanger, april 2011 Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk kan rømme og krysse
DetaljerEksamen R2 Høsten 2013
Eksamen R2 Høsten 203 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos b) g sin 2 Oppgave 2 (3
DetaljerRettet avskytning er det rett avskytning?
Rettet avskytning er det rett avskytning? - hva vi har lært fra jaktlaboratoriet på Vega Stine Svalheim Markussen Jaktlaboratoriet Vega: Rettet avskytning 1. Rettet avskytning av elg 2. Vega-populasjonen:
DetaljerSTK1100 våren Forventningsverdi. Forventning, varians og standardavvik
STK00 våren 0 Forventning, varians og standardavvik Svarer til avsnitt 3.3 i læreboka Geir Storvik (Ørnulf Borgan) Matematisk institutt Universitetet i Oslo Forventningsverdi Punktsannsynligheten px (
DetaljerLøsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
DetaljerA)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %
SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig
DetaljerOppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0
Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi lar p = 0,60 og q = 0,40, og skriver funksjonen som f() = p ln( + ) + q ln( ) for å forenkle skrivemåten. Funksjonen
DetaljerVEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER
Vedlikehold av egenskaper og forbedringer 1 VEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER Av: A. KRISTIAN STIGEN Alle bipopulasjoner, enten de stelles av mennesker eller ikke, vil etter hvert forandre seg.
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerTMA4265 Stokastiske prosesser
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser
DetaljerTMA4265 Stokastiske prosesser ST2101 Stokastisk simulering og modellering
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 9 8 26, 99 4 673 TMA426 Stokastiske prosesser ST2 Stokastisk
DetaljerDNA-profiler. DNA analyse fra ekskrementer. Foredragets oppbygning. DNA framtidens overvåkingsmetodikk på store rovdyr?
DNA framtidens overvåkingsmetodikk på store rovdyr? Øystein Flagstad Foredragets oppbygning Generell innledning; metodikk og aktuelle problemstillinger Case study; bestandsovervåkning av jerv Videreutvikling
DetaljerDRONENE BIFOLKETS HANNBIER
DRONENE - BIFOLKETS HANNBIER 1 DRONENE BIFOLKETS HANNBIER Bifolkets hannbier dronene blir av de fleste birøktere sett på som en belastning i bisamfunnet, idet de spiser mye honning uten å bidra med noe
DetaljerLøsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
DetaljerLøsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017
Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx
DetaljerFra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
DetaljerEksamen S2 va r 2017 løsning
Eksamen S va r 017 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f 1 f b) g ln 1 g h 1 e c) h e e e Oppgave
DetaljerKan vi stole på resultater fra «liten N»?
Kan vi stole på resultater fra «liten N»? Olav M. Kvalheim Universitetet i Bergen Plan for dette foredraget Hypotesetesting og p-verdier for å undersøke en variabel p-verdier når det er mange variabler
DetaljerHvordan drive en god fiskekultivering i ei lakseelv? Årsmøte NL 24.mai 2016 Drammen Anne Kristin Jøranlid
Hvordan drive en god fiskekultivering i ei lakseelv? Årsmøte NL 24.mai 2016 Drammen Anne Kristin Jøranlid Kort om retningslinjene Genetisk veileder Opphavskontrollen Retningslinjer for utsetting av anadrom
DetaljerGenetikk hos elvemusling - Prinsipper, Kunnskapsstatus, Kultivering og Veien videre. Elvemuslingseminar Stjørdal
Genetikk hos elvemusling - Prinsipper, Kunnskapsstatus, Kultivering og Veien videre Elvemuslingseminar Stjørdal 04.02.15 Sten Karlsson Innhold Prinsipper ved bevaring av genetisk variasjon Kunnskapsstatus
DetaljerGRUNNLEGGENDE GENETISKE BEGREPER Del I - en serie om kattegenetikk
GRUNNLEGGENDE GENETISKE BEGREPER Del I - en serie om kattegenetikk Dette er første del i en serie om kattegenetikk. I denne første delen vil jeg ta for meg de ulike genetiske begrepene som blir brukt i
DetaljerST0103 Brukerkurs i statistikk Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle
DetaljerForelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind
Forelesning 7: Store talls lov, sentralgrenseteoremet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Estimering av variansen 2. Asymptotisk teori 3. Store talls lov 4. Sentralgrenseteoremet 1.Estimering
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerGenbankbasert Kultivering
Genbankbasert Kultivering Sten Karlsson, Ola Ugedal, Arne Jensen NINA, Trondheim Håvard Lo, Espen Holthe, Bjørn Bjøru, Veterinærinstituttet, Trondheim Rune Limstand, Tor Næss, Monika Klungervik, Daniela
DetaljerDiskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
DetaljerHolder cytoplasmaet på plass. Regulerer transporten inn i og ut av cellen og har kontakt med naboceller.
Figurer kapittel 7 Fra gen til egenskap Figur s. 189 elledel ellemembran ytoplasma Lysosom Ribosom Mitokondrie Kanalnettverk (endoplasmatisk nettverk) Kjernemembran ellekjerne rvestoff (= DN) Molekyl Protein
DetaljerLøsningsforslag ST2301 Øving 8
Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de
DetaljerKan vi ivareta genetisk variasjon samtidig som gevinsten øker
Kan vi ivareta genetisk variasjon samtidig som gevinsten øker Jørn Henrik Sønstebø, Mari Mette Tollefsrud, Arne Steffenrem, Øyvind M. Edvardsen, Ragnar Johnskås, Anne E. Nilsen, Tor Myking, Yousry El Kassaby
DetaljerTMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerDemodex (hårsekkmidd) Det latinske navnet på hunders hårsekkmidd. Sykdommen, som er en midd, forårsaker demodekose.
NKKs Oppdretterskole - Del 1: Genetikk og avl Bergen 14. og 15. november 2009 Forelesere: Astrid Indrebø og Hilde Bremnes Referat ved Solvor Nærland Genetikk og avl Hunder har 78 kromosomer: - Autosomer
DetaljerA) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.
Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:
DetaljerEksamen S2 vår 2009 Del 1
Eksamen S2 vår 2009 Del 1 Oppgave 1 a) Deriver funksjonene: 1) f x x 2 1x 2 1 2 2x 2) gx x e b) 1) Gitt rekka2 468 Finn ledd nummer 20 og summen av de 20 første leddene 1 1 2) Gitt den uendelige rekka
DetaljerHeuristisk søk 1. Prinsipper og metoder
Heuristisk søk Prinsipper og metoder Oversikt Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Traveling sales person (TSP) Tromsø Bergen Stavanger Trondheim Oppdal Oslo
DetaljerSTK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner
STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i
Detaljer= 5, forventet inntekt er 26
Eksempel på optimal risikodeling Hevdet forrige gang at i en kontrakt mellom en risikonøytral og en risikoavers person burde den risikonøytrale bære all risiko Kan illustrere dette i en enkel situasjon,
DetaljerMULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016
MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.
DetaljerLøsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)
1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel
DetaljerGenetiske interaksjoner mellom vill og oppdrettet laks
Genetiske interaksjoner mellom vill og oppdrettet laks Céleste Jacq, Jørgen Ødegård, Hans B. Bentsen og Bjarne Gjerde Havforskermøtet 2011 Trondheim Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk
DetaljerØkologiske og genetiske prosesser i naturlige bestander
Økologiske og genetiske prosesser i naturlige bestander 140 Antall voksne individer 120 100 80 60 40 0 1994 1996 1998 2000 2002 2004 2006 År Dr. Henrik Jensen Senter for bevaringsbiologi (CCB) NTNU, Trondheim
DetaljerBIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005
Navn: Parti: Journalen leveres senest tirsdag 27. September 2005 i kassen utenfor labben. BIO 1000 LAB-ØVELSE 2 Populasjonsgenetikk 20. september 2005 Faglig ansvarlig: Eli K. Rueness Hovedansvarlig for
DetaljerMendelsk Genetikk (kollokvium 01.09.2005)
Mendelsk Genetikk (kollokvium 01.09.2005) 1) Hos marsvin er allelet som koder for svart pels (B) dominant i forhold allelet som gir hvit pels (b). Halvparten av avkommet i et kull var hvite. Hvilke genotyper
DetaljerEksamen REA3028 S2, Høsten 2011
Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h
DetaljerNå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed
Kapittel 6 Vekstmodeller For å forstå prosesser i naturen er matematiske modeller et nyttig verktøy. Matematiske modeller tar utgangspunkt i naturlover og modellerer disse i et matematisk språk. Naturlovene
DetaljerOversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder
Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4
DetaljerEKSAMENSOPPGAVER/ EXAM QUESTIONS: BI3010 Populasjonsgenetikk / Population Genetics
Norges teknisk-naturvitenskapelige universitet Institutt for biologi EKSAMENSOPPGAVER/ EXAM QUESTIONS: BI3010 Populasjonsgenetikk / Population Genetics - Faglig kontakt under eksamen / Contact person during
DetaljerRegneregler for forventning og varians
Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene
DetaljerNy kunnskap i avlsprogram. Anna K. Sonesson
Ny kunnskap i avlsprogram Anna K. Sonesson Avlsprogram Design: strategien som brukes for å forbedre genetiske anlegg Avlsverdiberegning/seleksjonskriterium Avlsmål/ definisjon av egenskaper Nye teknikker
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %
DetaljerLøsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org
Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk
DetaljerDiskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(, populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
DetaljerMidtveiseksamen i STK1100 våren 2017
Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (8 poeng) Deriver funksjonene. f x. ( ) e x. Polynomet P er gitt ved
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x 2 ( ) e x b) g( x) x 3 x 4 c) h( x) x( x 3) 6 Oppgave 2 (8 poeng) Polynomet P er gitt ved P x x x 3 2 ( ) 6 32 a) Vis at P( x ) er
DetaljerLøsning eksamen 2P våren 2008
Løsning eksamen 2P våren 2008 Oppgave 1 a) En avlesing av grafen viser at utgiftene er 40 000 kr når vi produserer 50 stoler. Utgiftene per stol blir 40 000 kr 50 = 800 kr b) 2,46 10 4 = 2,46 0,0001 =
DetaljerØVINGER 2017 Løsninger til oppgaver. Øving 1
ØVINGER 017 Løsninger til oppgaver Øving 1.1. Frekvenstabell For å lage en frekvenstabell må vi telle antall observasjoner av hvert antall henvendelser. Siden antall henvendelser på en gitt dag alltid
Detaljerx n+1 rx n = 0. (2.2)
Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med
DetaljerLøsningsforslag til Eksamen 2P vår 2008
Løsningsforslag til Eksamen P vår 008 Delprøve 1 OPPGAVE 1 a) Avlesning av grafen viser at 50 stoler koster 40.000 kroner. Gjennomsnittskostnaden per stol blir da: 40000 = 800 kroner. 50 b) c) = = 4,46
DetaljerEksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).
Detaljer