Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder"

Transkript

1 Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim Bergen Stavanger Tromsø Oppdal Oslo Byer Ruter 0 0 > 0 0 > 0 Beste løsning - målfunksjon Diskrete løsninger Eksempler: Traveling sales person Permutasjon av nodene Minimum verte cover Subsett av nodene Shortest superstring Permutasjon av strengene i et sett Mest deskriptive regulære uttrykk Parsetre Kristiansand

2 Minimum verte cover Minste antall noder bundet til alle kanter Målfunksjon og optimalisering Energilandskap som nyttig analogi function() ^ - * ( + 0.)^ () function() ^ + * sin( * pi) () Minimering av potensiell energi (mh) Smelting og størkning av materialer Krystall - repeterte strukturer (Globalt optimum) Glass - lokale strukturer (Lokalt optimum) Optimalisering Optimalisering - Løsningsskisse Løsningsrom, C Målfunksjon (kostnad), c(.) Problem: * min c( S ) * S! C. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til S! C S! N( S) = { S : S ~ S } S = S Hvordan definere naboskap (~)? Hvordan velge nabotilstand?

3 Minimal verte cover Graf G=(V, E) Løsningsrom: Alle verte covers Eks: V! C Målfunksjon: c ( S) = S Naboskap: S ~ S hvis S = S +- en node Ma V naboløsninger Verte cover gradient descent Hvordan velge nabotilstand?. Velg en tilstand S som arbeidsløsning. Velg en nabotilstand min c( S ) S!N ( S ). Terminer med S hvis c(s)! c(s ). Sett nabotilstanden som ny arbeidsløsning og gå til Løsning et lokalt minimum: c(s)! c(s ) Verte cover gradient descent som energilandskap function() ^ - * ( + 0.)^ () function() ^ + * sin( * pi) () Forbedringer av gradient descent/hill climbing (GD/HC) Varianter i nabovalg Velg første nabotilstand c(s )! c(s) Velg tilfeldig nabotilstand c(s )! c(s) Prøv forskjellige starttilstander. Velg tilfeldig starttilstand. Kjør gradient descent. Ta vare på beste løsning! Random-restart GD/HC function() ^ - * ( + 0.)^ ()

4 Hvordan unslippe lokale minima? ~ ~ function() ^ - * ( + 0.)^ () Hvordan simulere tilstanden i et fysisk system? Statistisk mekanikk: Tilstand, S Energi til tilstand, E(S) Temperatur, T Gibbs-Boltzmann funksjonen: Sannsynlighet for å finne et fysisk system i tilstand S, P(S) P( S) ~ e! E( S )/( kt ) Egenskaper ved Gibbs-Boltzmann funksjonen!e /(kt ) e E kt =00 kt =0 kt = kt = 0. Metropolis algoritmen simulerer fysisk system ved gitt temperatur. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. if E(S )! E(S). Oppdater S " S. else.!e = E(S ) - E(S). Oppdater S " S med sannsynlighet. Gå til e "!E /(kt ) Downhill GD/HC Uphill Ut av lokale minimum

5 function() ^ - * ( + 0.)^ () Metropolis algoritmen har bias mot lavenergitilstander La andelen steg MA er i S i løpet av de t første steg være (t) Sett Da vil lim f t#" S Z =! S" C ( t) = e Z e!over lang tid vil Metropolis algoritmen bruke mest tid i lavenergitilstander f S # E( S )/( kt )! E( S )/( kt ) ~ function() ^ - * ( + 0.)^ () Metropolis i praksis ~ ~ ~ / / Energilandskap og temperatur Energilandskap og temperatur!e /(kt ) e Høy temperatur function() ^ - * ( + 0.)^ () function() ^ - * ( + 0.)^ () function() ^ - * ( + 0.)^ () kt =00 kt =0 kt = Lav temperatur Høy temperatur alle tilstander like sannsynlige Smeltet materiale Lav temperatur minimumstilstandene mest sannsynlige Krystallstruktur Rask endring fra høy til lav temperatur Stokastisk gradient descent Lokale minima Imperfekt krystallstruktur (eller glass) kt = 0. E

6 Simulert størkning for optimalisering Krystalldyrkning i praksis:. Smelt. Avkjøl langsomt Simulert størkning: Start Metropolis algoritmen på høy temp Reduser temperaturen som funksjon av iterasjonene (annealing schedule) T =! (i ) Simulert størkning. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. Oppdater temperaturen. if E(S )! E(S). Oppdater S " S. else.!e = E(S ) - E(S). Oppdater S " S med sannsynlighet. Gå til e "!E /(kt ) Downhill GD/HC Uphill Ut av lokale minimum Simulert størkning konvergerer mot globalt optimum Langsom størkning gir globalt optimum T0! ( i) = log( + i) Suboptimal størkning brukes i praksis! ( i) = T0 g, g < i function() 0 * 0.^ () g = 0. g = 0. log Simulert størkning og TSP N byer i kvadrat med sidelengder N / Gjennomsnittelig avstand til nærmeste nabo uavhengig av N Gjennomsnittelig steglengde # uavhengig av N Heuristikk Gå til nærmeste by gir # = O(ln(N)) # $. (gjennomsnitt i praksis) Simulert størkning Tilstand S: Permutasjon av {,, N}, S=s s N Naboskap: Reverser en del av turen S Eks: S =,S = ;S = # <= 0. (N < 000)

7 Simulert størkning og TSP Naboskap påvirker løsbarhet T =. # =.0 T = 0. # =. Naboskap i TSP Reverser en del av turen Reverser etterfølgende par Bytt to tilfeldige byer 0 Energilandskap? T = 0. # =.0 T = 0.0 # = 0. Energilandskap for naboskap Energilandskap for naboskap Reverser en del av turen Reverser etterfølgende par function() ^ - * ( + 0.)^ () ~ 0 0 ~ 0

8 Energilandskap for naboskap Gradient descent, metropolis og simulert størkning Bytt to tilfeldige byer 0 ~ 0 function() ^ - * ( + 0.)^ () Algoritme:. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til Gradient descent Velg bedre nabo Metropolis + Velg dårligere nabo avhengig av temperatur og endring i kostnad Simulert størkning + Senk temperaturen Tabu-søk Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Hvordan hindre tilbakefall til suboptimale løsninger? 0! Husk tidligere tilstander! 0 Tabu-søk husker siste n tilstander Velger alltid beste løsning i N(S) Minnet (Tabu-listen) hindrer sykler med maks n elementer

9 Elementer så langt Iterer over enkelttilstander basert på naboskap Gå til bedre tilstand Aksepter dårligere tilstand Husk/unngå tidligere tilstander Se på flere løsninger!hva med å iterere over multiple tilstander samtidig? Populasjonsbaserte optimaliseringsmetoder. Velg et sett av tilstander som arbeidsløsning. Velg et sett av nabotilstander. Sett nabotilstandene som ny arbeidsløsning. Gå til { S}, S! C { S }, S! N( S) = { S : S ~ S } { S } = { S } Hvordan definere naboskap (~)? Hvordan velge nabotilstander? Hvordan velge nabotilstander? Parallel random-restart GD/HC min c( S ) S!N ( S ) Igjen: naturen som inspirasjonskilde Charles Darwin Evolusjon -> naturens optimaliseringsmetode Evolusjon som optimalisering Konkurranse om begrensede ressurser Arvelige egenskaper i en populasjon Organismer får mer avkom enn ressursgrunnlag Avkom har varierende evner til å overleve og reprodusere -> Fitness!Nyttige egenskaper har større sjanse for å føres videre

10 Evolusjon som optimaliseringsmetode Tilstandsbeskrivelse som arvelig egenskap -> gen Begrenset populasjonsstørrelse Overlevelsesevne gitt av målfunksjon -> fitness Genetisk variasjon Avkom ikke nøyaktig kopi Mutasjoner (endring av individs arvestoff) Rekombinasjon (kombinasjon av to individs arvestoff) Viktig element mangler! Crossover punkt Crossover punkt Genetisk variasjon definerer naboskap Seleksjon definerer valg av naboer Eks: TSP Arvestoff (tilstand) Nodepermutasjon Mutasjon (naboskap) Segmentreversjon Crossover/rekombinasjon (naboskap) Behold noderekkefølge fram til crossoverpunkt fra foreldre Bruk noderekkefølge for gjenværende noder fra foreldre S = S = S = S = S = Overlevelsesevne gitt av målfunksjon Velg n løsninger (individ) proporsjonalt med løsningskvalitet (fitness) Velg n individ ved å velge beste individ fra n tilfeldige undergrupper

11 Evolusjonær algoritme. Lag en startpopulasjon {S 0 } = n (tilfeldig). Selekter n individ {S } fra {S i } (med tilbakelegging). Lag ny generasjon {S i+ } ved å rekombinere og mutere {S }. Gå til Varianter av evolusjonære algoritmer Genetiske algoritmer Genom -> Strenger Parameteroptimalisering Genetisk programmering Genom -> Symbolske uttrykk Optimale deskriptive uttrykk Heuristisk søk og optimalisering Heuristisk søk og optimalisering Basisalgoritme Velg en tilstand som arbeidsløsning Velg en nabotilstand Valg av nabotilstand viktig Definisjon av nabolag Valg av tilstand i nabolaget Sett nabotilstanden som ny arbeidsløsning Gå til No free lunch Alle metaheuristikker er i gjennomsnitt like gode Ytelse og valg av nabotilstand henger sammen 0

12 Pragmatiske løsninger Median streng problemet Gitt sett av strenger S, finn l-mer median streng Input: Sett S av strenger, og lengden l Output: En string v, v = l (l-mer) med minimal total Hamming distanse d H (v,s) av alle mulige l-mers d H (w,s) = S $ min " j " s i # w i= d H (w,s i, j )!

Heuristisk søk 1. Prinsipper og metoder

Heuristisk søk 1. Prinsipper og metoder Heuristisk søk Prinsipper og metoder Oversikt Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Traveling sales person (TSP) Tromsø Bergen Stavanger Trondheim Oppdal Oslo

Detaljer

Overview. Heuristic search 1. Target function and optimization. Minimum vertex cover

Overview. Heuristic search 1. Target function and optimization. Minimum vertex cover Overview Heuristic search Combinatorial optimization Local search and simulated annealing Population-based search Principles and methods Pål Sætrom Traveling sales person (TSP) Combinatorial optimization

Detaljer

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre Oversikt Branch-and-bound Pål ætrom Branch and bound Prinsipper Min Vertex cover B & B eksempler Median string TP Hvordan løse NP-hard kombinatorisk optimering? Kombinatorisk opt. Løsningsrom, C Målfunksjon

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan

Detaljer

Heuristiske søkemetoder II

Heuristiske søkemetoder II Heuristiske søkemetoder II Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 4. september 23 Plan Hva er en heuristisk søkealgoritme? Hvorfor heuristiske søkealgoritmer framfor tilbakenøsting?

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen 1. september 2003 Deloppgave a I denne oppgaven skal vi ta for oss isomorfismer mellom grafer. To grafer G og H

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2001, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2001, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 21, ordinær eksamen 14. september 23 Innledning En klikk i en graf G er en komplett subgraf av G. Det såkalte maksimum-klikk problemet består

Detaljer

Heuristiske søkemetoder I: Simulert størkning og tabu-søk

Heuristiske søkemetoder I: Simulert størkning og tabu-søk Heuristiske søkemetoder I: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral lars@aurdalweb.com Heuristiske søkemetoder I:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer

INF-MAT 5380 - Geir Hasle - Leksjon 3 2

INF-MAT 5380 - Geir Hasle - Leksjon 3 2 Leksjon 3 !"#$ Eksempler på DOP Alternative representasjoner Definisjon nabolag, -operator Lokalsøk Definisjon lokalt optimum Eksakt nabolag Prosedyre for lokalsøk Traversering av nabolagsgraf Kommentarer,

Detaljer

!"!#$ INF-MAT Geir Hasle - Leksjon 2 2

!!#$ INF-MAT Geir Hasle - Leksjon 2 2 Leksjon 2 !"!#$ Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk program COP Definisjon DOP Anvendelser Kompleksitetsteori Eksakte metoder, approksimasjonsmetoder

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen 14. september 2003 Innledning Vi skal betrakte det såkalte maksimum-kutt problemet (maximum cut problem). Problemet

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 2 Leksjon 1: Oppsummering Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under

Detaljer

INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/

INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 8 Diskrete optimeringsproblemer (DOP) Finnes overalt operasjonsanalyse kunstig intelligens mønstergjenkjenning geometri økonomi

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 5 Leksjon 4 - Oversikt Tabusøk INF-MAT 5380 - Geir Hasle - Leksjon 5 2 Tabusøk - Sammendrag Inspirert fra matematisk optimering

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen 14. september 2003 Deloppgave a 50-års jubileet for simulert størkning: I juni 1953 publiserte fire amerikanske fysikere,

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 3 Leksjon 2 - Oppsummering Eksempler på DOP Alternative formuleringer Definisjon nabolag, -operator Lokalsøk Definisjon lokalt

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

NP-komplett, hva nå?

NP-komplett, hva nå? NP-komplett, hva nå? Anta vi har klart å vise at problemet vårt er NP-komplett eller NP-hardt. Hva betyr det? Såfremt P NP (de fleste tror det) har ikke problemet noen polynomisk algoritme. Hva skal vi

Detaljer

Styrt lokalsøk (Guided Local Search, GLS)

Styrt lokalsøk (Guided Local Search, GLS) Leksjon 6 !!"# Styrt lokalsøk (Guided Local Search, GLS) Martin Stølevik, SINTEF INF-MAT 5380 - Geir Hasle - Leksjon 6 2 $!%&!'%!($')! *+ GENET (neural network) Prosjekt for løsing av Constraint Satisfaction

Detaljer

Discrete Optimization Methods in Maritime and Road-based Transportation

Discrete Optimization Methods in Maritime and Road-based Transportation Discrete Optimization Methods in Maritime and Road-based Transportation Forskningsprosjekt med støtte fra Norges Forskningsråd Samarbeidspartnere Norges Teknisk-Naturvitenskapelige Universitet Institutt

Detaljer

Genetiske interaksjoner villfisk-oppdrettsfisk

Genetiske interaksjoner villfisk-oppdrettsfisk Genetiske interaksjoner villfisk-oppdrettsfisk Jørgen Ødegård og Celeste Jacq Nofima AHA Oppstartkonferanse Leikanger, april 2011 Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk kan rømme og krysse

Detaljer

Matematisk evolusjonær genetikk (ST2301)

Matematisk evolusjonær genetikk (ST2301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 6 Leksjon 5 - Oversikt Styrt lokalsøk (Guided Local Search, GLS) INF-MAT 5380 - Geir Hasle - Leksjon 6 2 Guided Local Search

Detaljer

Styrt lokalsøk (Guided Local Search, GLS)

Styrt lokalsøk (Guided Local Search, GLS) Del A: Diskret optimering og heuristiske metoder Leksjon 6 Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo!"# Styrt lokalsøk (Guided Local Search, GLS) TMA 4198 - Geir Hasle - Leksjon 6 2 1 $ %&'%($

Detaljer

Hybrid med lokalsøk: Memetic algorithms

Hybrid med lokalsøk: Memetic algorithms Leksjon 7 ! Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur iboende parallellitet skjema, vokabular robusthet gode mekanismer for intensifisering

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet

Detaljer

Genetiske interaksjoner mellom vill og oppdrettet laks

Genetiske interaksjoner mellom vill og oppdrettet laks Genetiske interaksjoner mellom vill og oppdrettet laks Céleste Jacq, Jørgen Ødegård, Hans B. Bentsen og Bjarne Gjerde Havforskermøtet 2011 Trondheim Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Tilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2

Tilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2 Leksjon 4 !!"# Tilfeldig søk Simulert størkning Terskelakseptanseteknikker INF-MAT 5380 - Geir Hasle - Leksjon 4 2 $!"% Inspirert av statistisk mekanikk - nedkjøling Metaheuristikk lokalsøk tilfeldig nedstigning

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

Maks Flyt og NPkompletthet

Maks Flyt og NPkompletthet Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av

Detaljer

FLERVALGSOPPGAVER EVOLUSJON

FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,

Detaljer

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av

Detaljer

Turingmaskiner.

Turingmaskiner. Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Løsningsforslag ST2301 Øving 11

Løsningsforslag ST2301 Øving 11 Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen

Detaljer

Epost: Tlf. SINTEF Mob

Epost: Tlf. SINTEF Mob Del A: Diskret optimering og heuristiske metoder Leksjon Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo!" Epost: Geir.Hasle@sintef.no Tlf. SINTEF 22 06 78 87 Mob. 930 58 703 TMA 498 - Geir Hasle

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 4 Leksjon 3 - Oversikt Tilfeldig søk Simulert størkning Terskelakseptanse INF-MAT 5380 - Geir Hasle - Leksjon 4 2 SA - Oppsummering

Detaljer

Løsningsforslag øving 12, ST1301

Løsningsforslag øving 12, ST1301 Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

LO118D Forelesning 12 (DM)

LO118D Forelesning 12 (DM) LO118D Forelesning 12 (DM) Trær 15.10.2007 1 Traversering av trær 2 Beslutningstrær 3 Isomorfisme i trær Preorden-traversering 1 Behandle den nåværende noden. 2 Rekursivt behandle venstre subtre. 3 Rekursivt

Detaljer

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet

Detaljer

Evolusjonens tvangstrøyer

Evolusjonens tvangstrøyer Evolusjonens tvangstrøyer Kjetil Lysne Voje Universitetet i Oslo volusjon foregår hele tida! Evolusjon er lett! Tre nødvendige ingredienser Variasjon Seleksjon Arvbarhet Tre nødvendige ingredienser

Detaljer

A study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen

A study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen A study of different matching heuristics Hovedfagspresentasjon Jan Kasper Martinsen (janma@ifi.uio.no) Terminologi: Graf teori En graf består av et sett med noder Nodene er tilknyttet hverandre ved hjelp

Detaljer

!!!" " # $ Leksjon 1

!!!  # $ Leksjon 1 !!!"" # $ Leksjon 1 %# Studenten skal etter seminaret ha en grunnleggende forståelse av hvordan moderne heuristiske metoder basert på lokalsøk og metaheuristikker kan brukes for å finne approksimerte løsninger

Detaljer

Heuristiske søkemetoder I

Heuristiske søkemetoder I Heuristiske søkemetoder I Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Hva slags søkemetoder snakker vi om? Kombinatoriske strukturer. Sett. Lister. Grafer. Søkealgoritmer

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 21. april 2010 (Sist oppdatert: 2010-04-21 12:55) MAT1030 Diskret Matematikk 21.

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55

Detaljer

Eksamen - INF 283 Maskinlæring

Eksamen - INF 283 Maskinlæring Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT3 Diskret Matematikk Forelesning 2: Mer kombinatorikk Dag Normann Matematisk Institutt, Universitetet i Oslo 3. april 2 (Sist oppdatert: 2-4-3 4:3) Kapittel 9: Mer kombinatorikk MAT3 Diskret Matematikk

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

UNIVERSITETET I AGDER

UNIVERSITETET I AGDER FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 21. november 2011 Varighet: 2 timer Antall sider inkl. forside 8 Tillatte hjelpemidler: Kalkulator Merknader:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 22, 2007 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen.

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Programkonferansen HAVBRUK 2012, Stavanger, 16.-18. april 2012 Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Paul R. Berga, Bastiaan Stara,

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

AVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017

AVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017 AVL MOT ILA FHFs ILA workshop Borghild Hillestad April 2017 HVA BOR I GENOMET TIL EN ART? Det genetiske mangfoldet hos en art kan være enormt MENNESKER KAN STYRE GENETIKKEN I FLERE RETNINGER En negativ

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

Navigering av en mobil mikrorobot

Navigering av en mobil mikrorobot Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer Fag IAD32005 Intelligente systemer Laboppgave nr 1 Navigering av en mobil mikrorobot Halden, Remmen 25.01.2007 23.01.07 Ny oppgave

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

Stein Krogdahl, Dino Karabeg, Petter Kristiansen. Kenneth A. Berman and Jerome L. Paul.

Stein Krogdahl, Dino Karabeg, Petter Kristiansen. Kenneth A. Berman and Jerome L. Paul. Stein Krogdahl, Dino Karabeg, Petter Kristiansen steinkr at ifi.uio.no dino at ifi.uio.no pettkr at ifi.uio.no INF 4130 / 9135 Algoritmer: Design og effektivitet Algorithms: Sequential Parallel and Distributed

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED

LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED KOMPETANSEMÅL Forklarebegrepene krysning og genmodifisering, og hvordan bioteknologi brukes

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,

Detaljer

Heuristiske søkemetoder II: Simulert størkning og tabu-søk

Heuristiske søkemetoder II: Simulert størkning og tabu-søk Heuristiske søkemetoder II: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral lars@aurdalweb.com Heuristiske søkemetoder II:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 7 GA - Oppsummering Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (LF)

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (LF) TDT4125 2009-05-15 Stud-nr: 1/6 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (LF) Eksamensdato 15. mai 2009 Eksamenstid 0900 1300 Sensurdato 5. juni Språk/målform Bokmål Kontakt

Detaljer

GRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6

GRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6 IN Algoritmer og datastrukturer GRAER Dagens plan: Kort repetisjon om grafer Korteste, en-til-alle, for: uektede grafer (repetisjon) ektede rettede grafer uten negatie kanter (Dijkstra, kapittel 9..) ektede

Detaljer

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

Problemer knyttet til seleksjon

Problemer knyttet til seleksjon Problemer knyttet til seleksjon ( Fra: 'Genetic Entropy & the Mystery of the Genome; Dr. J.C.Sanford; FMS Publications; Ch. 4-slutten) -Tre spesifikke seleksjonsproblemer Vi skal se på en enkel problemstilling

Detaljer

Data-avhengige trianguleringer

Data-avhengige trianguleringer Data-avhengige trianguleringer Øyvind Hjelle oyvindhj@simula.no, +47 67 82 82 75 Simula Research Laboratory, www.simula.no October 5, 2009 Definition (Data-avhengig triangulering) En triangulering (P),

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding Grafer Dagens plan INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Avsluttende om grådige algoritmer (kap. 10.1.2) Dynamisk programmering Floyds algoritme

Detaljer

Notat for oblig 2, INF3/4130 h07

Notat for oblig 2, INF3/4130 h07 Notat for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 15. oktober 2007 Jeg har skrivd et noe langt notat for oblig 2 som interesserte kan se på. Merk at dette er kun for å gi et par tips (for oppgave 3

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Sensitivitet og kondisjonering

Sensitivitet og kondisjonering Sensitivitet og kondisjonering Gitt en lineær likningssystem Ax = b vi skal studere effekten av perturbasjoner av input data: 1/19 på output data: Man kan A, b x perturbere bare b perturbere b og A samtidig.

Detaljer

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no

Detaljer

Mennesket og mikrobene. Elling Ulvestad Mikrobiologisk avdeling, Haukeland Universitetssykehus Klinisk institutt 2, Universitetet i Bergen

Mennesket og mikrobene. Elling Ulvestad Mikrobiologisk avdeling, Haukeland Universitetssykehus Klinisk institutt 2, Universitetet i Bergen Mennesket og mikrobene Elling Ulvestad Mikrobiologisk avdeling, Haukeland Universitetssykehus Klinisk institutt 2, Universitetet i Bergen Bakteppe Hvordan handle slik situasjonen krever av oss? Hvordan

Detaljer