Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder
|
|
- Ingebrigt Knudsen
- 9 år siden
- Visninger:
Transkript
1 Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim Bergen Stavanger Tromsø Oppdal Oslo Byer Ruter 0 0 > 0 0 > 0 Beste løsning - målfunksjon Diskrete løsninger Eksempler: Traveling sales person Permutasjon av nodene Minimum verte cover Subsett av nodene Shortest superstring Permutasjon av strengene i et sett Mest deskriptive regulære uttrykk Parsetre Kristiansand
2 Minimum verte cover Minste antall noder bundet til alle kanter Målfunksjon og optimalisering Energilandskap som nyttig analogi function() ^ - * ( + 0.)^ () function() ^ + * sin( * pi) () Minimering av potensiell energi (mh) Smelting og størkning av materialer Krystall - repeterte strukturer (Globalt optimum) Glass - lokale strukturer (Lokalt optimum) Optimalisering Optimalisering - Løsningsskisse Løsningsrom, C Målfunksjon (kostnad), c(.) Problem: * min c( S ) * S! C. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til S! C S! N( S) = { S : S ~ S } S = S Hvordan definere naboskap (~)? Hvordan velge nabotilstand?
3 Minimal verte cover Graf G=(V, E) Løsningsrom: Alle verte covers Eks: V! C Målfunksjon: c ( S) = S Naboskap: S ~ S hvis S = S +- en node Ma V naboløsninger Verte cover gradient descent Hvordan velge nabotilstand?. Velg en tilstand S som arbeidsløsning. Velg en nabotilstand min c( S ) S!N ( S ). Terminer med S hvis c(s)! c(s ). Sett nabotilstanden som ny arbeidsløsning og gå til Løsning et lokalt minimum: c(s)! c(s ) Verte cover gradient descent som energilandskap function() ^ - * ( + 0.)^ () function() ^ + * sin( * pi) () Forbedringer av gradient descent/hill climbing (GD/HC) Varianter i nabovalg Velg første nabotilstand c(s )! c(s) Velg tilfeldig nabotilstand c(s )! c(s) Prøv forskjellige starttilstander. Velg tilfeldig starttilstand. Kjør gradient descent. Ta vare på beste løsning! Random-restart GD/HC function() ^ - * ( + 0.)^ ()
4 Hvordan unslippe lokale minima? ~ ~ function() ^ - * ( + 0.)^ () Hvordan simulere tilstanden i et fysisk system? Statistisk mekanikk: Tilstand, S Energi til tilstand, E(S) Temperatur, T Gibbs-Boltzmann funksjonen: Sannsynlighet for å finne et fysisk system i tilstand S, P(S) P( S) ~ e! E( S )/( kt ) Egenskaper ved Gibbs-Boltzmann funksjonen!e /(kt ) e E kt =00 kt =0 kt = kt = 0. Metropolis algoritmen simulerer fysisk system ved gitt temperatur. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. if E(S )! E(S). Oppdater S " S. else.!e = E(S ) - E(S). Oppdater S " S med sannsynlighet. Gå til e "!E /(kt ) Downhill GD/HC Uphill Ut av lokale minimum
5 function() ^ - * ( + 0.)^ () Metropolis algoritmen har bias mot lavenergitilstander La andelen steg MA er i S i løpet av de t første steg være (t) Sett Da vil lim f t#" S Z =! S" C ( t) = e Z e!over lang tid vil Metropolis algoritmen bruke mest tid i lavenergitilstander f S # E( S )/( kt )! E( S )/( kt ) ~ function() ^ - * ( + 0.)^ () Metropolis i praksis ~ ~ ~ / / Energilandskap og temperatur Energilandskap og temperatur!e /(kt ) e Høy temperatur function() ^ - * ( + 0.)^ () function() ^ - * ( + 0.)^ () function() ^ - * ( + 0.)^ () kt =00 kt =0 kt = Lav temperatur Høy temperatur alle tilstander like sannsynlige Smeltet materiale Lav temperatur minimumstilstandene mest sannsynlige Krystallstruktur Rask endring fra høy til lav temperatur Stokastisk gradient descent Lokale minima Imperfekt krystallstruktur (eller glass) kt = 0. E
6 Simulert størkning for optimalisering Krystalldyrkning i praksis:. Smelt. Avkjøl langsomt Simulert størkning: Start Metropolis algoritmen på høy temp Reduser temperaturen som funksjon av iterasjonene (annealing schedule) T =! (i ) Simulert størkning. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. Oppdater temperaturen. if E(S )! E(S). Oppdater S " S. else.!e = E(S ) - E(S). Oppdater S " S med sannsynlighet. Gå til e "!E /(kt ) Downhill GD/HC Uphill Ut av lokale minimum Simulert størkning konvergerer mot globalt optimum Langsom størkning gir globalt optimum T0! ( i) = log( + i) Suboptimal størkning brukes i praksis! ( i) = T0 g, g < i function() 0 * 0.^ () g = 0. g = 0. log Simulert størkning og TSP N byer i kvadrat med sidelengder N / Gjennomsnittelig avstand til nærmeste nabo uavhengig av N Gjennomsnittelig steglengde # uavhengig av N Heuristikk Gå til nærmeste by gir # = O(ln(N)) # $. (gjennomsnitt i praksis) Simulert størkning Tilstand S: Permutasjon av {,, N}, S=s s N Naboskap: Reverser en del av turen S Eks: S =,S = ;S = # <= 0. (N < 000)
7 Simulert størkning og TSP Naboskap påvirker løsbarhet T =. # =.0 T = 0. # =. Naboskap i TSP Reverser en del av turen Reverser etterfølgende par Bytt to tilfeldige byer 0 Energilandskap? T = 0. # =.0 T = 0.0 # = 0. Energilandskap for naboskap Energilandskap for naboskap Reverser en del av turen Reverser etterfølgende par function() ^ - * ( + 0.)^ () ~ 0 0 ~ 0
8 Energilandskap for naboskap Gradient descent, metropolis og simulert størkning Bytt to tilfeldige byer 0 ~ 0 function() ^ - * ( + 0.)^ () Algoritme:. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til Gradient descent Velg bedre nabo Metropolis + Velg dårligere nabo avhengig av temperatur og endring i kostnad Simulert størkning + Senk temperaturen Tabu-søk Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Hvordan hindre tilbakefall til suboptimale løsninger? 0! Husk tidligere tilstander! 0 Tabu-søk husker siste n tilstander Velger alltid beste løsning i N(S) Minnet (Tabu-listen) hindrer sykler med maks n elementer
9 Elementer så langt Iterer over enkelttilstander basert på naboskap Gå til bedre tilstand Aksepter dårligere tilstand Husk/unngå tidligere tilstander Se på flere løsninger!hva med å iterere over multiple tilstander samtidig? Populasjonsbaserte optimaliseringsmetoder. Velg et sett av tilstander som arbeidsløsning. Velg et sett av nabotilstander. Sett nabotilstandene som ny arbeidsløsning. Gå til { S}, S! C { S }, S! N( S) = { S : S ~ S } { S } = { S } Hvordan definere naboskap (~)? Hvordan velge nabotilstander? Hvordan velge nabotilstander? Parallel random-restart GD/HC min c( S ) S!N ( S ) Igjen: naturen som inspirasjonskilde Charles Darwin Evolusjon -> naturens optimaliseringsmetode Evolusjon som optimalisering Konkurranse om begrensede ressurser Arvelige egenskaper i en populasjon Organismer får mer avkom enn ressursgrunnlag Avkom har varierende evner til å overleve og reprodusere -> Fitness!Nyttige egenskaper har større sjanse for å føres videre
10 Evolusjon som optimaliseringsmetode Tilstandsbeskrivelse som arvelig egenskap -> gen Begrenset populasjonsstørrelse Overlevelsesevne gitt av målfunksjon -> fitness Genetisk variasjon Avkom ikke nøyaktig kopi Mutasjoner (endring av individs arvestoff) Rekombinasjon (kombinasjon av to individs arvestoff) Viktig element mangler! Crossover punkt Crossover punkt Genetisk variasjon definerer naboskap Seleksjon definerer valg av naboer Eks: TSP Arvestoff (tilstand) Nodepermutasjon Mutasjon (naboskap) Segmentreversjon Crossover/rekombinasjon (naboskap) Behold noderekkefølge fram til crossoverpunkt fra foreldre Bruk noderekkefølge for gjenværende noder fra foreldre S = S = S = S = S = Overlevelsesevne gitt av målfunksjon Velg n løsninger (individ) proporsjonalt med løsningskvalitet (fitness) Velg n individ ved å velge beste individ fra n tilfeldige undergrupper
11 Evolusjonær algoritme. Lag en startpopulasjon {S 0 } = n (tilfeldig). Selekter n individ {S } fra {S i } (med tilbakelegging). Lag ny generasjon {S i+ } ved å rekombinere og mutere {S }. Gå til Varianter av evolusjonære algoritmer Genetiske algoritmer Genom -> Strenger Parameteroptimalisering Genetisk programmering Genom -> Symbolske uttrykk Optimale deskriptive uttrykk Heuristisk søk og optimalisering Heuristisk søk og optimalisering Basisalgoritme Velg en tilstand som arbeidsløsning Velg en nabotilstand Valg av nabotilstand viktig Definisjon av nabolag Valg av tilstand i nabolaget Sett nabotilstanden som ny arbeidsløsning Gå til No free lunch Alle metaheuristikker er i gjennomsnitt like gode Ytelse og valg av nabotilstand henger sammen 0
12 Pragmatiske løsninger Median streng problemet Gitt sett av strenger S, finn l-mer median streng Input: Sett S av strenger, og lengden l Output: En string v, v = l (l-mer) med minimal total Hamming distanse d H (v,s) av alle mulige l-mers d H (w,s) = S $ min " j " s i # w i= d H (w,s i, j )!
Heuristisk søk 1. Prinsipper og metoder
Heuristisk søk Prinsipper og metoder Oversikt Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Traveling sales person (TSP) Tromsø Bergen Stavanger Trondheim Oppdal Oslo
DetaljerOverview. Heuristic search 1. Target function and optimization. Minimum vertex cover
Overview Heuristic search Combinatorial optimization Local search and simulated annealing Population-based search Principles and methods Pål Sætrom Traveling sales person (TSP) Combinatorial optimization
DetaljerOversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre
Oversikt Branch-and-bound Pål ætrom Branch and bound Prinsipper Min Vertex cover B & B eksempler Median string TP Hvordan løse NP-hard kombinatorisk optimering? Kombinatorisk opt. Løsningsrom, C Målfunksjon
DetaljerLøsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen
Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan
DetaljerHeuristiske søkemetoder II
Heuristiske søkemetoder II Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 4. september 23 Plan Hva er en heuristisk søkealgoritme? Hvorfor heuristiske søkealgoritmer framfor tilbakenøsting?
DetaljerLøsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen
Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen 1. september 2003 Deloppgave a I denne oppgaven skal vi ta for oss isomorfismer mellom grafer. To grafer G og H
DetaljerHeuristiske søkemetoder I: Simulert størkning og tabu-søk
Heuristiske søkemetoder I: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral lars@aurdalweb.com Heuristiske søkemetoder I:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?
DetaljerLøsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2001, ordinær eksamen
Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 21, ordinær eksamen 14. september 23 Innledning En klikk i en graf G er en komplett subgraf av G. Det såkalte maksimum-klikk problemet består
DetaljerINF-MAT 5380 - Geir Hasle - Leksjon 3 2
Leksjon 3 !"#$ Eksempler på DOP Alternative representasjoner Definisjon nabolag, -operator Lokalsøk Definisjon lokalt optimum Eksakt nabolag Prosedyre for lokalsøk Traversering av nabolagsgraf Kommentarer,
DetaljerINF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 2 Leksjon 1: Oppsummering Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk
DetaljerLøsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen
Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen 14. september 2003 Innledning Vi skal betrakte det såkalte maksimum-kutt problemet (maximum cut problem). Problemet
Detaljer!"!#$ INF-MAT Geir Hasle - Leksjon 2 2
Leksjon 2 !"!#$ Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk program COP Definisjon DOP Anvendelser Kompleksitetsteori Eksakte metoder, approksimasjonsmetoder
DetaljerAvsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs
TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under
DetaljerLøsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen
Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen 14. september 2003 Deloppgave a 50-års jubileet for simulert størkning: I juni 1953 publiserte fire amerikanske fysikere,
DetaljerLØSNINGSFORSLAG ØVING 2 - APPROKSIMERING AV TSP
LØSNINGSFORSLAG ØVING 2 - APPROKSIMERING AV TSP Approksimering av Travling Salesman Problem er her illustrert vha. en genetisk algoritme (GA). Den grunnlegge metaforen for en genetisk algoritme er evolusjon
DetaljerINF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 3 Leksjon 2 - Oppsummering Eksempler på DOP Alternative formuleringer Definisjon nabolag, -operator Lokalsøk Definisjon lokalt
DetaljerINF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 5 Leksjon 4 - Oversikt Tabusøk INF-MAT 5380 - Geir Hasle - Leksjon 5 2 Tabusøk - Sammendrag Inspirert fra matematisk optimering
DetaljerINF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 8 Diskrete optimeringsproblemer (DOP) Finnes overalt operasjonsanalyse kunstig intelligens mønstergjenkjenning geometri økonomi
DetaljerKorteste vei problemet (seksjon 15.3)
Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k
DetaljerNP-komplett, hva nå?
NP-komplett, hva nå? Anta vi har klart å vise at problemet vårt er NP-komplett eller NP-hardt. Hva betyr det? Såfremt P NP (de fleste tror det) har ikke problemet noen polynomisk algoritme. Hva skal vi
DetaljerStyrt lokalsøk (Guided Local Search, GLS)
Leksjon 6 !!"# Styrt lokalsøk (Guided Local Search, GLS) Martin Stølevik, SINTEF INF-MAT 5380 - Geir Hasle - Leksjon 6 2 $!%&!'%!($')! *+ GENET (neural network) Prosjekt for løsing av Constraint Satisfaction
DetaljerTMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
DetaljerDiscrete Optimization Methods in Maritime and Road-based Transportation
Discrete Optimization Methods in Maritime and Road-based Transportation Forskningsprosjekt med støtte fra Norges Forskningsråd Samarbeidspartnere Norges Teknisk-Naturvitenskapelige Universitet Institutt
DetaljerGenetiske interaksjoner villfisk-oppdrettsfisk
Genetiske interaksjoner villfisk-oppdrettsfisk Jørgen Ødegård og Celeste Jacq Nofima AHA Oppstartkonferanse Leikanger, april 2011 Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk kan rømme og krysse
DetaljerIN2010: Forelesning 11. Kombinatorisk søking Beregnbarhet og kompleksitet
IN2010: Forelesning 11 Kombinatorisk søking Beregnbarhet og kompleksitet KOMBINATORISK SØKING Oversikt Generering av permutasjoner Lett: Sekvens-generering Vanskelig: Alle tallene må være forskjellige
DetaljerMatematisk evolusjonær genetikk (ST2301)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det
DetaljerINF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 6 Leksjon 5 - Oversikt Styrt lokalsøk (Guided Local Search, GLS) INF-MAT 5380 - Geir Hasle - Leksjon 6 2 Guided Local Search
DetaljerStyrt lokalsøk (Guided Local Search, GLS)
Del A: Diskret optimering og heuristiske metoder Leksjon 6 Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo!"# Styrt lokalsøk (Guided Local Search, GLS) TMA 4198 - Geir Hasle - Leksjon 6 2 1 $ %&'%($
DetaljerHybrid med lokalsøk: Memetic algorithms
Leksjon 7 ! Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur iboende parallellitet skjema, vokabular robusthet gode mekanismer for intensifisering
DetaljerLO118D Forelesning 10 (DM)
LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad
DetaljerØving 12, ST1301 A: B:
Øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis testen oppfører
DetaljerMer om Markov modeller
Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige
DetaljerIN Algoritmer og datastrukturer
IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet
DetaljerTDT4105 Informasjonsteknologi, grunnkurs
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet
DetaljerGenetiske interaksjoner mellom vill og oppdrettet laks
Genetiske interaksjoner mellom vill og oppdrettet laks Céleste Jacq, Jørgen Ødegård, Hans B. Bentsen og Bjarne Gjerde Havforskermøtet 2011 Trondheim Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk
DetaljerHeuristiske søkemetoder III
Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.
DetaljerLøsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl
SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.
DetaljerTilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2
Leksjon 4 !!"# Tilfeldig søk Simulert størkning Terskelakseptanseteknikker INF-MAT 5380 - Geir Hasle - Leksjon 4 2 $!"% Inspirert av statistisk mekanikk - nedkjøling Metaheuristikk lokalsøk tilfeldig nedstigning
DetaljerMaks Flyt og NPkompletthet
Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av
DetaljerKompleksitet og Beregnbarhet
Kompleksitet og Beregnbarhet 16. September, 2019 Institutt for Informatikk 1 Dagens plan Avgjørelsesproblemer. P EXPTIME NP Reduksjoner NP-kompletthet Uavgjørbarhet UNDECIDABLE DECIDABLE PSPACE NPC NP
DetaljerFLERVALGSOPPGAVER EVOLUSJON
FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk
DetaljerSøking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen
Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av
DetaljerPG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014
PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk
DetaljerTuringmaskiner.
Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen
DetaljerA study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen
A study of different matching heuristics Hovedfagspresentasjon Jan Kasper Martinsen (janma@ifi.uio.no) Terminologi: Graf teori En graf består av et sett med noder Nodene er tilknyttet hverandre ved hjelp
DetaljerLøsningsforslag ST2301 Øving 11
Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid
DetaljerIkke lineære likninger
Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0
DetaljerHeuristiske søkemetoder I
Heuristiske søkemetoder I Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Hva slags søkemetoder snakker vi om? Kombinatoriske strukturer. Sett. Lister. Grafer. Søkealgoritmer
DetaljerEpost: Tlf. SINTEF Mob
Del A: Diskret optimering og heuristiske metoder Leksjon Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo!" Epost: Geir.Hasle@sintef.no Tlf. SINTEF 22 06 78 87 Mob. 930 58 703 TMA 498 - Geir Hasle
DetaljerKulturell seleksjon. Hva er det og innebærer det et eget prinsipp for seleksjon?
Kulturell seleksjon Hva er det og innebærer det et eget prinsipp for seleksjon? 1 Abstract Mange atferdsanalytikere snakker i dag om seleksjon på tre nivåer. Den mest grunnleggende form for seleksjon er
DetaljerLøsningsforslag øving 12, ST1301
Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis
DetaljerLongest increasing. subsequence Betingelser. Longest. common subsequence. Knapsack Grådig vs. DP Moro: 2D-Nim Spørsmål. Forside. Repetisjon.
:: :: Dynamisk programmering Eksamenskurs Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dp.ppt Svært rask repetisjon Noen ganger (f.eks. ved utregning av Fibonaccitall) vil en rekursiv
DetaljerINF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 4 Leksjon 3 - Oversikt Tilfeldig søk Simulert størkning Terskelakseptanse INF-MAT 5380 - Geir Hasle - Leksjon 4 2 SA - Oppsummering
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid
DetaljerEksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl
SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie
DetaljerGRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær
IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet
DetaljerEvolusjonens tvangstrøyer
Evolusjonens tvangstrøyer Kjetil Lysne Voje Universitetet i Oslo volusjon foregår hele tida! Evolusjon er lett! Tre nødvendige ingredienser Variasjon Seleksjon Arvbarhet Tre nødvendige ingredienser
DetaljerDel A: Diskret optimering og heuristiske metoder Leksjon 4. Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo
Del A: Diskret optimering og heuristiske metoder Leksjon 4 Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo!"# Tilfeldig søk Simulert herding Terskelakseptanse Record-to-Record-Travel TMA 4198 -
DetaljerLO118D Forelesning 12 (DM)
LO118D Forelesning 12 (DM) Trær 15.10.2007 1 Traversering av trær 2 Beslutningstrær 3 Isomorfisme i trær Preorden-traversering 1 Behandle den nåværende noden. 2 Rekursivt behandle venstre subtre. 3 Rekursivt
DetaljerKompleksitet. IN algoritmer og datastrukturer Plenumstime / repetisjon
Kompleksitet IN2010 - algoritmer og datastrukturer Plenumstime / repetisjon Dagens agenda Kompleksitet - hva er det? Avgjørelsesproblemer Kompleksitetsklassene P og NP Reduksjoner - å redusere et problem
DetaljerLøsningsforslag for utvalgte oppgaver fra kapittel 9
Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens
Detaljer!!!" " # $ Leksjon 1
!!!"" # $ Leksjon 1 %# Studenten skal etter seminaret ha en grunnleggende forståelse av hvordan moderne heuristiske metoder basert på lokalsøk og metaheuristikker kan brukes for å finne approksimerte løsninger
DetaljerNavigering av en mobil mikrorobot
Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer Fag IAD32005 Intelligente systemer Laboppgave nr 1 Navigering av en mobil mikrorobot Halden, Remmen 25.01.2007 23.01.07 Ny oppgave
DetaljerNP-kompletthet. «Hvordan gjøre noe lett for å vise at noe annet er vanskelig»
NP-kompletthet «Hvordan gjøre noe lett for å vise at noe annet er vanskelig» Gjennomgang Øving 12, maks flyt Oppskrift på et NPkomplett problem 1. Vise at problemet er veldig lett å sjekke 2. Vise at problemet
DetaljerGrafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann
MAT1030 Diskret Matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 21. april 2010 (Sist oppdatert: 2010-04-21 12:55) MAT1030 Diskret Matematikk 21.
DetaljerEksamen - INF 283 Maskinlæring
Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt
DetaljerEksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
DetaljerMAT1030 Forelesning 25
MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier
DetaljerMAT1030 Diskret Matematikk
MAT3 Diskret Matematikk Forelesning 2: Mer kombinatorikk Dag Normann Matematisk Institutt, Universitetet i Oslo 3. april 2 (Sist oppdatert: 2-4-3 4:3) Kapittel 9: Mer kombinatorikk MAT3 Diskret Matematikk
DetaljerKorteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei
Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste
DetaljerProsjektoppgaver om diusjonsprosesser og diusjonstilnærmelse
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 22, 2007 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal
DetaljerForelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.
DetaljerPopulasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen.
Programkonferansen HAVBRUK 2012, Stavanger, 16.-18. april 2012 Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Paul R. Berga, Bastiaan Stara,
DetaljerUNIVERSITETET I AGDER
FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 21. november 2011 Varighet: 2 timer Antall sider inkl. forside 8 Tillatte hjelpemidler: Kalkulator Merknader:
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.
DetaljerAVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017
AVL MOT ILA FHFs ILA workshop Borghild Hillestad April 2017 HVA BOR I GENOMET TIL EN ART? Det genetiske mangfoldet hos en art kan være enormt MENNESKER KAN STYRE GENETIKKEN I FLERE RETNINGER En negativ
DetaljerMAT1030 Forelesning 22
MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:
DetaljerKombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.
DetaljerLP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare
DetaljerIN Algoritmer og datastrukturer
IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity
DetaljerGrafalgoritmer: Korteste vei
Grafalgoritmer: Korteste vei Korteste-vei problemer for vektede grafer * Single Source Shortest Path Problem Finn lengden av korteste vei fra én bestemt node til alle andre noder i grafen All-Pairs Shortest
DetaljerSøk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.
Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også
DetaljerINF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 7 GA - Oppsummering Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55
DetaljerLØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER
DetaljerDagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding
Grafer Dagens plan INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Avsluttende om grådige algoritmer (kap. 10.1.2) Dynamisk programmering Floyds algoritme
DetaljerStein Krogdahl, Dino Karabeg, Petter Kristiansen. Kenneth A. Berman and Jerome L. Paul.
Stein Krogdahl, Dino Karabeg, Petter Kristiansen steinkr at ifi.uio.no dino at ifi.uio.no pettkr at ifi.uio.no INF 4130 / 9135 Algoritmer: Design og effektivitet Algorithms: Sequential Parallel and Distributed
DetaljerProblemer knyttet til seleksjon
Problemer knyttet til seleksjon ( Fra: 'Genetic Entropy & the Mystery of the Genome; Dr. J.C.Sanford; FMS Publications; Ch. 4-slutten) -Tre spesifikke seleksjonsproblemer Vi skal se på en enkel problemstilling
DetaljerLEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED
LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED KOMPETANSEMÅL Forklarebegrepene krysning og genmodifisering, og hvordan bioteknologi brukes
DetaljerFørst litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda
Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no
DetaljerProsjektoppgaver om diusjonsprosesser og diusjonstilnærmelse
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 13, 2006 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal
DetaljerMAT1030 Forelesning 22
MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!
Detaljer