Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl
|
|
- Pål Ask
- 8 år siden
- Visninger:
Transkript
1 SIF Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl Faglig kontakt under eksamen: Arne Halaas, tlf ; Magnus Lie Hetland, tlf Hjelpemidler: Alle kalkulatortyper tillatt. Alle trykte og håndskrevne hjelpemidler tillatt. Oppgave 1 (50%) I de følgende tre deloppgavene (1 a, b og c) skal du bruke den vektede, rettede grafen G = (V, E), med V = { Kant-vektene defineres av matrisen C, slik at C[i, j] er vekten til kanten fra i til j. Vektmatrisen C er implementert ved hjelp av nabolister som er lagret i den endimensjonale tabellen W, slik at W[i] er nabolisten til node i. Nabolistene inneholder par av typen (w, j) der w er vekten på kanten til den aktuelle nabonoden j. Kanter som ikke eksplisitt er oppgitt antas å ha uendelig stor vekt. I det følgende, anta at første element i alle tabeller har indeks 1. Tabellen W er definert slik: W[1] = [(4, 2), (6, 3), (2, 4)] W[2] = [ ] W[3] = [(1, 5), (1, 6)] W[4] = [(2, 5)] W[5] = [(4, 6)] W[6] = [(3, 2)] Ut fra denne definisjonen ser vi for eksempel at kanten fra node 1 til node 3 har vekt 6 (C[1, 3] = 6) og at kanten fra node 2 til node 4 har vekt (C[2, 4] = ). Merknad til retting: I den opprinnelige eksamen sto det C[1, 4] i den siste parentesen over (noe som opplagt er galt). Alle algoritmene i denne oppgaven skal følge prioritetsregelen gitt nedenfor:
2 SIF Stud.-nr: Antall sider: 2 Prioritetsregel: Der en algoritme kan velge mellom flere noder, anta at den alltid velger den av de mulige nodene som har lavest nummer. Der en algoritme kan velge mellom flere kanter, anta at den alltid velger den av de mulige kantene som kommer tidligst i en leksikalsk sortering. Dette betyr at node 3 velges før node 6, at kanten fra 2 til 3 velges før kanten fra 2 til 4, men etter kanten fra 1 til 5. a (10%). Finn en topologisk sortering av grafen. Bruk dybde-først-søk til dette, som vist i læreboka, og følg prioritetsregelen. Bruk denne rekkefølgen til å finne korteste vei fra node 1 til node 2 med dynamisk programmering (DAG-SHORTEST-PATH). Bruk tabellen nedenfor til å vise hvordan hvert trinn i algoritmen oppdaterer d[i] (avstandsestimatet til node i): d[1] d[2] d[3] d[4] d[5] d[6] Start 0 Trinn Trinn Trinn Trinn Trinn b (10%). Utfør Prims algoritme på G sin underliggende urettede graf det vil si, grafen som er lik G bortsett fra at kantene ikke har retning. (Kantenes opprinnelige retning kan fremdeles ha betydning for prioritetsregelen.) Oppgi kantene i den rekkefølgen de legges til i spenntreet på. Kantene beskrives med fra- og til-node som oppgitt i tabellen W. Start i node 1. Svar i tabellen nedenfor. Fra-node Til-node Trinn Trinn Trinn Trinn Trinn c (10%). Utfør Dijkstras algoritme på G for å finne korteste vei fra node 1 til alle andre noder. (Her har selvfølgelig kantenes retning stor betydning.) Vær nøye med å følge prioritetsregelen. Svar i tabellen nedenfor, på tilsvarende måte som i oppgave a. Start er tilstanden etter at initialiseringen har blitt utført, og Trinn X er tilstanden etter at X noder har blitt fargelagt grå og fått RELAX kjørt på sine naboer.
3 SIF Stud.-nr: Antall sider: 3 d[1] d[2] d[3] d[4] d[5] d[6] Start 0 Trinn Trinn Trinn Trinn Trinn Trinn d (10%). Anta at du skal implementere Kruskals algoritme for grafer der kant-vektene er heltall i et fast tallområde [0, k] for en liten, konstant verdi k. Du bestemmer deg for å bruke tellesortering på kantene først, slik at de blir tilgjengelige i riktig rekkefølge. Bortsett fra dette implementerer du algoritmen som normalt (som i læreboka). Hva blir kjøretiden? Uttrykk kjøretiden med Θ-notasjon, der m er antall kanter og n er antall noder. Kjøretid: Θ(mα(n)). Θ(m log m) og Θ(m log n) godtas også, men gir ikke full uttelling. (Se Cormen et al. andre utgave, s. 570 for en forklaring.) e (10%). Anta rent hypotetisk at å flette (MERGE) to sorterte tabeller kunne gjøres i konstant tid. Hva ville da kjøretiden til flettesortering (MERGE-SORT) bli? Bruk Θ- notasjon. Kjøretid: Θ(n) Oppgave 2 (35%) Anta at du har et grafikk-bibliotek tilgjengelig som lar deg tegne linjer i rutenett av typen vist i figur 1 og 2 på side 6. Kall til dette biblioteket gjøres med følgende pseudokode: draw a line from (x1, y1) to (x2, y2); Dette utsagnet tegner en rett linje fra punktet med koordinater (x1, y1) til punktet med koordinater (x2, y2). De følgende deloppgavene dreier seg om funksjonene func1 og func2, beskrevet med pseudokode nedenfor (abs er absoluttverdi-funksjonen): func1(double a, b, c, d, e, f) { if (abs(b-a) <= 1) return; double g = (a + b)/2; draw a line from (g, c) to (g, d); if (e > g) { func2(g, b, c, d, e, f);
4 SIF Stud.-nr: Antall sider: 4 if (e < g) { func2(a, g, c, d, e, f); func2(double a, b, c, d, e, f) { if (abs(d-c) <= 1) return; double g = (c + d)/2; draw a line from (a, g) to (b, g); if (f > g) { func1(a, b, g, d, e, f); if (f < g) { func1(a, b, c, g, e, f); Merknad til løsningsforslaget: Deloppgave b og c refererer til henholdsvis figur 2 og figur 1. Den omvendte rekkefølgen er egentlig en glipp, og kan være forvirrende og lett å overse for studentene. Derfor gis det full uttelling om studentene har byttet om på de to figurene. a (5%). Selv om funksjonene func1 og func2 i utgangspunktet ikke gjør noe nyttig, minner de (tilsammen) om en todimensjonal variant av en algoritme i pensum. Hvilken? Algoritme: Binærsøk b (10%). Tegn resultatet av å kjøre func1(0, 160, 0, 160, 160, 150) i rutenettet i figur 2. c (10%). Tegn resultatet av å kjøre func1(0, 160, 0, 160, 70, 50) i rutenettet i figur 1. d (10%). Anta at vi setter m = b-a og n = d-c. Uttrykk kjøretiden til func1 som funksjon av m og n. Velg selv hva du mener er mest fornuftig av best-case eller worst-case kjøretid (sett ett kryss). Bruk Θ-notasjon. Worst-case kjøretid: Θ(min{log m, log n) (Best-case er her meningsløst.) Oppgave 3 (15%) N forskjellige heltall settes inn i et binært søketre i tilfeldig rekkefølge. La Q(N) betegne den gjennomsnittlige (forventede) dybden til det minste elementet i treet. Spesielt
5 SIF Stud.-nr: Antall sider: 5 er Q(0) = 0, Q(1) = 1 og Q(2) = 1.5. a (5%). Utled en rekurrensformel for Q(N), der N > 0. Svar i ruten nedenfor. Q(N) = Q(N 1) + 1 N b (10%). Bruk rekurrensformelen fra a til å finne et eksplisitt uttrykk for Q(N) (dvs. uten bruk av Q til høyre for likhetstegnet). Svar i ruten nedenfor. Q(N) = N i=1 1 i = N
6 SIF Stud.-nr: Antall sider: 6 (0, 160) (0, 0) (160, 0) Figur 1: Rutenett (0, 160) (0, 0) (160, 0) Figur 2: Rutenett
Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl
SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie
Eksamenshefte TDT4120 Algoritmer og datastrukturer
Eksamenshefte TDT4120 Algoritmer og datastrukturer Eirik Benum Reksten 1 SIF8010 august 2003 - Oppgave 1 I de følgende tre deloppgavene (1 a, b og c) skal du bruke den vektede, rettede grafen G = (V, E),
Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl
Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle
LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER
Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005
Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel
Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl
TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.
Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl
Student nr.: Side 1 av 5 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl
Student nr.: Side 1 av 5 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:
Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 0. desember, 08 Eksamenstid
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid
Eksamen i tdt4120 Algoritmer og datastrukturer
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 18. august 2011 Eksamenstid 0900 1300 Sensurdato 8. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen
Oppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 13. august 2012 Eksamenstid 0900 1300 Sensurdato 3. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 918 51 949 Eksamensdato 4. desember, 2017
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 1 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
SIF8010 ALGORITMER OG DATASTRUKTURER
SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting
Minimum Spenntrær - Kruskal & Prim
Minimum Spenntrær - Kruskal & Prim Lars Vidar Magnusson 4.4.2014 Kapittel 23 Kruskal algoritmen Prim algoritmen Kruskal Algoritmen Kruskal algoritmen kan beskrives med følgende punkter. Vi har en en sammenkoblet
EKSAMEN. Algoritmer og datastrukturer
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund
EKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer
IT1105/TDT4120 2007 06 12 1/6 Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer Eksamensdato Torsdag 6. desember Eksamenstid 1500 1900 Sensurdato Torsdag 10. januar Språk/målform Bokmål
Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland
Algdat-ninja på 60 minutter: Et galskapsprosjekt Magnus Lie Hetland 15. november, 2002 Advarsel: Tettpakkede og overfladiske foiler forut! 1 Algtdat i 6 punkter 1. Grunnbegreper og basisverktøy 2. Rekursjon
UNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer
København 20 Stockholm
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 26. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg:
Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
Grunnleggende Grafalgoritmer
Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Grunnleggende Grafteori
Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.
Innhold. Innledning 1
Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.
EKSAMEN Løsningsforslag. med forbehold om bugs :-)
1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater
Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.
Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF2220 Algoritmer og datastrukturer Eksamensdag: 16. desember 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider.
Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
KONTINUASJONSEKSAMEN I FAG ALGORITMER OG DATASTRUKTURER
KONTINUASJONSEKSAMEN I FAG 0 ALGORITMER OG DATASTRUKTURER Onsdag 7 august 99 kl0900-00 Faglig kontakt under eksamen: Bjørn Olstad/Øystein Grøvlen, tlf 7/70 Alle trykte og håndskrevne hjelpemidler tillatt
Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.
EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
EKSAMEN. Dato: 28. mai 2018 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 28. mai 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Løsningsforslag for utvalgte oppgaver fra kapittel 9
Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................
Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer
Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå, og kunne bruke, algoritmer
EKSAMEN. Emne: Algoritmer og datastrukturer
1 EKSAMEN Emnekode: ITF20006 000 Dato: 19. mai 2010 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund Oppgavesettet
All good things. Fjortende forelesning
All good things Fjortende forelesning Div notater finnes på http://www.idi.ntnu.no/~algdat Foiler finnes på http://www.idi.ntnu.no/~mlh/algdat/latitudinary Spørsmål? algdat@idi.ntnu.no Sjekkliste Dette
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
Fra A til B. Syvende forelesning
Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra
EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
INF1020 Algoritmer og datastrukturer GRAFER
GRAFER Dagens plan: Minimale spenntrær Prim Kapittel 9.5.1 Kruskal Kapittel 9.5.2 Dybde-først søk Kapittel 9.6.1 Løkkeleting Dobbeltsammenhengende grafer Kapittel 9.6.2 Å finne ledd-noder articulation
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Lørdag 8. desember 2001 Tid for eksamen : 09.00-15.00 Oppgavesettet er på
Korteste vei i en vektet graf uten negative kanter
Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53
Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer
INF2220: Time 12 - Sortering
INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.
Algdat Eksamensforelesning. Nils Barlaug
Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum
GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær
IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet
Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.
Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 0. desember, 08 Eksamenstid
Høgskoleni østfold EKSAMEN. 4 dobbeltsidige ark med notater Lars Magnusson
Høgskoleni østfold EKSAMEN Emnekode: ITF 20006 Emne: Algoritmer og Datastrukturer Dato: 22.05.2015 Eksamenstid: kl 09.00 til kl 13.00 Hjelpemidler: Faglærer: 4 dobbeltsidige ark med notater Lars Magnusson
Løsningsforslag - Korteste vei
Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011
Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no
Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø rodsjo@stud.ntnu.no Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner,
PG4200 Algoritmer og datastrukturer Forelesning 10
PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,
GRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6
IN Algoritmer og datastrukturer GRAER Dagens plan: Kort repetisjon om grafer Korteste, en-til-alle, for: uektede grafer (repetisjon) ektede rettede grafer uten negatie kanter (Dijkstra, kapittel 9..) ektede
Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra
Læringsmål og pensum. Algoritmeeffektivitet
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå
UNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2015 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF2220
Pensum: fra boken (H-03)+ forelesninger
Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.
TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå
Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer
Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid
Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing
Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner, hashtabeller Kollisjonshåndtering
Ny/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
MAT1030 Forelesning 25
MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning
Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær
Forelesning 28, eksempler Dag Normann - 5. mai 2008 I dag skal vi se på en rekke eksempeloppgaver, og gjennomgå løsningene på tavla. Alle eksemplene er oppgaver som ville kunne bli gitt til eksamen, enten
Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland
Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):
Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15
http://www.idi.ntnu.no/~algdat algdat@idi.ntnu.no Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15 b c g a f d e h The pitch drop experiment. Foreløpig kjørt fra 1927 til nå. Åtte dråper har
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning