Heuristisk søk 1. Prinsipper og metoder

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Heuristisk søk 1. Prinsipper og metoder"

Transkript

1 Heuristisk søk Prinsipper og metoder

2 Oversikt Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk

3 Traveling sales person (TSP) Tromsø Bergen Stavanger Trondheim Oppdal Oslo Byer Ruter >0 >0 7 0 Kristiansand

4 Kombinatorisk optimering Beste løsning - målfunksjon Diskrete løsninger Eksempler: Traveling sales person Permutasjon av nodene Minimum vertex cover Subsett av nodene Shortest superstring Permutasjon av strengene i et sett Mest deskriptive regulære uttrykk Parsetre

5 Minimum vertex cover Minste antall noder bundet til alle kanter

6 Målfunksjon og optimalisering Energilandskap som nyttig analogi Minimering av potensiell energi (mh) Smelting og størkning av materialer Krystallstruktur (Globalt optimum) Glass (Lokalt optimum)

7 Optimalisering Løsningsrom, C Målfunksjon (kostnad), c(.) Problem: min c( S * S C * )

8 Optimalisering - Løsningsskisse. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til S C S N( S) = { S : S ~ S } S = S Hvordan definere naboskap (~)? Hvordan velge nabotilstand?

9 Minimal vertex cover Graf G=(V, E) Løsningsrom: Alle vertex covers Eks: V C Målfunksjon: c ( S) = Naboskap: S ~ S hvis S = S +- en node Max V naboløsninger S 6

10 Vertex cover gradient descent Hvordan velge nabotilstand?. Velg en tilstand S som arbeidsløsning. Velg en nabotilstand min c( S ) S N ( S ). Terminer med S hvis c(s) c(s ). Sett nabotilstanden som ny arbeidsløsning og gå til Løsning et lokalt minimum: c(s) c(s )

11 Vertex cover gradient descent som energilandskap

12 Forbedringer av gradient descent/hill climbing (GD/HC) Varianter i nabovalg Velg første nabotilstand c(s ) c(s) Velg tilfeldig nabotilstand c(s ) c(s) Prøv forskjellige starttilstander. Velg tilfeldig starttilstand. Kjør gradient descent. Ta vare på beste løsning Random-restart GD/HC

13 Hvordan unslippe lokale minima? ~ ~

14 Hvordan simulere tilstanden i et Statistisk mekanikk: Tilstand, S fysisk system? Energi til tilstand, E(S) Temperatur, T Gibbs-Boltzmann funksjonen: Sannsynlighet for å finne et fysisk system i tilstand S, P(S) P( S) ~ e E( S )/( kt )

15 Egenskaper ved Gibbs-Boltzmann funksjonen kt kt =00 =0 e E /(kt ) kt = kt = 0. E

16 Metropolis algoritmen simulerer fysisk system ved gitt temperatur. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. if E(S ) E(S). Oppdater S S. else. ΔE = E(S ) - E(S). Oppdater S S med sannsynlighet. Gå til e ΔE /(kt ) Downhill GD/HC Uphill Ut av lokale minimum

17 Metropolis algoritmen har bias mot lavenergitilstander La andelen steg MA er i S i løpet av de t førstestegvære (t) Sett Da vil lim t f S Z ( t) = = Z S C e e Over lang tid vil Metropolis algoritmen bruke mest tid i lavenergitilstander f S E( S )/( kt ) E( S )/( kt )

18 Metropolis i praksis 6 ~ 6 ~ 6 ~ ~ 6 / / 6 6

19 - - 0 Energilandskap og temperatur Høy temperatur Lav temperatur kt kt =00 =0 E /(kt ) e kt = kt = 0. E

20 Energilandskap og temperatur Høy temperatur alle tilstander like sannsynlige Smeltet materiale Lav temperatur minimumstilstandene mest sannsynlige Krystallstruktur Rask endring fra høy til lav temperatur Stokastisk gradient descent Lokale minima Imperfekt krystallstruktur (eller glass)

21 Simulert størkning for optimalisering Krystalldyrkning i praksis:. Smelt. Avkjøl langsomt Simulert størkning: Start Metropolis algoritmen på høy temp Reduser temperaturen som funksjon av iterasjonene (annealing schedule) T = τ (i)

22 Simulert størkning. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. Oppdater temperaturen. if E(S ) E(S). Oppdater S S. else. ΔE = E(S ) - E(S). Oppdater S S med sannsynlighet 6. Gå til e ΔE /(kt ) Downhill GD/HC Uphill Ut av lokale minimum

23 Simulert størkning konvergerer mot globalt optimum Langsom størkning gir globalt optimum T τ 0 ( i) = log( + i) Suboptimal størkning brukes i praksis τ ( i) = T g, g < 0 i 0 g = g = 0.9 log

24 Simulert størkning og TSP N byer i kvadrat med sidelengder N / Gjennomsnittelig avstand til nærmeste nabo uavhengig av N Gjennomsnittelig steglengde α uavhengig av N Heuristikk Gå til nærmeste by gir α = O(ln(N)) α. (i gjennomsnitt) Simulert størkning Tilstand S: Permutasjon av {,, N}, S=s s N Naboskap: Reverser en del av turen S Eks: S = 6789,S = 6789;S = 6789

25 Simulert størkning og TSP T =. α =.067 T = 0.8 α =. T = 0. α =.0 T = 0.0 α = 0.789

26 Naboskap påvirker løsbarhet Naboskap i TSP Reverser en del av turen Reverser etterfølgende par Bytt to tilfeldige byer Resten 0 Energilandskap?

27 Energilandskap for naboskap Reverser en del av turen Resten Resten 0 ~

28 Energilandskap for naboskap Reverser etterfølgende par Resten Resten 0 ~

29 Energilandskap for naboskap Bytt to tilfeldige byer Resten Resten 0 ~

30 Gradient descent, metropolis og simulert størkning Algoritme:. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til Gradient descent Velg bedre nabo Metropolis + Velg dårligere nabo avhengig av temperatur og endring i kostnad Simulert størkning + Senk temperaturen

31 Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Resten

32 Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Resten Husk tidligere tilstander! 0 Tabu-søk husker siste n tilstander 9 8 Velger alltid beste løsning i N(S) Minnet (Tabu-listen) hindrer sykler med maks n elementer 6 7

33 Elementer så langt Iterer over enkelttilstander basert på naboskap Gå til bedre tilstand Aksepter dårligere tilstand Husk/unngå tidligere tilstander Se på flere løsninger Hva med å iterere over multiple tilstander samtidig?

34 Populasjonsbaserte optimaliseringsmetoder. Velg et sett av tilstander som arbeidsløsning. Velg et sett av nabotilstander. Sett nabotilstandene som ny arbeidsløsning. Gå til { S}, S C { S }, S N( S) = { S : S ~ S } { S } = { S } Hvordan definere naboskap (~)? Hvordan velge nabotilstander?

35 Hvordan velge nabotilstander? Parallel random-restart GD/HC min S N ( S ) c( S ) Igjen: naturen som inspirasjonskilde Charles Darwin Evolusjon -> naturens optimaliseringsmetode

36 Evolusjon som optimalisering Konkurranse om begrensede ressurser Arvelige egenskaper i en populasjon Organismer får mer avkom enn ressursgrunnlag Avkom har varierende evner til å overleve og reprodusere -> Fitness Nyttige egenskaper har større sjanse for å føres videre

37 Evolusjon som optimaliseringsmetode Tilstandsbeskrivelse som arvelig egenskap -> gen Begrenset populasjonsstørrelse Overlevelsesevne gitt av målfunksjon -> fitness Viktig element mangler!

38 Genetisk variasjon Avkom ikke nøyaktig kopi Mutasjoner (endring av individs arvestoff) Rekombinasjon (kombinasjon av to individs arvestoff) Crossover punkt Crossover punkt

39 Genetisk variasjon definerer naboskap Eks: TSP Arvestoff (tilstand) Nodepermutasjon Mutasjon (naboskap) Segmentreversjon Crossover/rekombinasjon (naboskap) Behold noderekkefølge fram til crossoverpunkt fra foreldre Bruk noderekkefølge for gjenværende noder fra foreldre S = 6789 S = 7689 S = 6789 S = 9876 S = 9876

40 Seleksjon definerer valg av naboer Overlevelsesevne gitt av målfunksjon Velg n løsninger (individ) proporsjonalt med løsningskvalitet (fitness) Velg n individ ved å velge beste individ fra n tilfeldige undergrupper

41 Evolusjonær algoritme. Lag en startpopulasjon {S 0 } = n (tilfeldig). Selekter n individ {S } fra {S i } (med tilbakelegging). Lag ny generasjon {S i+ } ved å rekombinere og mutere {S }. Gå til

42 Varianter av evolusjonære algoritmer Genetiske algoritmer Genom -> Strenger Parameteroptimalisering Genetisk programmering Genom -> Symbolske uttrykk Optimale deskriptive uttrykk

43 Heuristisk søk og optimalisering Basisalgoritme Velg en tilstand som arbeidsløsning Velg en nabotilstand Sett nabotilstanden som ny arbeidsløsning Gå til

44 Heuristisk søk og optimalisering Valg av nabotilstand viktig Definisjon av nabolag Valg av tilstand i nabolaget Resten No free lunch Alle metaheuristikker er i gjennomsnitt like gode Ytelse og valg av nabotilstand henger sammen

45 Pragmatiske løsninger

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim

Detaljer

Overview. Heuristic search 1. Target function and optimization. Minimum vertex cover

Overview. Heuristic search 1. Target function and optimization. Minimum vertex cover Overview Heuristic search Combinatorial optimization Local search and simulated annealing Population-based search Principles and methods Pål Sætrom Traveling sales person (TSP) Combinatorial optimization

Detaljer

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre Oversikt Branch-and-bound Pål ætrom Branch and bound Prinsipper Min Vertex cover B & B eksempler Median string TP Hvordan løse NP-hard kombinatorisk optimering? Kombinatorisk opt. Løsningsrom, C Målfunksjon

Detaljer

INF-MAT 5380 - Geir Hasle - Leksjon 3 2

INF-MAT 5380 - Geir Hasle - Leksjon 3 2 Leksjon 3 !"#$ Eksempler på DOP Alternative representasjoner Definisjon nabolag, -operator Lokalsøk Definisjon lokalt optimum Eksakt nabolag Prosedyre for lokalsøk Traversering av nabolagsgraf Kommentarer,

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2001, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2001, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 21, ordinær eksamen 14. september 23 Innledning En klikk i en graf G er en komplett subgraf av G. Det såkalte maksimum-klikk problemet består

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen 14. september 2003 Innledning Vi skal betrakte det såkalte maksimum-kutt problemet (maximum cut problem). Problemet

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen 1. september 2003 Deloppgave a I denne oppgaven skal vi ta for oss isomorfismer mellom grafer. To grafer G og H

Detaljer

Heuristiske søkemetoder II

Heuristiske søkemetoder II Heuristiske søkemetoder II Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 4. september 23 Plan Hva er en heuristisk søkealgoritme? Hvorfor heuristiske søkealgoritmer framfor tilbakenøsting?

Detaljer

!"!#$ INF-MAT Geir Hasle - Leksjon 2 2

!!#$ INF-MAT Geir Hasle - Leksjon 2 2 Leksjon 2 !"!#$ Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk program COP Definisjon DOP Anvendelser Kompleksitetsteori Eksakte metoder, approksimasjonsmetoder

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 2 Leksjon 1: Oppsummering Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk

Detaljer

Heuristiske søkemetoder I: Simulert størkning og tabu-søk

Heuristiske søkemetoder I: Simulert størkning og tabu-søk Heuristiske søkemetoder I: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral lars@aurdalweb.com Heuristiske søkemetoder I:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen 14. september 2003 Deloppgave a 50-års jubileet for simulert størkning: I juni 1953 publiserte fire amerikanske fysikere,

Detaljer

INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/

INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 8 Diskrete optimeringsproblemer (DOP) Finnes overalt operasjonsanalyse kunstig intelligens mønstergjenkjenning geometri økonomi

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 3 Leksjon 2 - Oppsummering Eksempler på DOP Alternative formuleringer Definisjon nabolag, -operator Lokalsøk Definisjon lokalt

Detaljer

NP-komplett, hva nå?

NP-komplett, hva nå? NP-komplett, hva nå? Anta vi har klart å vise at problemet vårt er NP-komplett eller NP-hardt. Hva betyr det? Såfremt P NP (de fleste tror det) har ikke problemet noen polynomisk algoritme. Hva skal vi

Detaljer

Matematisk evolusjonær genetikk (ST2301)

Matematisk evolusjonær genetikk (ST2301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Discrete Optimization Methods in Maritime and Road-based Transportation

Discrete Optimization Methods in Maritime and Road-based Transportation Discrete Optimization Methods in Maritime and Road-based Transportation Forskningsprosjekt med støtte fra Norges Forskningsråd Samarbeidspartnere Norges Teknisk-Naturvitenskapelige Universitet Institutt

Detaljer

Styrt lokalsøk (Guided Local Search, GLS)

Styrt lokalsøk (Guided Local Search, GLS) Leksjon 6 !!"# Styrt lokalsøk (Guided Local Search, GLS) Martin Stølevik, SINTEF INF-MAT 5380 - Geir Hasle - Leksjon 6 2 $!%&!'%!($')! *+ GENET (neural network) Prosjekt for løsing av Constraint Satisfaction

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 5 Leksjon 4 - Oversikt Tabusøk INF-MAT 5380 - Geir Hasle - Leksjon 5 2 Tabusøk - Sammendrag Inspirert fra matematisk optimering

Detaljer

Genetiske interaksjoner villfisk-oppdrettsfisk

Genetiske interaksjoner villfisk-oppdrettsfisk Genetiske interaksjoner villfisk-oppdrettsfisk Jørgen Ødegård og Celeste Jacq Nofima AHA Oppstartkonferanse Leikanger, april 2011 Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk kan rømme og krysse

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 6 Leksjon 5 - Oversikt Styrt lokalsøk (Guided Local Search, GLS) INF-MAT 5380 - Geir Hasle - Leksjon 6 2 Guided Local Search

Detaljer

Styrt lokalsøk (Guided Local Search, GLS)

Styrt lokalsøk (Guided Local Search, GLS) Del A: Diskret optimering og heuristiske metoder Leksjon 6 Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo!"# Styrt lokalsøk (Guided Local Search, GLS) TMA 4198 - Geir Hasle - Leksjon 6 2 1 $ %&'%($

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

Genetiske interaksjoner mellom vill og oppdrettet laks

Genetiske interaksjoner mellom vill og oppdrettet laks Genetiske interaksjoner mellom vill og oppdrettet laks Céleste Jacq, Jørgen Ødegård, Hans B. Bentsen og Bjarne Gjerde Havforskermøtet 2011 Trondheim Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk

Detaljer

Hybrid med lokalsøk: Memetic algorithms

Hybrid med lokalsøk: Memetic algorithms Leksjon 7 ! Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur iboende parallellitet skjema, vokabular robusthet gode mekanismer for intensifisering

Detaljer

Data-avhengige trianguleringer

Data-avhengige trianguleringer Data-avhengige trianguleringer Øyvind Hjelle oyvindhj@simula.no, +47 67 82 82 75 Simula Research Laboratory, www.simula.no October 5, 2009 Definition (Data-avhengig triangulering) En triangulering (P),

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

FLERVALGSOPPGAVER EVOLUSJON

FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,

Detaljer

Maks Flyt og NPkompletthet

Maks Flyt og NPkompletthet Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av

Detaljer

Løsningsforslag ST2301 Øving 11

Løsningsforslag ST2301 Øving 11 Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen

Detaljer

Rundt og rundt og. Trettende forelesning

Rundt og rundt og. Trettende forelesning Nettverksalgoritmer. Anvendelser og generaliseringer. Sirkulasjonsproblemet/ lineær programmering. (Kap. 29.1-29.2) Rundt og rundt og Trettende forelesning 1 Merk: Ikke sikkert alt dette blir gjennomgått

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

A study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen

A study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen A study of different matching heuristics Hovedfagspresentasjon Jan Kasper Martinsen (janma@ifi.uio.no) Terminologi: Graf teori En graf består av et sett med noder Nodene er tilknyttet hverandre ved hjelp

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

Epost: Tlf. SINTEF Mob

Epost: Tlf. SINTEF Mob Del A: Diskret optimering og heuristiske metoder Leksjon Sjefsforsker Geir Hasle SINTEF Anvendt matematikk, Oslo!" Epost: Geir.Hasle@sintef.no Tlf. SINTEF 22 06 78 87 Mob. 930 58 703 TMA 498 - Geir Hasle

Detaljer

UNIVERSITETET I AGDER

UNIVERSITETET I AGDER FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 21. november 2011 Varighet: 2 timer Antall sider inkl. forside 8 Tillatte hjelpemidler: Kalkulator Merknader:

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 22, 2007 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal

Detaljer

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen.

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Programkonferansen HAVBRUK 2012, Stavanger, 16.-18. april 2012 Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Paul R. Berga, Bastiaan Stara,

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

AVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017

AVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017 AVL MOT ILA FHFs ILA workshop Borghild Hillestad April 2017 HVA BOR I GENOMET TIL EN ART? Det genetiske mangfoldet hos en art kan være enormt MENNESKER KAN STYRE GENETIKKEN I FLERE RETNINGER En negativ

Detaljer

Heuristiske søkemetoder I

Heuristiske søkemetoder I Heuristiske søkemetoder I Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Hva slags søkemetoder snakker vi om? Kombinatoriske strukturer. Sett. Lister. Grafer. Søkealgoritmer

Detaljer

Evolusjonens tvangstrøyer

Evolusjonens tvangstrøyer Evolusjonens tvangstrøyer Kjetil Lysne Voje Universitetet i Oslo volusjon foregår hele tida! Evolusjon er lett! Tre nødvendige ingredienser Variasjon Seleksjon Arvbarhet Tre nødvendige ingredienser

Detaljer

INF-MAT5370. Grafer og datastrukturer

INF-MAT5370. Grafer og datastrukturer INF-MAT5370 Grafer og datastrukturer Øyvind Hjelle oyvindhj@simula.no, +47 67 82 82 75 Simula Research Laboratory, www.simula.no August 3, 2009 Innhold Kort om grafer Topologiske operatorer og operasjoner,

Detaljer

!!!" " # $ Leksjon 1

!!!  # $ Leksjon 1 !!!"" # $ Leksjon 1 %# Studenten skal etter seminaret ha en grunnleggende forståelse av hvordan moderne heuristiske metoder basert på lokalsøk og metaheuristikker kan brukes for å finne approksimerte løsninger

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT3 Diskret Matematikk Forelesning 2: Mer kombinatorikk Dag Normann Matematisk Institutt, Universitetet i Oslo 3. april 2 (Sist oppdatert: 2-4-3 4:3) Kapittel 9: Mer kombinatorikk MAT3 Diskret Matematikk

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55

Detaljer

LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED

LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED KOMPETANSEMÅL Forklarebegrepene krysning og genmodifisering, og hvordan bioteknologi brukes

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av

Detaljer

Løsningsforslag øving 12, ST1301

Løsningsforslag øving 12, ST1301 Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis

Detaljer

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Eksamen - INF 283 Maskinlæring

Eksamen - INF 283 Maskinlæring Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt

Detaljer

Tilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2

Tilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2 Leksjon 4 !!"# Tilfeldig søk Simulert størkning Terskelakseptanseteknikker INF-MAT 5380 - Geir Hasle - Leksjon 4 2 $!"% Inspirert av statistisk mekanikk - nedkjøling Metaheuristikk lokalsøk tilfeldig nedstigning

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

INF Triangulering. Med sterk støtte fra Petter Kristiansen. Skal først se på et eksempel fra Google Earth

INF Triangulering. Med sterk støtte fra Petter Kristiansen. Skal først se på et eksempel fra Google Earth INF 4130 17. november 2011 Triangulering Stein Krogdahl Med sterk støtte fra Petter Kristiansen Skal først se på et eksempel fra Google Earth De bruker en underliggende triangulering av landskapet, men

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens

Detaljer

Turingmaskiner.

Turingmaskiner. Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen

Detaljer

Problemer knyttet til seleksjon

Problemer knyttet til seleksjon Problemer knyttet til seleksjon ( Fra: 'Genetic Entropy & the Mystery of the Genome; Dr. J.C.Sanford; FMS Publications; Ch. 4-slutten) -Tre spesifikke seleksjonsproblemer Vi skal se på en enkel problemstilling

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

GRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6

GRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6 IN Algoritmer og datastrukturer GRAER Dagens plan: Kort repetisjon om grafer Korteste, en-til-alle, for: uektede grafer (repetisjon) ektede rettede grafer uten negatie kanter (Dijkstra, kapittel 9..) ektede

Detaljer

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser algdat@idi.ntnu.no Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang

Detaljer

Notat for oblig 2, INF3/4130 h07

Notat for oblig 2, INF3/4130 h07 Notat for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 15. oktober 2007 Jeg har skrivd et noe langt notat for oblig 2 som interesserte kan se på. Merk at dette er kun for å gi et par tips (for oppgave 3

Detaljer

Matematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag

Matematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Matematisk evolusjonær genetikk, ST30 Onsdag 5. desember 004 Løsningsforslag Oppgave a) Vi setter først navn på de

Detaljer

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut)

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut) Dagens program: Første time: INF 4130 6. oktober 2011 Stein Krogdahl Kap 23.5: Spilltrær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Sammenheng mellom læringsutbyttebeskrivelse og vurdering. Christian Jørgensen

Sammenheng mellom læringsutbyttebeskrivelse og vurdering. Christian Jørgensen Sammenheng mellom læringsutbyttebeskrivelse og vurdering Christian Jørgensen Bio100 - Fire deleksamener Deleksamen Maks poeng 1: Flervalg og kortsvar 20 2: Regneøvelse i Excel med rapport 20 3: Presentasjon

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53

Detaljer

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...

Detaljer

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt. Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 7 GA - Oppsummering Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur

Detaljer

Heuristiske søkemetoder II: Simulert størkning og tabu-søk

Heuristiske søkemetoder II: Simulert størkning og tabu-søk Heuristiske søkemetoder II: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral lars@aurdalweb.com Heuristiske søkemetoder II:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

Matematisk morfologi IV

Matematisk morfologi IV Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember 3 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag Geodesi-transformasjoner: Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.

Detaljer

Navigering av en mobil mikrorobot

Navigering av en mobil mikrorobot Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer Fag IAD32005 Intelligente systemer Laboppgave nr 1 Navigering av en mobil mikrorobot Halden, Remmen 25.01.2007 23.01.07 Ny oppgave

Detaljer

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere INF 4130 1. oktober 2009 Stein Krogdahl Dagens program: Første time: Kap 23.5: Trær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer (Ikke

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Kapittel 10 fra læreboka Grafer (utdrag) En graf er en samling punkter (noder) og kanter mellom punktene (eng. nodes, vertex, edge). En graf kalles rettet hvis kantene har en retning og urettet hvis kantene

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO INF5110 12/2-2013 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO Dagens temaer: Noen foiler igjen fra forrige gang SLR(1), LR(1)- og LALR(1)-grammatikker NB: Oppgaver til kap 4 og 5 er lagt ut på undervisningsplanen

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (LF)

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (LF) TDT4125 2009-05-15 Stud-nr: 1/6 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (LF) Eksamensdato 15. mai 2009 Eksamenstid 0900 1300 Sensurdato 5. juni Språk/målform Bokmål Kontakt

Detaljer

INF-MAT5370. Delaunay-trianguleringer og Voronoi-diagram

INF-MAT5370. Delaunay-trianguleringer og Voronoi-diagram INF-MAT5370 Delaunay-trianguleringer og Voronoi-diagram Øyvind Hjelle oyvindhj@simula.no, +47 67 82 82 75 Simula Research Laboratory, www.simula.no September 7, 2009 Innhold Klassisk teori Optimale trianguleringer

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet

Detaljer

Forelesningsnotat i Diskret matematikk tirsdag 1. november Pascals trekant. Legg merke til møsteret! Det gir oss Pascals identitet:

Forelesningsnotat i Diskret matematikk tirsdag 1. november Pascals trekant. Legg merke til møsteret! Det gir oss Pascals identitet: Pascals trekant Legg merke til møsteret! Det gir oss Pascals identitet: ( n + 1 k ) = ( n k 1 ) + (n k ) 1 Sjekk med tabellen! La n = 5, og k = 4: ( 5 + 1 2 ) = (6 2 ) = (5 1 ) + (5 2 ) Det stemmer! 15

Detaljer