Korteste Vei I. Lars Vidar Magnusson Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Størrelse: px
Begynne med side:

Download "Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei"

Transkript

1 Korteste Vei I Lars Vidar Magnusson Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

2 Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste vei mellom to noder i en graf. Som vanlig så har vi en rettet graf G = (V, E) og en vektfunksjon w : E R. Vekten til en sti p = v 0, v 1,..., v k er summen av vekten til kantene mellom nodene i stien. k w(p) = w(v i 1, v i ) Da kan vi definere vekten på korteste vei mellom u og v som: { min{w(p) : u p v} u p v δ(u, v) = u p v i=1 Den korteste veien fra u til v er hvilken som helst sti p slik at w(p) = δ(u, v).

3 Eksempel på Korteste Vei i en Graf Figuren under viser to eksempler på korteste vei mellom noder i samme graf. Disse eksemplene viser at korteste vei mellom noder i en graf ikke nødvendigvis er unik. Eksempelet viser også at når vi ser på korteste vei fra en startnode s til alle andre noder, så danner de korteste veiene et tre.

4 Vektene i Grafen Vektene i grafen kan representere hvilket som helst mål som akkumuleres lineært langs en sti. vi vil minimere. Eksempler på vekter kan være tid kostnad lengde straff Å finne korteste vei kan er en generalisering av breddeførst søk for vektede grafer.

5 Varianter av Korteste Vei Problemet Det finnes ulike varianter av korteste vei problemet. Enslig-kilde (single-source): finne korteste vei fra en kildenode s V til alle noder v V. Enslig-destinasjon (single-destination): finne korteste vei til en destinasjonsnode. Enslig-par (single-pair): finn korteste vei mellom to noder. Det finnes ingen kjent algoritme som i verstefall er bedre enn en single-source algoritme. Alle-par (all-pairs): Finne kortest vei mellom alle par noder i en graf. Algoritmer for denne varianten er utenfor pensum.

6 Negative Vekter på Kantene Det finnes algoritmer som håndterer negative vekter på kantene, så lenge det ingen negative sykler kan nås fra startnoden. Hvis vi har en negativ sykel kunne vi bare gått rundt og rundt og fått en vekt w(s, v) = for alle nodene v i sykelen. En graf kan inneholde en negativ sykel, så lenge den ikke er tilgjengelig fra startnoden. Noen algoritmer krever at alle vektene er positive. Vi skal se på en som takler negative vekter uten sykler og en som bare fungerer når vektene er positive.

7 Optimal Substruktur for Korteste Vei Problemet Vi kan enkelt se at korteste vei problemet har optimal substruktur utifra følgende påstand. Lemma En delsti av en korteste vei er også en korteste vei. Dette kan vi enkelt bevise ved å finne en selvmotsigelse (contradiction) hvis det motsatte var tilfelle. Vi har en sti p som er korteste vei fra u til v i.e. w(p) = δ(u, v), og la oss si at p xy er en delsti av p mellom nodene x og y. La oss så anta at det finnes en sti p xy som er en kortere vei mellom x og y enn p xy. Hvis dette er tilfelle kunne vi laget en ny variant p ved å bytte ut p xy med p xy i p og fått en kortere vei. Dette er en selvmotsigelse, og vi har derfor bevist utsagnet.

8 Mer om Sykler Korteste veier kan ikke inneholde noen form for sykler. Vi har allerede diskutert hvorfor negative sykler ikke kan eksistere i en korteste vei. Korteste veier kan heller ikke inneholde positive sykler, siden vi ville fått en kortere vei hvis sykelen ikke var tatt med. Sykler med 0 vekt kunne i teorien bli tatt med, men det er ingen grunn til å gjøre det.

9 Output fra Korteste Vei Algoritmer Output fra korteste vei algoritmer er både avstand fra kildenoden og et korteste vei tre. Hver node v får et atributt v.d = δ(s, v). Til og begynne med er v.d =. Reduseres etterhvert som algoritmen kjøres. Vi kaller v.d et estimat på korteste vei under kjøring. I tillegg til avstanden bygges et tre opp ved hjelp av v.π som angir forgjengeren til v på korteste vei fra s. Til og begynne med er v.π = nil. Under kjøring oppdateres v.π til å peke på forgjengeren i den nåværende korteste veien fra s til v.

10 Initialisering i Korteste Vei Algoritmer Begge algoritmene vi skal se på starter med å initialisere atributtene i nodene med et kall til Init-Single-Source. Pseudokoden for Init-Single-Source er listet under. Etter kjøring er alle estimatet på avstand satt til på alle noder bortsett fra kildenoden. Algoritmen går gjennom alle nodene en gang i.e. kjøretiden er Θ(V ).

11 Relax Algoritmen I tillegg til initialiseringen har begge algoritmene vi skal se på det til felles at de benytter seg av Relax algoritmen for å sjekke om vi kan forbedre estimatet på korteste vei. Algoritmen sjekker det nåværende estimatet v.d opp i mot avstanden via en node u. Både estimatet og forgjengeren blir oppdatert hvis et bedre estimat er blitt funnet. Kjøretiden er konstant i.e. O(1).

12 Hvordan Relax Fungerer Figuren under viser de to tilfellene av hvordan Relax algoritmen fungerer. Den første figuren viser et eksempel på når en forbedring har blitt funnet, mens den andre viser et eksempel på når nåværende estimat er best.

13 Beskrivelse av Korteste Vei Algoritmer Begge algoritmene vi skal se på fungerer på følgende måte. Start med å initialisere nodene med Init-Single-Source algoritmen. Kaller Relax gjentagende for å oppdatere estimatet på korteste vei. Algoritmene varierer på i hvilken rekkefølge og hvor mange ganger Relax blir kalt.

14 Egenskaper ved Korteste Vei - Triangel Ulikheten Vi skal se på en rekke egenskaper som er basert på et kall til Init-Single-Source og null eller flere kall til Relax. Vi skal begynne med å se på triangel ulikheten (triangle inequality). For alle kanter (u, v) E så har vi δ(s, v) δ(s, u) + w(u, v). Beviset følger av følgende resonnement. Vekten av en kortest vei mellom s og v er δ(s, v). Stien s u v er en sti s v Hvis vi bruker en kortest vei på stien s u så får stien s u v en vekt på δ(s, u) + w(u, v).

15 Egenskaper ved Korteste Vei - Øvre Grense Den neste egenskapen vi skal se på er øvre grense (upper-bound). Estimatet for avstand vil til enhver tid være en øvre grense for faktisk avstand slik at v.d δ(s, v). Når v.d = δ(s, v) vil den aldri endres igjen. Beviset følger av følgende resonnement. Vi antar at det eksisterer en node v slik at v.d < δ(s, v). Uten å miste generalitet kan vi anta noden v er den første noden hvor dette oppstår. Vi lar u være noden som forsårsaker av v endres. v.d < δ(s, v) δ(s, u) + w(u, v) u.d + w(u, v) (triangel ulikhet) (v er første brudd) Vi får da en selvmotsigelse siden vi nå har kommet frem til at v.d < u.d + w(u, v), men vi vet at v.d = u.d + w(u, v). Når v.d = δ(s, v) vil den aldri endres igjen siden den aldri kan økes.

16 Egenskaper ved Korteste Vei - Ingen-Sti Den neste egenskapen er ingen-sti (no-path). Hvis δ(s, v) = så vil v.d = alltid. Beviset er svært enkelt siden vi allerede vet at v.d δ(s, v). Vi har v.d δ(s, v). Dette impliserer at v.d =.

17 Egenskaper ved Korteste Vei - Konvergens Den nest siste egenskapen vi skal se på er konvergens (convergence). Hvis s u v er en kortest vei fra s til v, og u.d = δ(s, u). Når vi kaller Relax(u, v, w) så vil v.d = δ(s, v) etterpå. Beviset følger av følgende resonnement. v.d = u.d + w(u, v) = δ(s, u) + w(u, v) (utifra Relax kode) = δ(s, v) (optimal substruktur)

18 Egenskaper ved Korteste Vei - Sti-Avslapning Den siste egenskapen vi skal se på er sti avslapning (path relaxation). Vi lar en sti p = v 0, v 1,..., v k være en korteste vei fra s = v 0 til v k. Hvis vi kaller Relax på kantene i denne stien i rekkefølge, selv blandet med andre avslapninger, så vil v k.d = δ(s, v k ). Dette kan bevises med induksjon. Basis: i = 0. Initielt er v 0.d = 0 = δ(s, s). Induksjonsteg: Vi antar v i 1.d = δ(s, v i 1 ). Utifra konvergensegenskapen vet vi at v i.d = δ(s, v i ) etter kallet til Relax på kanten (v i 1, v i ) så vil v i.d = δ(s.v i ), og vi vet at den ikke endres igjen etter at v i.d = δ(s, v i ).

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Grunnleggende Grafalgoritmer II

Grunnleggende Grafalgoritmer II Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først

Detaljer

Fra A til B. Syvende forelesning

Fra A til B. Syvende forelesning Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra

Detaljer

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim Minimum Spenntrær Lars Vidar Magnusson 2.4.2014 Kapittel 23 Minimum spenntrær Kruskal Prim Minimum Spenntrær Et spenntre er et tre som spenner over alle nodene i en graf G = (V, E). Et minimum spenntre

Detaljer

Dijkstras algoritme Spørsmål

Dijkstras algoritme Spørsmål :: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-

Detaljer

Grunnleggende Grafalgoritmer

Grunnleggende Grafalgoritmer Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Lineær sortering. Radix sort

Lineær sortering. Radix sort Fra forrige gang 1 Lineær sortering Radix sort 2 Sorter hvert siffer for seg Bruk en stabil sortering (f.eks. CS) for å bevare arbeidet så langt Vi må begynne med minst signifikante siffer Konstant antall

Detaljer

Grunnleggende Grafalgoritmer III

Grunnleggende Grafalgoritmer III Grunnleggende Grafalgoritmer III Lars Vidar Magnusson 26.3.2014 Kapittel 21 og 22 Usammenhengende-sett Strongly-connected components Usammenhengende Sett Usammenhengende sett er ikke en grafalgoritme i

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):

Detaljer

Grunnleggende Grafteori

Grunnleggende Grafteori Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson Binære Søketrær Lars Vidar Magnusson 14.2.2014 Kapittel 12 Binære Søketrær Søking Insetting Sletting Søketrær Søketrær er datastrukturer som støtter mange dynamiske sett operasjoner. Kan bli brukt både

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 18. august 2011 Eksamenstid 0900 1300 Sensurdato 8. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Lars Vidar Magnusson 21.2.2014 Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Rød-Svarte trær (red-black trees) er en variasjon binære søketrær som

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.

Detaljer

Forelesning 9 mandag den 15. september

Forelesning 9 mandag den 15. september Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi

Detaljer

Algdat Eksamensforelesning. Nils Barlaug

Algdat Eksamensforelesning. Nils Barlaug Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum

Detaljer

Rettede, ikke-sykliske grafer (DAG)

Rettede, ikke-sykliske grafer (DAG) Rettede, ikke-sykliske grafer (DAG) Dersom vi vet at grafen ikke inneholder løkker, kan vi lage en forbedret versjon av Dijkstras algoritme ved å forandre metoden for å velge neste kjente node. Den nye

Detaljer

Minimum Spenntrær - Kruskal & Prim

Minimum Spenntrær - Kruskal & Prim Minimum Spenntrær - Kruskal & Prim Lars Vidar Magnusson 4.4.2014 Kapittel 23 Kruskal algoritmen Prim algoritmen Kruskal Algoritmen Kruskal algoritmen kan beskrives med følgende punkter. Vi har en en sammenkoblet

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53

Detaljer

MAT1030 Forelesning 30

MAT1030 Forelesning 30 MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...

Detaljer

Populærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X.

Populærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X. Om Fargelegging av Kart og Grafer i Planet Populærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X. 1. Firefargeteoremet Et

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

LO118D Forelesning 9 (DM)

LO118D Forelesning 9 (DM) LO118D Forelesning 9 (DM) Grafteori 26.09.2007 1 Introduksjon 2 Veier og sykler 3 Hamiltonsykler og omreisende handelsmenn Graf, urettet Definisjon En graf (eller urettet graf) G består av en mengde V

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson B-Trær Lars Vidar Magnusson 5.3.2014 Kapittel 18 B-trær Standard operasjoner Sletting B-Trær B-trær er balanserte trær som er designet for å fungere bra på sekundære lagringsmedium e.g. harddisk. Ligner

Detaljer

Live life and be merry

Live life and be merry Om grådighet og først litt mer DP. Live life and be merry Ellevte forelesning for tomorrow you may catch some disgusting skin disease. [Edmund Blackadder] 1 2 g i t k i s K o rt Grådighet All form for

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

Øvingsforelesning Korteste vei: Alle til alle

Øvingsforelesning Korteste vei: Alle til alle Øvingsforelesning Korteste vei: Alle til alle TDT4120 Algoritmer og datastrukturer Ole Kristian Pedersen 02. november, 2018 IDI, NTNU Plan for dagen Løsninger teoriøving 10 Alle til alle med Dijkstra &

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 918 51 949 Eksamensdato 4. desember, 2017

Detaljer

MAT1030 Forelesning 24

MAT1030 Forelesning 24 MAT1030 Forelesning 24 Grafteori og trær Roger Antonsen - 28. april 2009 (Sist oppdatert: 2009-04-28 22:32) Forelesning 24 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

Vann i rør Ford Fulkerson method

Vann i rør Ford Fulkerson method Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær Forelesning 28, eksempler Dag Normann - 5. mai 2008 I dag skal vi se på en rekke eksempeloppgaver, og gjennomgå løsningene på tavla. Alle eksemplene er oppgaver som ville kunne bli gitt til eksamen, enten

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid

Detaljer

Maks Flyt og NPkompletthet

Maks Flyt og NPkompletthet Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av

Detaljer

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0 O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i bwfs(u, i) for each neighbor u of v if λ[u] = 0 bwfs(u, i+1) Bacwards-first search; traverserer en graf med kvadratisk worst-casekjøretid.

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 21. april 2010 (Sist oppdatert: 2010-04-21 12:55) MAT1030 Diskret Matematikk 21.

Detaljer

Forelesning 5 mandag den 1. september

Forelesning 5 mandag den 1. september Forelesning mandag den. september. Fibonnacitall forts. Proposisjon..6. La n være et naturlig tall. Da er u + u + + u n = u n+. Bevis. Først sjekker vi om proposisjonen er sann når n =. I dette tilfellet

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)

Detaljer

Notat for oblig 2, INF3/4130 h07

Notat for oblig 2, INF3/4130 h07 Notat for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 15. oktober 2007 Jeg har skrivd et noe langt notat for oblig 2 som interesserte kan se på. Merk at dette er kun for å gi et par tips (for oppgave 3

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder Grådige Algoritmer Lars Vidar Magnusson 12.3.2014 Kapittel 16 Grådige algoritmer Aktivitetvelgingsproblemet Huffmankoder Ideen bak Grådige Algoritmer Ideen bak grådige algoritmer er å løse optimaliseringsproblem

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 6 1 / 31 Dagens plan:

Detaljer

Matchinger i ikke-bipartite grafer

Matchinger i ikke-bipartite grafer Matchinger i ikke-bipartite grafer Stein Krogdahl, Notat til INF 3/4130 Sist revidert september 2006 Vi skal i dette notatet se på det å finne matchinger i generelle grafer, uten noe krav om at grafen

Detaljer

IN 115 Fasitforslag til Eksamen 1997 Omskrevet til Java. 1. april 2000

IN 115 Fasitforslag til Eksamen 1997 Omskrevet til Java. 1. april 2000 IN 115 Fasitforslag til Eksamen 1997 Omskrevet til Java 1. april 2000 1 2 Oppgave 1 1-a 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 2 3 1 2 3 4 1 2 3 4 1 6 0 1 2 3 4 4 1 2 3 4 Figur

Detaljer

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

INF1020 Algoritmer og datastrukturer GRAFER

INF1020 Algoritmer og datastrukturer GRAFER GRAFER Dagens plan: Definisjon av en graf (kapittel 9.1) Grafvarianter Intern representasjon av grafer (kapittel 9.1.1) Topologisk sortering (kapittel 9.2) Korteste vei, en-til-alle, for: uvektet graf

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner.

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner. Algdat Redux Fjortende forelesning Repetisjon av utvalgte emner. 1 Nå har vi en brukbar (om enn ikke helt intuitiv) definisjon av «alt» og nå ønsker vi å lage oss en liste med de problemene som er «verst

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1

Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1 Øvingsforelesning 7 ijkstras algoritme oiler: redrik Ludvigsen oreleser: Jon Marius Venstad 0/4/09 Korteste sti - hvorfor? ksempel på bruk GPS-systemer ilde-krymping (som vist forrige mandag) Routing-protokoller

Detaljer

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11 Forelesning 33 Repetisjon Dag Normann - 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske repetisjonen av MAT1030. Det som gjensto var kapitlene 11 om trær og

Detaljer

Matematikk for IT Eksamen. Løsningsforslag

Matematikk for IT Eksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk for IT Eksamen 4. januar 2019 Løsningsforslag Christian F. Heide January 10, 2019 OPPGAVE 1 En spørreundersøkelse blant en gruppe studenter

Detaljer

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene. Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

LO118D Forelesning 6 (DM)

LO118D Forelesning 6 (DM) LO118D Forelesning 6 (DM) Rekurrensrelasjoner 10.09.2007 1 Rekurrensrelasjoner Rekurrensrelasjoner En rekurrensrelasjon definerer det n-te elementet i en følge i forhold til de foregående elementene. Følgen

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Forelesning 30: Kompleksitetsteori

Forelesning 30: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 30: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 30: Kompleksitetsteori 19. mai 2009 (Sist oppdatert: 2009-05-19

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Prøveekasmen 2007, med svarforslag Eksamen i: INF 330/430: Algoritmer: Design og effektivitet Eksamensdag: Fredag. desember 200 Tid

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer