Korteste vei problemet (seksjon 15.3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Korteste vei problemet (seksjon 15.3)"

Transkript

1 Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k ) der k 0, v i V (0 i k) og a i = (v i 1, v i ) (i k). Sier at P går fra v 0 til v k, og kaller P en v 0 v k -vandring. En (rettet) vei er en vandring P der v 0, v 1,..., v k er distinkte; kalles en v 0 v k -vei. Forskjellen er at en vandring kan inneholde sykler (flertall av syklus, altså ikke noe man sykler på!) Korteste vei problemet: gitt en rettet graf D = (V, E) med et gitt ikkenegativt tall (lengde) c ij for hver kant (i, j), samt to noder s og r, finn en korteste vei P fra s til r. Her er lengden til en vei P summen av c ij -ene for kantene i P. 1 / 10

2 Problemet har direkte anvendelser i de fleste typer nettverk (kjørerute bil (GPS), fly,..) eller i dynamiske optimeringsproblemer f.eks. i økonomi/finans. Er også et delproblem i mange ulike, mer komplekse problemer. Ofte vil vi finne korteste vei mellom flere par av noder; algoritmene under gjør dette fra felles startnode s til enhver annen node. Eksempel: dynamisk programmering (dynamiske systemer med sekvensielle beslutningsproblemer): tar det til slutt! 2 / 10

3 Nettverk strøm formulering Korteste vei problemet er et spesialtilfelle av MKS (minimum kost strøm) problemet: min{c T x : Ax = b, x O}. Her er A node-kant indikator matrisen til grafen, c kostnadsvektoren (lengdene), og b = (b v : v V ) er vektoren gitt ved b s = 1, b r = 1 og b v = 0 ellers. Dette går greit fordi vi har en heltallig optimal løsning, og den må inneholde en vei fra s til r: x ij = 1 for alle kanter i veien, og x ij = 0 ellers. Tenk gjennom detaljene! Følgelig kan vi løse korteste vei problemet som MKS problem ved hjelp av nettverk simpleks algoritmen. Faktisk kan vi ved å endre b (og innføre kantkapasiteter på 1) finne korteste vei fra enhver v V til r ved å løse et MKS problem! Skal se på enda raskere og enklere algoritmer! 3 / 10

4 Bellman-Ford algoritmen For v V og k 0 (heltall), defineres d k (v) som minimum lengde av en sv-vandring med høyst k kanter. Hvis det ikke finnes noen slik vandring, lar vi d k (v) =. Hvordan kan vi beregne disse avstandsfunksjonene? Bellman-Ford s algoritme: la d 0 (s) = 0 og d 0 (v) = for hver v s. Beregn funksjonene d 1, d 2,..., d n ved for alle v V. d k+1 (v) = min{d k (v), min (d k(u) + c uv )} (1) u:(u,v) E Teorem: Bellman-Ford algoritmen finner virkelig de korrekte avstandene, dvs. d k (v) blir minimum lengde av en sv-vandring med høyst k kanter. Spesielt er d n 1 (v) lengden av korteste sv-vei (her er n antall noder i grafen). 4 / 10

5 Bevis: En korteste sv-vei med høyst k + 1 kanter har enten (i) høyst k kanter eller (ii) den har k + 1 kanter og inneholder en kant (u, v) som siste kant. Men i tilfelle (ii) må delveien fram til u være en korteste su-vei med høyst k kanter (for ellers kunne vi velge en annen vei dit, og forbedre sv-veien). Likningen (1) for beregning av d k+1 ut fra d k kalles Bellman s likning. Den brukes også i liknende problemer i (diskret) dynamisk programmering og i en mer generell (kontinuerlig) utgave som kalles Hamilton-Jacobi-Bellman (HJB) likningen i optimal kontrollteori. BF-algoritmen har kompleksitet (antall regneoperasjoner) O(nm) der grafen har n noder og m kanter. Algoritmen har en viktig annen egenskap: den kan brukes også hvis det er negative kantlengder i følgende betydning. BF vil da oppdage om det finnes en syklus med negativ (total-)lengde som kan nåes fra s; da er d n (v) < d n 1 (v). Hvis dette ikke skjer, finner BF en korteste sv-vei. 5 / 10

6 Dijkstra s algoritme Dette er også en algoritme for Korteste vei problemet. Den virker bare for ikkenegative kantlengder (som er mest vanlig!) Dijkstra s algoritme er raskere enn Bellman-Ford algoritmen. (Vår beskrivelse er litt forskjellig fra bokas: vi starter i s og går forover langs kanter; Vanderbei går baklengs!) som vanlig betegner n antall noder 6 / 10

7 Algoritmen har n iterasjoner, i hver iterasjon føyes én ny node til en viss mengde F og noen beregninger gjøres. Ved starten er F =. Man har en verdi (en label) d i, for hver node i: d i er en øvre skranke på (korteste) avstand fra s til i. Ved starten er: d s = 0, og d i = ellers. F består av de nodene man allerede har funnet korteste vei til, så for disse nodene er d i lik avstanden fra s til i. I hver iterasjon: 1. velg en i F med d i minst mulig ( nærmeste node ), og oppdater F := F {i}. 2. for hver kant (i, j) E der j F, sett d j = min{d j, d i + c ij } og, hvis d j ble redusert, sett en peker prev(j) = i. 7 / 10

8 Dette betyr at, ved starten av hver iterasjon, er d(v) lik lengden av en korteste sv-vei som bare bruker noder i F. Vi har (uten å gi beviset, selv om det er et relativt enkelt induksjonsbevis): Teorem: Dijkstra s algoritmen finner en korteste vei, og tilhørende avstand d v, fra s til hver node v. Kompleksiteten er O(n 2 ). Eksempel: bruk Dijkstra (og Bellman-Ford) her u 3 v s 7 r 8 / 10

9 Eksempel: dynamisk programmering I dynamisk programmering (DP) har man en diskret dynamisk prosess som man vil kontrollere best mulig ved å påvirke prosessen ved hvert diskret tidspunkt t i (i m). Prosessen beskrives ved funksjoner f i der s i+1 = f i (s i, x i ) (i m) (2) der s i er tilstanden ved tidspunkt t i og x i er en variabel som vi kaller kontrollen ved tid t i. Vi antar at alt her er diskret (faktisk endelig), så kontrollen x i X og tilstanden s i S der X og S er endelige. Videre er f i : S X S. Det er også gitt kostfunksjoner g i (s i, x i ) som angir kostnaden ved å velge kontrollen x i ved tilstand s i i tidspunkt t i (i m). Problemet i DP er å finne en kontroll x 1, x 2,..., x m som minimerer totalkostnad m g i (s i, x i ) i=1 under kravene (2) og s i = s, s m+1 = s der s og s er gitt start- og slutt-tilstander. 9 / 10

10 Lag en rettet graf D med noder (t i, s j ) for hvert tidspunkt t i (i m) og hver tilstand s j S. Videre lager vi en kant fra (t i, s j ) til (t i+1, s k ) hvis det fins en kontroll x i slik at s k = f i (s i, x i ), og la denne kanten ha kostnad lik g i (s i, x i ) (den laveste, hvis det er flere mulige kontroller som gir denne tilstanden). Legg merke til at grafen D får noder som et rutenett, der kantene går mot høyre mellom noder (t i, ) og noder (t i+1, ). Den inneholder derfor ingen rettet syklus. Vi kan løse DP ved å finne en korteste vei i D fra noden (s, t 1 ) til noden (s, t m+1 )!!! Enkelt og greit! Til tross for at DP er en meget generell problemstilling, med mange anvendelser! Vi kan derfor løse DP ved f.eks. Bellman-Ford algoritmen i denne grafen. (Varianten av DP der slutt-tilstand er fri: går nokså likt.) Mer kompliserte varianter av dette oppsettet: stokastisk modell (Markov modell), kontinuerlig tid. Dette krever mer avanserte metoder. 10 / 10

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Grafteori og optimering en kort innføring. Geir Dahl

Grafteori og optimering en kort innføring. Geir Dahl Grafteori og optimering en kort innføring Geir Dahl 24. oktober 2001 Innhold 1 Introduksjon til grafteori 1 1.1 Hva er en graf? 1 1.2 Noen grunnleggende begreper 3 1.3 Trær 9 1.4 Oppgaver 12 2 Königsberg,

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

4.9 Anvendelser: Markovkjeder

4.9 Anvendelser: Markovkjeder 4.9 Anvendelser: Markovkjeder Markov kjeder er en spesiell type diskret dynamisk system. Stokastisk modell: grunnleggende i sannsynlighetsregning. Vinner av Abelprisen 2007, S. Varadhan, jobber i dette

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

Kapittel 5: dualitetsteori

Kapittel 5: dualitetsteori LP Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP Leksjon 5: #1 of 17 Motivasjon Til ethvert LP problem (P) er

Detaljer

Grunnleggende Grafalgoritmer

Grunnleggende Grafalgoritmer Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

Diagnosekart for oblig 2, INF3/4130 h07

Diagnosekart for oblig 2, INF3/4130 h07 Diagnosekart for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 1. november 2007 Dette er et dokument jeg har skrivd for å gjøre det enklere å gi tilbakemelding på obligene, siden så mange ting går igjen

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk

Detaljer

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra

Detaljer

45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 1992

45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 1992 45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 12 Oppgave 1 Idé til algoritme Benytter S n som betegn på en tallmengde med n elementer. For at et tall m skal være et majoritetstall

Detaljer

Løsningsforslag - Floyd-Warshall

Løsningsforslag - Floyd-Warshall Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon martme logget

Detaljer

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.

Detaljer

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende

Detaljer

Dijkstras algoritme Spørsmål

Dijkstras algoritme Spørsmål :: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

SIF8010 ALGORITMER OG DATASTRUKTURER

SIF8010 ALGORITMER OG DATASTRUKTURER SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting

Detaljer

Algdat - Øvingsforelesning. Maks flyt

Algdat - Øvingsforelesning. Maks flyt Algdat - Øvingsforelesning Maks flyt Dagens plan 1. LF teoriøving 7 2. Maks flyt 3. Ford-Fulkerson 4. Maksimal bipartitt matching 5. Presentasjon av øving 9 2 Øving 7 4b) I hvilken rekkefølge velges noder

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag)

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag) TDT4125 2011-06-04 Kand.-nr. 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag) Kontakt under eksamen Tillatte hjelpemidler Magnus Lie Hetland Alle trykte/håndskrevne;

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

MAT1030 Forelesning 24

MAT1030 Forelesning 24 MAT1030 Forelesning 24 Grafteori og trær Roger Antonsen - 28. april 2009 (Sist oppdatert: 2009-04-28 22:32) Forelesning 24 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Roger Antonsen - 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende. Eulerstier

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 21. april 2010 (Sist oppdatert: 2010-04-21 12:55) MAT1030 Diskret Matematikk 21.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 18. august 2011 Eksamenstid 0900 1300 Sensurdato 8. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

MAT Oblig 1. Halvard Sutterud. 22. september 2016

MAT Oblig 1. Halvard Sutterud. 22. september 2016 MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under

Detaljer

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf Forelesning 24 Grafer og trær Dag Normann - 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og Eulerstier Hamiltonkretser Minimale utspennende trær. Vi skal nå se

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

Vann i rør Ford Fulkerson method

Vann i rør Ford Fulkerson method Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave MAT1030 Diskret matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og

Detaljer

Fra A til B. Syvende forelesning

Fra A til B. Syvende forelesning Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra

Detaljer

Forelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding

Forelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding 1 Grådighet 2 Forelesningsplan Grådighet Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding LF Øving 9 Teori Praksis 3 Forelesningsplan Grådighet Hva er

Detaljer

Live life and be merry

Live life and be merry Om grådighet og først litt mer DP. Live life and be merry Ellevte forelesning for tomorrow you may catch some disgusting skin disease. [Edmund Blackadder] 1 2 g i t k i s K o rt Grådighet All form for

Detaljer

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Rettede, ikke-sykliske grafer (DAG)

Rettede, ikke-sykliske grafer (DAG) Rettede, ikke-sykliske grafer (DAG) Dersom vi vet at grafen ikke inneholder løkker, kan vi lage en forbedret versjon av Dijkstras algoritme ved å forandre metoden for å velge neste kjente node. Den nye

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

LP. Leksjon 4. Kapittel 4: effektivitet av simpleksmetoden

LP. Leksjon 4. Kapittel 4: effektivitet av simpleksmetoden LP. Leksjon 4 Kapittel 4: effektivitet av simpleksmetoden hvordan måle effektivitet? verste tilfelle analyse, Klee-Minty kuben gjennomsnittsanalyse og i praksis 1 / 18 Status Hvor langt er vi kommet i

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 26: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo 5. mai 2009 (Sist oppdatert: 2009-05-06 22:27) Forelesning 26 MAT1030 Diskret Matematikk 5.

Detaljer

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim Minimum Spenntrær Lars Vidar Magnusson 2.4.2014 Kapittel 23 Minimum spenntrær Kruskal Prim Minimum Spenntrær Et spenntre er et tre som spenner over alle nodene i en graf G = (V, E). Et minimum spenntre

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

LO118D Forelesning 9 (DM)

LO118D Forelesning 9 (DM) LO118D Forelesning 9 (DM) Grafteori 26.09.2007 1 Introduksjon 2 Veier og sykler 3 Hamiltonsykler og omreisende handelsmenn Graf, urettet Definisjon En graf (eller urettet graf) G består av en mengde V

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

Moderne optimering mer enn å derivere!!

Moderne optimering mer enn å derivere!! Faglig pedagogisk dag 2000, 4. januar Moderne optimering mer enn å derivere!! Geir Dahl, Prof. matematikk, Matematisk inst. og Inst. for informatikk aksjer - eksempel på LP (lineær programmering) noen

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

Lineær sortering. Radix sort

Lineær sortering. Radix sort Fra forrige gang 1 Lineær sortering Radix sort 2 Sorter hvert siffer for seg Bruk en stabil sortering (f.eks. CS) for å bevare arbeidet så langt Vi må begynne med minst signifikante siffer Konstant antall

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer