Matematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag

Størrelse: px
Begynne med side:

Download "Matematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag"

Transkript

1 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Matematisk evolusjonær genetikk, ST30 Onsdag 5. desember 004 Løsningsforslag Oppgave a) Vi setter først navn på de allel som nedarves. C c E e b c B H d b g D G d Innavlskoeffisienten til individ C, f C = 0, fordi de to allelene i C ikke kan stamme fra ett allel i en felles ane. Innavlskoeffisienten til H blir summen av sannsynligheten for følgende hendelser (løkker): Hendelse Sannsynlighet HGDBCEH ( )5 HGCBDEH ( )5 HGCEH ( )3 HGDEH ( )3 Dette gir at f H = = 5 6. b) Slektskapskoeffisienten mellom E og G, F EG = f H = 5 6 c) For kjønnskoblede loci får vi P (b d) = 0, P (b c) = 0, P (d g) = 0, P (c g) =. fordi E og G er foreldre til H.

2 ST30, 5. desember 004 løsningsforslag Side av 5 Dermed blir alle løkker bortsett fra HGCEH brutt og f H = P (g c c e) = = 4. d) Velger vi å redefinere relative fitnesser i forhold til AA blir w AA = 3/3 =, w Aa = hs = /3, og w aa = s = /3 slik at s = /3 og h = /. Ved mutasjons-seleksjonsbalanse blir da frekvensen av a, q e = u hs = 0 8 / /3 = Siden C ikke er innavlet blir sannsynligheten for at C er av type aa q e = Sannsynligheten for at H er av type aa blir P (aa) = q e( f H ) + f H q e = ( 5 6 ) = Oppgave a) µ = p a + p p a + p a = = 5 4, α = p a + p a µ = = 4,

3 ST30, 5. desember 004 løsningsforslag Side 3 av 5 α = = 4, δ = a α µ = = 3 4 δ = a α α µ = = + 3 4, δ = = 3 4. b) Den additive genetiske variansen blir V A = Var(α I + α J ) = Var(α I ) = E(α I) = [p α + p α = 8 Dominansvariansen blir Arvegraden blir dermed V D = Var(δ IJ ) = E(δ IJ) h = = p δ + p p δ + p δ = ( 3 ) + ( ) 3 + ( 3 ) = 9 6 V A V A + V D + V E = = 7

4 ST30, 5. desember 004 løsningsforslag Side 4 av 5 c) To halvsøskenbarn D og E er beslektet på følgende måte: A B C D E Dette gir en slektskapskoeffisient på F ED = ( ) 5 =. Siden bare ett allel i D kan 3 være IBD med et ett allel i E må sannsynligheten for at begge allel er er felles som følge av IBD (coefficient of fraternity, P i læreboka) være null. d) Korrelasjonen mellom halvsøskenbarn blir ρ halvsøskenbarn = F V A + P V D V P = Korrelasjonen mellom helsøsken blir ρ helsøsken = F V A + P V D V P = = = 0.. e) Fordi fenotypisk verdi til heterozygoten ikke ligger må middelverdien til homozygotene vil forventet fenotype blir forskjellig ved innavl. Avkom av halvsøskenbarn vil ha innavlskoeffisient lik slektskapskoeffisienten mellom foreldrene, altså f = /3. Bruker vi ligning (IX-7) finner vi at forskjellen som følge av innavl blir Oppgave 3 fp( p)(a + a a ) = 3 (0 + ) = a) Hver hunn i generasjon t + er dannet ved forening av en maternal og paternal gamet slik at gameter som danner hunner stammer fra en hanner og hunner i generasjon t med sannsynligheter lik /. Dessuten skjer det bare rekombinasjon ved danning av kjønnsgameter i hunnene i generasjon t. Bruker vi lov om totalsannsynlighet (to ganger) gir dette at P (f) + = [ ( r)p (f) + rp Ap B + P (m) () Siden X-kromosom i hanner stammer fra hunner i forrige generasjon blir frekvensen av gameter av type AB blant disse nødvendigvis P (m) + = ( r)p Ap B + rp (f) ()

5 ST30, 5. desember 004 løsningsforslag Side 5 av 5 b) Setter vi () inn i () får vi følgende. ordens differensligning i P (f) P (f) + = [ ( r)p (f) + rp Ap B + [ ( r)p (f) + rp Ap B = (f) ( r)p + (f) ( r)p + rp Ap B. (3) Fra definisjonen av (f) har vi at P = D(f) + p Ap B for alle t som innsatt i (3) gir + + p Ap B = ( r)d(f) + [ ( r)d(f) + ( r) + ( r) + r p A p B. Siden uttrykket i klammeparantes i siste ledd er lik får vi + ( r)d(f) ( r)d(f) = 0. (4) c) Differensligningen (4) har karakteristisk ligning som har løsninger λ ( r)λ ( r) = 0, λ = 4 ( r) + 6 ( r) + ( r) (5) Løsningen av (3) er på formen λ = 4 ( r) 6 ( r) + ( r) = c λ t + c λ t. Den største roten λ vil bestemme hvor raskt koblingsulikevekten brytes ned. For r = 0. blir λ = Dette innebærer at koblingsulikevekten asymptotisk reduseres med 0.86 = 4% per generasjon. For autosomale loci har vi at D + = ( r)d, altså en større reduksjon på 0% for r = 0.. Den noe langsommere reduksjonen i koblingsulikevekt for kjønnskoblede loci skyldes at /3 av gametene (gametene som dannet hanner) ikke er utsatt for rekombinasjon under meiosen. Dersom vi Taylorutvikler (5) til første orden rundt r = 0 får vi at λ 3 r, som betyr at forskjellen i reduksjon i koblingsulikevekt per generasjon mellom autosomale og kjønnskoblede loci utgjør en faktor på /3 for små r.

Matematisk evolusjonær genetikk (ST2301)

Matematisk evolusjonær genetikk (ST2301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det

Detaljer

Løsningsforslag ST2301 Øving 2

Løsningsforslag ST2301 Øving 2 Løsningsforslag ST2301 Øving 2 Kapittel 1 Exercise 6 Har et utvalg på 200 individer, fra en populasjon med forventet Hardy-Weinbergandeler for et locus med tre alleler, A 1, A 2 og A 3. Antall individer

Detaljer

Løsningsforslag ST2301 Øving 2

Løsningsforslag ST2301 Øving 2 Løsningsforslag ST2301 Øving 2 Kapittel 1 Exercise 6 Har et utvalg på 200 individer, fra en populasjon med forventa Hardy-Weinbergandeler for et locus med tre alleler, A 1, A 2 og A 3. Antall individer

Detaljer

Løsningsforslag ST2301 Øving 10

Løsningsforslag ST2301 Øving 10 Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden

Detaljer

Løsningsforslag ST2301 Øving 11

Løsningsforslag ST2301 Øving 11 Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen

Detaljer

Løsningsforslag ST2301 Øving 9

Løsningsforslag ST2301 Øving 9 Løsningsforslag ST30 Øving 9 Kapittel 5 Exercise Hvis vi har et dominant trekk med genfrekvens 0.3, hva er frekvensen av trekket når f = 0? f = 0.? f = 0.5? f =? La A være frekvensen av genet som gir trekket

Detaljer

Løsningsforslag ST2301 Øving 4

Løsningsforslag ST2301 Øving 4 Løsningsforslag ST301 Øving 4 Kapittel 1 Complement Anta at det er n allel med samme frekvens. Som funksjon av n, hva er andelen homozygoter og heterozygoter i populasjonen? Har at p 1 p... p n p p i p

Detaljer

Obligatorisk innlevering 3kb vår 2004

Obligatorisk innlevering 3kb vår 2004 Obligatorisk innlevering 3kb vår 2004 1 I marsvin er mørk pels farge (F) dominant over albino (f), og hår (K) dominant over langt hår (k). Genene for disse to egenskapene følger prinsippet om uavhengig

Detaljer

Løsningsforslag ST2301 Øving 7

Løsningsforslag ST2301 Øving 7 Løsningsforslag ST230 Øving 7 Kapittel 2 Complement 9 Noen planter reproduserer med selvbestøvning slik at hvert avkom er resultat av et tilfeldig pollenkorn og et tilfeldig frøemne fra samme plante. Anta

Detaljer

Løsningsforslag ST2301 Øving 9

Løsningsforslag ST2301 Øving 9 Løsningsforslag ST30 Øving 9 Kapittel 5 Exercise Hvis vi har et dominant trekk med genfrekvens 0.3, hva er frekvensen av trekket når f = 0? f = 0.? f = 0.5? f =? La A være frekvensen av genet som gir trekket

Detaljer

Løsningsforslag ST2301 Øving 6

Løsningsforslag ST2301 Øving 6 Løsningsforslag ST230 Øving 6 Kapittel 2 Exercise 0 Anta at tre genotyper har fitnesser A A A A 2 A 2 A 2 4 0 3. Hva er likevektsfrekvensen? 2. Er denne stabil? 3. Hvorfor kan vi ikke bare bruke formlene

Detaljer

Løsningsforslag ST2301 Øving 5

Løsningsforslag ST2301 Øving 5 Løsningsforslag ST2301 Øving 5 Kaittel 2 Exercise 6 Har en diloid oulasjon, ser å et locus med to allel A og a. Fitnessene for genotyene er 1 1 + h 0 Hva er likevektsfrekvensen av A som funksjon av h?

Detaljer

Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag

Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag Oppgave 1 a) Verdien av uttrykkene blir som følger: >

Detaljer

Genetisk variasjon i naturlige populasjoner. grunnlag for foredling. Mari Mette Tollefsrud. Foto: Arne Steffensrem

Genetisk variasjon i naturlige populasjoner. grunnlag for foredling. Mari Mette Tollefsrud. Foto: Arne Steffensrem Genetisk variasjon i naturlige populasjoner grunnlag for foredling Mari Mette Tollefsrud Foto: Arne Steffensrem Genetisk variasjon Summen av forskjeller i genotypene til individene i en populasjon Oppstår

Detaljer

Kapittel 10, del 2: Klassisk genetikk: Mendels arvelover. -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte:

Kapittel 10, del 2: Klassisk genetikk: Mendels arvelover. -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte: Kapittel 10, del 2: Klassisk genetikk: Mendels arvelover -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte: 1. Dominansforhold 2. Multiple allel 3. Geninteraksjon 4. Genuttrykk

Detaljer

FLERVALGSOPPGAVER ARV

FLERVALGSOPPGAVER ARV FLERVALGSOPPGAVER ARV Hvert spørsmål har ett riktig svaralternativ. Arv 1 En organisme med to identiske alleler for en egenskap blir kalt A) homozygot B) dominant C) selvpollinerende D) heterozygot Arv

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

GRUNNLEGGENDE GENETISKE BEGREPER Del I - en serie om kattegenetikk

GRUNNLEGGENDE GENETISKE BEGREPER Del I - en serie om kattegenetikk GRUNNLEGGENDE GENETISKE BEGREPER Del I - en serie om kattegenetikk Dette er første del i en serie om kattegenetikk. I denne første delen vil jeg ta for meg de ulike genetiske begrepene som blir brukt i

Detaljer

Økologiske og genetiske prosesser i naturlige bestander

Økologiske og genetiske prosesser i naturlige bestander Økologiske og genetiske prosesser i naturlige bestander 140 Antall voksne individer 120 100 80 60 40 0 1994 1996 1998 2000 2002 2004 2006 År Dr. Henrik Jensen Senter for bevaringsbiologi (CCB) NTNU, Trondheim

Detaljer

Oppdretterseminar 20 21/3, i forbindelse med NBaK s årsmøte 2010. Genetikk og avl for hund II, v/ Hanna Helgeland.

Oppdretterseminar 20 21/3, i forbindelse med NBaK s årsmøte 2010. Genetikk og avl for hund II, v/ Hanna Helgeland. Oppdretterseminar 20 21/3, i forbindelse med NBaK s årsmøte 2010. Genetikk. Genetikk og avl for hund II, v/ Hanna Helgeland. Grunnleggende begreper innen arvelære. Referat: Per Hoff Gener: Områder i DNA

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

FoU prosjekt Elghund. 13.06.2015 Marte Wetten Geninova

FoU prosjekt Elghund. 13.06.2015 Marte Wetten Geninova FoU prosjekt Elghund 13.06.2015 Marte Wetten Geninova Hovedprosjekt Fra fenotype til genotype -utvikling av avlsprogram for de Norske Elghundrasene Hovedmål Overføre prinsipper fra avl på produksjonsdyr

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3

Detaljer

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005 Navn: Parti: Journalen leveres senest tirsdag 27. September 2005 i kassen utenfor labben. BIO 1000 LAB-ØVELSE 2 Populasjonsgenetikk 20. september 2005 Faglig ansvarlig: Eli K. Rueness Hovedansvarlig for

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

Løsningsforslag ST2301 Øving 6

Løsningsforslag ST2301 Øving 6 Løsningsforslag ST2301 Øving 6 Kapittel 2 Exercise 10 Anta at tre genotyper har tnesser A 1 A 1 A 1 A 2 A 2 A 2 4 0 3 1. Hva er likevektsfrekvensen? 2. Er denne stabil? 3. Hvorfor kan vi ikke bare bruke

Detaljer

Øving 12, ST1301 A: B:

Øving 12, ST1301 A: B: Øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis testen oppfører

Detaljer

UNIVERSITETET I AGDER

UNIVERSITETET I AGDER FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 21. november 2011 Varighet: 2 timer Antall sider inkl. forside 8 Tillatte hjelpemidler: Kalkulator Merknader:

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving Oppgaver fra boken: :, 9,,, 5, 9, 5, 67 Det er oppgavene i boldface som

Detaljer

BIO 1000 LAB-ØVELSE 1

BIO 1000 LAB-ØVELSE 1 Navn: Parti: Journalen leveres senest tirsdag 13. September 2005 i kassen utenfor labben. BIO 1000 LAB-ØVELSE 1 MENDELSK GENETIKK 6. september 2005 Faglig ansvarlig: Hovedansvarlig for lab-øvelsen: Øystein

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4.1 1 Dette resultatet følger fra ytre vinkel-teoremet og lineært par-teoremet.

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 4.5 1 La ABC være en trekant, og la D være et punkt på AB slik at A B D. Utsagnet

Detaljer

Klinisk molekylærmedisin (4): Indirekte diagnostikk ved koblingsanalyser

Klinisk molekylærmedisin (4): Indirekte diagnostikk ved koblingsanalyser PEDENDO_SISTE_slutt.qxd 18.12.2003 21:34 Side 32 Pediatrisk Endokrinologi 2003;17: 34-38 Klinisk molekylærmedisin (4): Indirekte diagnostikk ved koblingsanalyser Pål Rasmus Njølstad 1,2,3,Jørn V. Sagen

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s AR2-modell: Oppgave X t φ X t φ 2 X t 2 Z t Antas å være kausal slik at X t ψ j Z t j er ukorrelert med Z t+,

Detaljer

EKSAMENSOPPGAVE I BI3010 Populasjonsgenetikk (Population genetics) BOKMÅL SPØRSMÅL 1-7 VEIER LIKT

EKSAMENSOPPGAVE I BI3010 Populasjonsgenetikk (Population genetics) BOKMÅL SPØRSMÅL 1-7 VEIER LIKT http://www.ntnu.no/trondheim-marine-ri/ Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI3010 Populasjonsgenetikk (Population genetics) - Faglig kontakt under eksamen

Detaljer

Ny kunnskap i avlsprogram. Anna K. Sonesson

Ny kunnskap i avlsprogram. Anna K. Sonesson Ny kunnskap i avlsprogram Anna K. Sonesson Avlsprogram Design: strategien som brukes for å forbedre genetiske anlegg Avlsverdiberegning/seleksjonskriterium Avlsmål/ definisjon av egenskaper Nye teknikker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Faglig kontakt under eksamen: Syvert P. Nørsett 7 59 5 45 LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF545 NUMERISK LØSNING

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 8 5.1 9 La l og m være to parallelle linjer. Vi skal vise at det finnes ei linje

Detaljer

Svar til oppgaver i Hartwell

Svar til oppgaver i Hartwell Svar til oppgaver i Hartwell Kap.2 2.12: Hva er sjansen for at avkommet har den samme fenotype som en av de to foreldrene? a) AaBbCcDd x aabbccdd =P(A-B-C-D-) eller P(aabbccdd) = 1/2*1/2*1/2*1/2 + 1/2*1/2*1/2*1/2=2/16

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Farge avl på spælsau

Farge avl på spælsau Farge avl på spælsau Hva er genetikk? Genetikk (av greskt genetikos, som betyr «fruktbar, produktiv»), er læren om arv og gener Læren om arveegenskaper Fargegenetikk = læren om arv av farger Den vanskelige

Detaljer

Mendelsk Genetikk (kollokvium 01.09.2005)

Mendelsk Genetikk (kollokvium 01.09.2005) Mendelsk Genetikk (kollokvium 01.09.2005) 1) Hos marsvin er allelet som koder for svart pels (B) dominant i forhold allelet som gir hvit pels (b). Halvparten av avkommet i et kull var hvite. Hvilke genotyper

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

FARGEGENETIKK. av Cecilie Schleer

FARGEGENETIKK. av Cecilie Schleer FARGEGENETIKK Del 1: Introduksjon til genetikk av Cecilie Schleer Genetikk er læren om biologisk arvelighet. For å få fullt utbytte av fargegenetikk er det helt essensielt å forstå de genetiske begrepene

Detaljer

FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN

FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN g UNIVERSITETET I AGDER FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 7. mai 2012 Varighet: 4 timer Antall sider inkl. forside 8 Tillatte hjelpemidler:

Detaljer

FLERVALGSOPPGAVER EVOLUSJON

FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER

Detaljer

EKSAMENSOPPGAVE I BI3010 (POPULASJONSGENETIKK)

EKSAMENSOPPGAVE I BI3010 (POPULASJONSGENETIKK) Norges teknisk-naturvitenskapelige universitet Institutt for (INSTITUTTNAVN) EKSAMENSOPPGAVE I BI3010 (POPULASJONSGENETIKK) - Faglig kontakt under eksamen (Contact persons during exam): J. Mork (909 73

Detaljer

LØSNINGSFORSLAG ) = Dvs

LØSNINGSFORSLAG ) = Dvs LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =

Detaljer

VEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER

VEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER Vedlikehold av egenskaper og forbedringer 1 VEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER Av: A. KRISTIAN STIGEN Alle bipopulasjoner, enten de stelles av mennesker eller ikke, vil etter hvert forandre seg.

Detaljer

Rettet avskytning er det rett avskytning?

Rettet avskytning er det rett avskytning? Rettet avskytning er det rett avskytning? - hva vi har lært fra jaktlaboratoriet på Vega Stine Svalheim Markussen Jaktlaboratoriet Vega: Rettet avskytning 1. Rettet avskytning av elg 2. Vega-populasjonen:

Detaljer

LABØVELSER BIO 1000 H-2003 MENDELSK GENETIKK OG POPULASJONSGENETIKK. Tirsdag 2 sept og tirsd 9 sept

LABØVELSER BIO 1000 H-2003 MENDELSK GENETIKK OG POPULASJONSGENETIKK. Tirsdag 2 sept og tirsd 9 sept LABØVELSER BIO 1000 H-2003 MENDELSK GENETIKK OG POPULASJONSGENETIKK Tirsdag 2 sept og tirsd 9 sept Labkurslærere: Eli Rueness, Øystein Flagstad, Anna Skog, Johannes Holmen NB! HUSK KALKULATOR 1 Maisgenetikk

Detaljer

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:

Detaljer

EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING Onsdag 1. juni 2005 Tid: 09:00 14:00

EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING Onsdag 1. juni 2005 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA251 Numeriske metoder Løsningsforslag, Øving 3 Oppgave 1 a) Start med å tegne en skisse av funksjonen f(x) = x.99(e x 1). Vi oppdager fort at α må ligge svært nær, faktisk rundt.2. Newtons metode anvendt

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 1 2.4 7 I Fanos geometri (se side 18 i læreboka) er punktene gitt ved symbolene

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

Nedarving autosomal recessiv - en stor fordel i avl La oss på en forenklet måte se litt på hvordan denne defekten nedarves.

Nedarving autosomal recessiv - en stor fordel i avl La oss på en forenklet måte se litt på hvordan denne defekten nedarves. PRA (PROGRESSIV RETINAL ATROFI) Beskrivelse av øyesykdommen PRA Progressiv retinal Atrofi er en arvelig sykdom som finnes hos mange raser. Den arter seg i ulike former og framtrer til ulikt tidspunkt i

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 4.8 1 La ABC være en trekant og E et punkt i det indre av BC. Vi skal vise

Detaljer

EKSAMEN I EMNE TVM 4116 HYDROMEKANIKK

EKSAMEN I EMNE TVM 4116 HYDROMEKANIKK NORGES TEKNISK-NATURVITENSKAPLIGE UNIVERSITET INSTITUTT FOR VANN OG MILJØTEKNIKK Side av 9 Faglige kontakter under eksamen: Prof. Geir Moe, Tel. 7359 467 Prof. Nils R. Olsen, Tel. 7359 4773 EKSAMEN I EMNE

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 018 Seksjon 81 11 a) Oppgaven spør etter antall måter man kan gå opp n trappetrinn dersom man

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 3.5 2 La l være ei linje, A et punkt på l og B et annet punkt på l. Vi skal vise at det finnes nøyaktig

Detaljer

SIF5072 Stokastiske prosesser Side 2 av 7 Gitt at en pasient er symptomfri ved tidspunkt t, hva er sannsynligheten for at han er symptomfri i hele per

SIF5072 Stokastiske prosesser Side 2 av 7 Gitt at en pasient er symptomfri ved tidspunkt t, hva er sannsynligheten for at han er symptomfri i hele per Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Tirsdag 22. mai

Detaljer

Eksamen i fag FY8104 Symmetri i fysikken Fredag 7. desember 2007 Tid:

Eksamen i fag FY8104 Symmetri i fysikken Fredag 7. desember 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Lørdag 22. desember

Detaljer

R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T. Rådgivende Biologer AS 1168

R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T. Rådgivende Biologer AS 1168 R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T Rådgivende Biologer AS 1168 Rådgivende Biologer AS RAPPORT TITTEL: Opphavet til rømt laksesmolt i Oltesvikbekken i Ryfylke våren

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2300 Grunnkurs i bioinformatikk Eksamensdag : Mandag 6. juni 2005 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA44 Diskret Matematikk Høst 26 Seksjon 3. Husk at w = λ, den tomme strengen, for enhver streng w. 4 a) Følgende utledning/derivasjon

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Løsningsforslag statistikkeksamen desember 2014

Løsningsforslag statistikkeksamen desember 2014 Løsningsforslag statistikkeksamen desember 2014 Oppgave 1 a i. To hendelser er disjunke hvis det er intet overlapp mellom hendelsene, altså hvis A B = Ø. Siden vi har en sannsynlighet for å finne A B som

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

DNA-profiler. DNA analyse fra ekskrementer. Foredragets oppbygning. DNA framtidens overvåkingsmetodikk på store rovdyr?

DNA-profiler. DNA analyse fra ekskrementer. Foredragets oppbygning. DNA framtidens overvåkingsmetodikk på store rovdyr? DNA framtidens overvåkingsmetodikk på store rovdyr? Øystein Flagstad Foredragets oppbygning Generell innledning; metodikk og aktuelle problemstillinger Case study; bestandsovervåkning av jerv Videreutvikling

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: ) NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektromagnetisk teori Torsdag 1 desember

Detaljer

Løsningsforslag øving 12, ST1301

Løsningsforslag øving 12, ST1301 Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis

Detaljer

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag eksamen i TMA3/5 Matematikk M/N Mandag. mai TMA3 Matematikk M; Alt unntatt oppgave 5 (Laplace. TMA5

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2015

MA1102 Grunnkurs i Analyse II Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i Analyse II Vår 215 Løsningsforslag Øving 5 11.3:3 f n (x) = 2n+1 x? = x 1 2n+1. (Det er muligens en forskjell

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 6.1 1 Anta at alle trekanter i nøytral geometri har samme defekt 1 c vi skal vise at vi må ha c = 0.

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave Scriptet run confds.m simulerer n data x,..., x n fra en normalfordeling med

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Merle Fargefenomen. Skrevet av: Signe Aarskog ved Potefaret kennel i 2009, revidert i 2017

Merle Fargefenomen. Skrevet av: Signe Aarskog ved Potefaret kennel i 2009, revidert i 2017 Merle Fargefenomen Skrevet av: Signe Aarskog ved Potefaret kennel i 2009, revidert i 2017 Foto: Jenny Hiukka. Fra venstre: Vahine des Corsaires des Feux (brun/tan merle) Wallygator della Luna Caprese (sort/tan)

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Kandidatnummer: BOKMÅL UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3350/INF4350 Grunnkurs i bioinformatikk Eksamensdag : Tirsdag 5. desember 2006 Tid for eksamen : 15.30

Detaljer