Løsningsforslag ST2301 Øving 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag ST2301 Øving 2"

Transkript

1 Løsningsforslag ST2301 Øving 2 Kapittel 1 Exercise 6 Har et utvalg på 200 individer, fra en populasjon med forventet Hardy-Weinbergandeler for et locus med tre alleler, A 1, A 2 og A 3. Antall individer i utvalget av hver av de seks mulige genotypene er Genotype Antall A 1 A 1 76 A 1 A 2 54 A 1 A 3 33 A 2 A 2 18 A 2 A 3 16 A 3 A 3 3 Finn genfrekvensene til de tre allelene, og forventet antall individer av hver genotype utfra disse. Uten å gjøre en statistisk test, er det noen åpenbare forskjeller mellom utvalget og forventningene? Genfrekvensene er p A1 = A 1 A 1 + N A1 A 2 + N A1 A 3 p A2 = A 2 A 2 + N A1 A 2 + N A2 A 3 p A3 = A 3 A 3 + N A1 A 3 + N A2 A = = = = = = Skriver forventet antall individer av hver genotype i en tabell, sammen med genotypefrekvens, og faktisk antall av hver genotype. 1

2 Genotype Genotypefrekvens Forventet antall Faktisk antall A 1 A 1 p 2 A A 1 A 2 2p A1 p A A 1 A 3 2p A1 p A A 2 A 2 p 2 A A 2 A 3 2p A2 p A A 3 A 3 p 2 A Uten å utføre en statistisk test er det vanskelig å avgjøre om utvalget kommer fra en populasjon med Hardy-Weinbergandeler. Exercise 7 Ved et kjønnskoplet locus er frekvensen av ay -hemizygoter blant hanner lik 0.2, og frekvensen aa-homozygoter blant hunner lik 0.1. Anta tilfeldig parring. Hva var genfrekvensene i de to kjønnene forrige generasjon? Hva vil genotypefrekvensene bli neste generasjon? La p m være frekvensen av allel A hos hanner, og p f frekvensen av A hos hunner, forrige generasjon. Disse nner man utfra genotypefrekvensen hos hanner og hunner i nåværende generasjon. For hanner har man (likning I-36 s. 15) P ay = 1 p f p f = = 0.8 Genotypefrekvensene hos hunner (likning I-35 s.14) gir P aa = (1 p f )(1 p m ) p m = = 0.5 Genfrekvensene for nåværende generasjon er gitt ved likning I-37 s. 15. p f = p f 2 + p m 2 = = 0.65 p m = p f = 0.8 Dette gir genotypefrekvensene P ay = 1 p f = = 0.35 P aa = (1 p f )(1 p m) = (1 0.65)(1 0.8) =

3 Exercise 8 Ved et kjønnskoplet locus med to allel A og a, nner man at genotypefrekvensene hos hunner og hanner er AA Aa aa A a Genfrekvensene hos foreldrene til denne generasjonen er ikke nødvendigvis like i de to kjønnene. 1. Ser det ut som populasjonen er resultat av minst en generasjon med tilfeldig parring? 2. Hvis populasjonen reproduserer med tilfeldig parring en generasjon, hvilke genfrekvenser forventer man å se? 1. Det nnes ere ulike måter å sjekke om populasjonen kan være resultat av tilfeldig parring. Man kan f.eks se om man nner samme p m og p f for ulike genotyper når man antar Hardy-Weinbergandeler. P AY = p f = 0.94 P AA = p m p f p m = 1.01 P ay = 1 p f = 0.06 P aa = (1 p m )(1 p f ) p m = Dvs. populasjonen virker ikke å være resultat av tilfeldig parring. 2. Genfrekvensene er gitt ved (likning I-8 s.4) p f = P AA P Aa = 0.97 p m = P AY = 0.94 Når man antar tilfeldig parring er genotypefrekvensene neste generasjon 3

4 gitt ved P AY = p f = 0.97 P ay = 1 p f = 0.03 P AA = p f p m = P Aa = p f (1 p m ) + p m (1 p f ) = P aa = (1 p m )(1 p f ) = Exercise 10 Ser på to loci, hver med to allel (A og a, B og b), i en populasjon med tilfeldig parring. Har p A = p B = 0.5, og D AB = 0.2. Halvparten av individene er hunner og halvparten hanner. Rekombinasjonsraten mellom lociene er 0.3 for hunner og 0.1 for hanner. 1. Finn D AB i avkomsgenerasjonen som funksjon av D AB nåværende generasjon. 2. Hva er frekvensen av genotype AABB i avkomsgenerasjonen? 1. Bruker loven om total sannsynlighet for å nne sannsynligheten for rekombinasjon i en tilfeldig gamet (uavhengig av kjønn). La r = P (Rekombinasjon m)p (m) + P (Rekombinasjon f)p (f) = r m r f 0.5 = = 0.2 Likning I-44 s.18 gir sammenhengen D AB = (1 r)d AB = 0.8D AB 2. For nåværende generasjon er P AB = p A p B + D AB = 0.45 For å nne frekvensen av genotype AABB neste generasjon trenger man gametfrekvensen P AB. Denne vil imidlertid ikke være den samme for begge kjønn, fordi rekombinasjonsraten er forskjellig. Bruker likning I-42 s.18 for 4

5 å nne gametfrekvensen for hvert kjønn. P AB(m) = (1 r m )P AB + r m p A p B = (1 0.1) = 0.43 P AB(f) = (1 r f )P AB + r f p A p B = (1 0.3) = 0.39 Alle individer mottar en gamet fra far og en fra mor. Derfor er genotypefrekvensen for AABB lik produktet av gametfrekvensene til AB hos hanner og hunner. P AABB = P AB(m)P AB(f) = = Complement 1 Har et locus med n allel p 1, p 2,..., p n. Etter tilfeldig parring, 1. Hvilken andel av kopiene av A i inngår i heterozygoter? 2. Hva er totalandelen av kopier som inngår i heterozygoter? 1. Det er N individer, og totalt p i kopier av allel A i. Antall kopier av A i i homozygoter er p 2 i Andelen kopier av A i i heterozygoter er lik en minus andelen i homozygoter, dvs 1 p2 i p i = 1 p i Alternativt kan man nne antall kopier av A i blant heterozygoter, N i j n 1 p i p j = p i + j=1 p j = p i (1 p i ) 5

6 Andel kopier A i som er i heterozygoter blir da p i (1 p i ) p i = 1 p i 2. Totalt antall allel er, og totalt antall allel i homozygoter er ( N ) i=1 p 2 i Andelen allel i homozygoter er ( N i=1 p2 i ) = n i=1 p i Andelen allel i heterozygoter er derfor 1 n i=1 p i. Complement 3 Har et locus med to alleler A og a, som er koplet med et kjønnsbestemmende locus (kjønn 1 og 2) i en haploid organisme med tilfeldig parring. Rekombinasjonsraten mellom locuset og kjønnslocuset er r. Dersom initialfrekvensene av A er p 1 i det ene kjønnet og p 2 i det andre, 1. Hva er frekvensene av A neste generasjon? 2. Hva er frekvensene til A om t generasjoner? 3. Hva er de ultimate verdiene av p 1 og p 2 (hint: prøv å endre variabler og se på gjennomsnitt og dierens mellom p 1 og p 2 )? 1. Ser på kjønn 1. En andel (1-r) av gametene går gjennom formeringen en uten rekombinasjon, av disse har en andel p 1 allel A. En andel r av gametene gjennomgår en rekombinasjon. For at disse skal ende opp med allel A, må de parres med individer fra motsatt kjønn som har dette allelet (andel p 2 ). Neste generasjon er derfor p 1 = rp 2 + (1 r)p 1 Tilsvarende argument for kjønn 2 gir p 2 = rp 1 + (1 r)p 2 6

7 2. Tar hintet og denerer nye variabler: p = 1 2 (p 1 + p 2 ) p = p 1 p 2 p 1 = p p p 2 = p 1 2 p Ser på hvordan gjennomsnittet endres i løpet av en generasjon. p = 1 2 (p 1 + p 2) = 1 2 (rp 2 + (1 r)p 1 ) (rp 1 + (1 r)p 2 ) = 1 2 (rp 2 + p 1 rp 1 + rp 1 + p 2 rp 2 ) = 1 2 (p 1 + p 2 ) Gjennomsnittet endrer seg ikke over tid, dvs p(t) = p. Ser deretter på hvordan dieransen endrer seg i løpet av en generasjon. p = p 1 p 2 = rp 2 + (1 r)p 1 rp 1 (1 r)p 2 = rp 2 + p 1 rp 1 rp 1 p 2 rp 2 = p 1 p 2 2r(p 1 p 2 ) = (1 2r)(p 1 p 2 ) Det er to muligheter. Dersom r = 0.5 er dierensen lik null. Er r 0.5 avtar dierensen med (1-2r) per generasjon, dvs p (t) = (1 2r) t (p 1 p 2 ) Nå kan p 1 og p 2 uttrykkes ved t. 7

8 p 1 (t) = p(t) p (t) = 1 2 (p 1 + p 2 ) + (1 2r) t (p 1 p 2 ) p 2 (t) = p(t) 1 2 p (t) = 1 2 (p 1 + p 2 ) + (1 2r) t (p 2 p 1 ) 3. For å nne de ultimate verdiene av genfrekvensene av A, må man la t gå mot uendelig. Det gir lim (1 t 2r)t = 0 og dermed lim p 1(t) = 1 t 2 (p 1 + p 2 ) lim p 2(t) = 1 t 2 (p 1 + p 2 ) 8

Løsningsforslag ST2301 Øving 10

Løsningsforslag ST2301 Øving 10 Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden

Detaljer

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005 Navn: Parti: Journalen leveres senest tirsdag 27. September 2005 i kassen utenfor labben. BIO 1000 LAB-ØVELSE 2 Populasjonsgenetikk 20. september 2005 Faglig ansvarlig: Eli K. Rueness Hovedansvarlig for

Detaljer

Obligatorisk innlevering 3kb vår 2004

Obligatorisk innlevering 3kb vår 2004 Obligatorisk innlevering 3kb vår 2004 1 I marsvin er mørk pels farge (F) dominant over albino (f), og hår (K) dominant over langt hår (k). Genene for disse to egenskapene følger prinsippet om uavhengig

Detaljer

Mendelsk Genetikk (kollokvium 01.09.2005)

Mendelsk Genetikk (kollokvium 01.09.2005) Mendelsk Genetikk (kollokvium 01.09.2005) 1) Hos marsvin er allelet som koder for svart pels (B) dominant i forhold allelet som gir hvit pels (b). Halvparten av avkommet i et kull var hvite. Hvilke genotyper

Detaljer

UNIVERSITETET I AGDER

UNIVERSITETET I AGDER FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 21. november 2011 Varighet: 2 timer Antall sider inkl. forside 8 Tillatte hjelpemidler: Kalkulator Merknader:

Detaljer

FLERVALGSOPPGAVER ARV

FLERVALGSOPPGAVER ARV FLERVALGSOPPGAVER ARV Hvert spørsmål har ett riktig svaralternativ. Arv 1 En organisme med to identiske alleler for en egenskap blir kalt A) homozygot B) dominant C) selvpollinerende D) heterozygot Arv

Detaljer

Kapittel 10, del 2: Klassisk genetikk: Mendels arvelover. -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte:

Kapittel 10, del 2: Klassisk genetikk: Mendels arvelover. -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte: Kapittel 10, del 2: Klassisk genetikk: Mendels arvelover -forhold som influerer fenotypen slik at den avviker fra det Mendel observerte: 1. Dominansforhold 2. Multiple allel 3. Geninteraksjon 4. Genuttrykk

Detaljer

Farge avl på spælsau

Farge avl på spælsau Farge avl på spælsau Hva er genetikk? Genetikk (av greskt genetikos, som betyr «fruktbar, produktiv»), er læren om arv og gener Læren om arveegenskaper Fargegenetikk = læren om arv av farger Den vanskelige

Detaljer

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Svar til oppgaver i Hartwell

Svar til oppgaver i Hartwell Svar til oppgaver i Hartwell Kap.2 2.12: Hva er sjansen for at avkommet har den samme fenotype som en av de to foreldrene? a) AaBbCcDd x aabbccdd =P(A-B-C-D-) eller P(aabbccdd) = 1/2*1/2*1/2*1/2 + 1/2*1/2*1/2*1/2=2/16

Detaljer

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040? OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et

Detaljer

DNA-profiler. DNA analyse fra ekskrementer. Foredragets oppbygning. DNA framtidens overvåkingsmetodikk på store rovdyr?

DNA-profiler. DNA analyse fra ekskrementer. Foredragets oppbygning. DNA framtidens overvåkingsmetodikk på store rovdyr? DNA framtidens overvåkingsmetodikk på store rovdyr? Øystein Flagstad Foredragets oppbygning Generell innledning; metodikk og aktuelle problemstillinger Case study; bestandsovervåkning av jerv Videreutvikling

Detaljer

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2 4 oppgave. a..i) 3 x = 7 x ln 3 = ln 7 ln 7 x = ln 3 x = 3. a..ii) 0 x = 0 x log(0 x ) = log(0 x ) x = x x(x )=0 x = 0 x =.3 a..i) Kvadrerer x +3= x +3= x = Setterikkeprøve,forjegseratsvareterriktig,menhuskåsetteprøvepå

Detaljer

VEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER

VEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER Vedlikehold av egenskaper og forbedringer 1 VEDLIKEHOLD AV EGENSKAPER OG FORBEDRINGER Av: A. KRISTIAN STIGEN Alle bipopulasjoner, enten de stelles av mennesker eller ikke, vil etter hvert forandre seg.

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Løsningsforslag øving 9, ST1301

Løsningsforslag øving 9, ST1301 Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 eksamensoppgaver.org September 17, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Løsningsforslag Eksamen 3MX - AA6524-04.06.2007. eksamensoppgaver.org

Løsningsforslag Eksamen 3MX - AA6524-04.06.2007. eksamensoppgaver.org Løsningsforslag Eksamen 3MX - AA65 -.6.7 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

BIOS 2 Biologi... 2...

BIOS 2 Biologi... 2... Figue kapittel 6: ven Figu s. 174 Egenskape Blomstefage Dominant egenskap Lilla ecessiv egenskap Hvit Noen av de egenskapene Mendel testet, va blomstefage, føfage og føfom. På side 279 finne du en ovesikt

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned

Detaljer

BAKGRUNN METODIKK Tabell 1 Prøvemateriale Län 119

BAKGRUNN METODIKK Tabell 1 Prøvemateriale Län 119 Hiovervåkniing ved hjellp av DNA-anallyse fra jjervekskrementer Rapport 2004 AA VV:: ØYY SSTTEEI INN F LLAA GGSSTTAADD,, HEENNRRI IKK BRRØØSSEETTHH,, CEECCI ILLI IAA WÄÄRRDDI IGG,, MAA LLI INN JJOOHHAANN

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

FoU prosjekt Elghund. 13.06.2015 Marte Wetten Geninova

FoU prosjekt Elghund. 13.06.2015 Marte Wetten Geninova FoU prosjekt Elghund 13.06.2015 Marte Wetten Geninova Hovedprosjekt Fra fenotype til genotype -utvikling av avlsprogram for de Norske Elghundrasene Hovedmål Overføre prinsipper fra avl på produksjonsdyr

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Oppdretterseminar 20 21/3, i forbindelse med NBaK s årsmøte 2010. Genetikk og avl for hund II, v/ Hanna Helgeland.

Oppdretterseminar 20 21/3, i forbindelse med NBaK s årsmøte 2010. Genetikk og avl for hund II, v/ Hanna Helgeland. Oppdretterseminar 20 21/3, i forbindelse med NBaK s årsmøte 2010. Genetikk. Genetikk og avl for hund II, v/ Hanna Helgeland. Grunnleggende begreper innen arvelære. Referat: Per Hoff Gener: Områder i DNA

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

DRONENE BIFOLKETS HANNBIER

DRONENE BIFOLKETS HANNBIER DRONENE - BIFOLKETS HANNBIER 1 DRONENE BIFOLKETS HANNBIER Bifolkets hannbier dronene blir av de fleste birøktere sett på som en belastning i bisamfunnet, idet de spiser mye honning uten å bidra med noe

Detaljer

FIG 1 Geografisk fordeling av alle prøver; gul = fungerende, rød = ikke-fungerende

FIG 1 Geografisk fordeling av alle prøver; gul = fungerende, rød = ikke-fungerende Hiiovervåkniing ved hjjellp av DNA-anallyse fra jjervekskrementter Rapportt 2005 AAVV:: ØYYSSTTEE INN I FLL AAGGSSTT AA DD,, HEENNRRI IKK B RRØØSSEE TT HH,, CEECCI ILLI IAA WÄÄRRDDI IGG,, MAALL INN I JJOOHHAANNSSSS

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år?

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år? Oppgave 1 Levetiden T til en bestemt type bilmotor er normalfordelt med forventning µ = 15 år og standardavvik σ = 3 år. a) Vis at sannsynligheten for at en tilfeldig utvalgt bilmotor har en levetid på

Detaljer

P-Bevis. Produksjonsbevis

P-Bevis. Produksjonsbevis nummer: 0502108459 Individ 05021084/0299 Opprinnelsesmerke: 05021084/0299 (2013) Fødseldato: 14/05/13 Tvilling: Nei Bruksmerke: 299 Kjønn: Ku/Kvige Hornstatus: Vet ikke Mor 05021084/0237 (2007) Side 1

Detaljer

EKSAME SOPPGAVE MAT-0001 (BOKMÅL)

EKSAME SOPPGAVE MAT-0001 (BOKMÅL) EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Foryngringer i den svenske gaupebestanden belyst fra genetisk analyse av spillning

Foryngringer i den svenske gaupebestanden belyst fra genetisk analyse av spillning Foryngringer i den svenske gaupebestanden belyst fra genetisk analyse av spillning Av: Øystein Flagstad, Eva Hedmark og Hans Ellegren Evolutionsbiologisk Center Uppsala Universitet BAKGRUNN Den skandinaviske

Detaljer

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

Utstillingsregler for Chinchilla Norge

Utstillingsregler for Chinchilla Norge Utstillingsregler for Chinchilla Norge 1 Invitasjon / påmelding / betaling av utstilling - Invitasjon til utstilling skal offentliggjøres minst 5 uker før utstillingens dato! Invitasjon skal legges ut

Detaljer

Godt råstoff gir kvalitetsprodukter

Godt råstoff gir kvalitetsprodukter Godt råstoff gir kvalitetsprodukter Arktisk Landbruk 2009 TINE FoU Senter Knut Erik Grindaker Kvalitetsprodukter Ganske innlysende at godt råstoff er en forutsetning for kvalitetsprodukter, men det kan

Detaljer

Løsningsforslag Obligatorisk oppgave 1 i FO340E

Løsningsforslag Obligatorisk oppgave 1 i FO340E Løsningsforslag Obligatorisk oppgave i FO340E 0. februar 2009 Det er nt om dere har laget gurer hvor kreftene er tegnet inn, selv om det er utelatt i dette notatet av praktiske årsaker. En oppgave kan

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

P-Bevis. Produksjonsbevis. Produsentnummer: 0412313249 Telefon: Mobil: 97746010 martinstensveen@hotmail.com

P-Bevis. Produksjonsbevis. Produsentnummer: 0412313249 Telefon: Mobil: 97746010 martinstensveen@hotmail.com nummer: 0412313249 Individ 04123132/5031 Opprinnelsesmerke: 04123132/5031 (2011) Fødseldato: 10/06/11 Tvilling: Nei Mor 04123132/0426 (2005) Side 1 av 9 nummer: 0412313249 Individ 04123132/5037 Opprinnelsesmerke:

Detaljer

R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T. Rådgivende Biologer AS 1168

R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T. Rådgivende Biologer AS 1168 R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T Rådgivende Biologer AS 1168 Rådgivende Biologer AS RAPPORT TITTEL: Opphavet til rømt laksesmolt i Oltesvikbekken i Ryfylke våren

Detaljer

MET 3431 Statistikk Forelesning 1: Introduksjon til Statistikk

MET 3431 Statistikk Forelesning 1: Introduksjon til Statistikk MET 3431 Statistikk Forelesning 1: Introduksjon til Statistikk Eivind Eriksen BI, Institutt for Samfunnsøkonomi 10. januar 2012 Eivind Eriksen (BI) Forelesning 1 10. januar 2012 1 / 32 Praktisk Informasjon

Detaljer

Klinisk molekylærmedisin (4): Indirekte diagnostikk ved koblingsanalyser

Klinisk molekylærmedisin (4): Indirekte diagnostikk ved koblingsanalyser PEDENDO_SISTE_slutt.qxd 18.12.2003 21:34 Side 32 Pediatrisk Endokrinologi 2003;17: 34-38 Klinisk molekylærmedisin (4): Indirekte diagnostikk ved koblingsanalyser Pål Rasmus Njølstad 1,2,3,Jørn V. Sagen

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige univsitet Institutt for matematiske fag ST0103 Brukkurs i statistikk Høst 2014 Løsningsforslag Øving 6 5.2 Antall sprukne pøls X binomialfordelt med n 8 og p 0.2, og

Detaljer

Jobbskifteundersøkelsen 2013 For ManpowerGroup

Jobbskifteundersøkelsen 2013 For ManpowerGroup Jobbskifteundersøkelsen 2013 For ManpowerGroup Opinion Perduco juni 2013 Forventet tid i nåværende stilling Forventet tid i nåværende stilling (prosent) Under 1 år 1-2 år 3-4 år 5-9 år 10 år eller lengre

Detaljer

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b.

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b. TALLÆRE UKE 34. Faktor. Hva er en faktor i et heltall? Vi fant ut at hvis et heltall b er med i et regnestykke med kun multiplikasjon som gir heltallet a som svar da er b faktor i a. Eksempel: 3 8=24 og

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Merle Fargefenomen Hva er merle?

Merle Fargefenomen Hva er merle? Merle Fargefenomen Skrevet av: Signe Aarskog 2011 Copyright Potefaret kennel Takk til Norsk Kennel Klubs veterinær Kristin Wear Prestrud, som har lest gjennom artikkelen for meg. En takk også til dere

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

FIG 1. Cumulative number

FIG 1. Cumulative number Popullasjjonsovervåkniing av jjerv ved hjjellp av DNAanallyse fra ekskrementter Rapportt 2004 AAVV: : ØYYSSTTEEI IINN FFLLAAGGSSTTAADD,, HEENNRRI IIKK BRRØØSSEETTHH,, EVVAA HEEDDMMAARRKK,, CEECCI IILLI

Detaljer

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene. Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn

Detaljer

Populasjonsovervåking av jerv i Skandinavia ved hjelp av DNAanalyse fra ekskrementer 2001-2003

Populasjonsovervåking av jerv i Skandinavia ved hjelp av DNAanalyse fra ekskrementer 2001-2003 063 Populasjonsovervåking av jerv i Skandinavia ved hjelp av DNAanalyse fra ekskrementer 2001-2003 Øystein Flagstad Henrik Brøseth Eva Hedmark Hans Ellegren Nasjonalt overvåkingsprogram for store rovdyr

Detaljer

löse likninger gôr ut pô Ô nne den ukjente verdien som gjör at venstresiden blir lik höyresiden.

löse likninger gôr ut pô Ô nne den ukjente verdien som gjör at venstresiden blir lik höyresiden. Likning En likning inneholder alltid et likhetstegn og minst e n ukjent. Den ukjente kaller vi som regel eller y, men alle bokstavene i alfabetet kan brukes. löse likninger gôr ut pô Ô nne den ukjente

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Vi skal se at der er ere måte å regne ut deriverte på i tillegg til de derivasjonsreglene vi kjenner fra før Men ikke alle måtene

Detaljer

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang Matematikk 1000 Øvingeoppgaver i numerikk leksjon 1 Å komme i gang I denne øvinga skal vi bli litt kjent med MATLAB. Vi skal ikkje gjøre noen avanserte ting i dette oppgavesettet bare få et visst innblikk

Detaljer

Oversikt over kap. 11. Kap. 11 Den direkte påvisning av genotype skiller individuelle genomer. Fire klasser av DNA polymorfismer.

Oversikt over kap. 11. Kap. 11 Den direkte påvisning av genotype skiller individuelle genomer. Fire klasser av DNA polymorfismer. Kap. 11 Den direkte påvisning av genotype skiller individuelle genomer Oversikt over kap. 11 Fire klasser av DNA variasjon til direkte påvisning av genotype. Metoder som bruker hybridisering, elektroforese,

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Avl for auka produktivitet. QTL som nytt hjelpemiddel i avlsarbeidet.

Avl for auka produktivitet. QTL som nytt hjelpemiddel i avlsarbeidet. Avl for auka produktivitet. QTL som nytt hjelpemiddel i avlsarbeidet. Håvard Bakke Avlsmålene til SalmoBreed er: En frisk og robust fisk med gode produksjonsegenskaper. 1.Tilvekst 2. Helse 3. Kvalitet

Detaljer

Kunnskapsdepartementet

Kunnskapsdepartementet Kunnskapsdepartementet Tilfredshet med barnehagetilbudet Spørreundersøkelse blant foreldre med barn i barnehage TNS Gallup desember 2008 Avdeling politikk & samfunn/ Offentlig sektor Innhold Fakta om undersøkelsen..

Detaljer

Indekser i avlsarbeidet: Kan vi se om de virker? Jørgen Ødegård Avlsforsker

Indekser i avlsarbeidet: Kan vi se om de virker? Jørgen Ødegård Avlsforsker Indekser i avlsarbeidet: Kan vi se om de virker? Jørgen Ødegård Avlsforsker Gentisk fremgang Hver generasjon står på skulderne til forrige generasjon Fremgangen er varig Selv om avlsarbeidet skulle stoppe

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Oppgave 1 a) Finn alle løsningene til likningen 10x 100 = 90x 1. b) Finn alle løsninger v til likningen slik at 0 v 4π. 2 cos

Detaljer

Russeren og genetiske særtrekk

Russeren og genetiske særtrekk Russeren og genetiske særtrekk Denne artikkelen gir en kort innføring i grunnleggende genetikk, og forklarer tre konsepter som er viktige for rasen Russian Blue, nemlig dilusjon, hårlengde og maskemønster.

Detaljer

Hvorfor lages det ikke fetaost av norsk geitmelk? Ragnhild Aabøe Inglingstad

Hvorfor lages det ikke fetaost av norsk geitmelk? Ragnhild Aabøe Inglingstad Hvorfor lages det ikke fetaost av norsk geitmelk? Ragnhild Aabøe Inglingstad Hvorfor lages det ikke fetaost av norsk geitmelk? Litt av hvert om fetaost Hvorfor lages det ikke fetaost av norsk geitmelk?

Detaljer

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like

Detaljer

Farger og nedarving av fargetyper hos breton

Farger og nedarving av fargetyper hos breton Farger og nedarving av fargetyper hos breton Øystein Ahlstrøm og Åsa Årmo Fargegener Pelsfarge er et viktig kjennetegn for en hunderase og i rasebeskrivelsen hos de ulike rasene er det bare en eller noen

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

KAP. 5 Kopling, rekombinasjon og kartlegging av gener på kromosomenen. Kobling: To gener på samme kromosom segregerer sammen

KAP. 5 Kopling, rekombinasjon og kartlegging av gener på kromosomenen. Kobling: To gener på samme kromosom segregerer sammen KP. 5 Kopling, rekominsjon og krtlegging v gener på kromosomenen OVERSIKT Koling og meiotisk rekominsjon Gener som er kolet på smme kromosom skilles vnligvis ut smmen. Kolede gener kn li seprert gjennom

Detaljer

Resistent lakselus - kvifor er det eit problem og korleis diagnostisere resistens?

Resistent lakselus - kvifor er det eit problem og korleis diagnostisere resistens? University of Bergen Resistent lakselus - kvifor er det eit problem og korleis diagnostisere resistens? Frank Nilsen Sea Lice Research Centre Institutt for Biologi, Universitetet i Bergen Norwegian School

Detaljer