Løsningsforslag R1 Eksamen. Høst Nebuchadnezzar Matematikk.net Øistein Søvik

Størrelse: px
Begynne med side:

Download "Løsningsforslag R1 Eksamen. Høst 29.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik"

Transkript

1 Løsningsforslag R1 Eksamen 6 Høst Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere gitte eksamener. Dessverre er disse ofte bare åpne for betalende medlemmer. Videre vil dette løsningsforslaget legge seg på en litt annen kurs enn andre løsningsforslag. I første del vil fasitsvaret til alle regneoppgaver bli oppgitt. Dette gjøres slik at om ønsket kan raskt se om en har regnet riktig eller ei. Har en regnet feil, kan en selv regne på nytt uten å få fremgangsmåten spolert. Deretter vil vi ta for oss oppgavene i tur og orden gjerne litt nøyere en hva som kreves under eksamen. Vi vil også skrive små kommentarer om vanlige feil elever gjør til en del oppgaver, og også hva som bør nevnes til hver oppgave. Til tider vil vi også vise alternative måter å løse oppgavene på. Og et fåtall ganger vil vi streife utenfor pensum og vise alternative metoder. Dette er et annerledes løsningsforslag, men vi håper den som leser dette vil få glede av det. Det viktigste å huske på før en eksamen er å opparbeide seg en god forståelse, og en bred faglig kompetanse. Dokumentet her er ment å hjelpe leser et lite steg i den retningen.

2 REA R1 Høst Innhold Karaktergrenser og Vurderingsskjema Fasitsvar til regneoppgaver IV V Del 1 Oppgave 1 1 a) b) c) Oppgave 2 1 a) b) Oppgave 3 1 a) b) Oppgave 4 2 a) b) Oppgave 5 2 a) b) Oppgave 6 3 a) b) Oppgave 7 3 a) b) Del 2 Oppgave 1 4 a) b) c) II

3 REA R1 Høst Oppgave 2 5 a) b) c) Oppgave 3 5 a) b) c) Oppgave 4 5 a) b) c) Oppgave 5 6 a) b) Oppgave 6 7 a) b) c) III

4 REA R1 Høst Karaktergrenser og Vurderingsskjema Gjeldende poengfordeling Del 1 Del 2 Sum 1a1 1a2 1a3 2a 2b 3a 3b 4a 4b 5a b 6a 6b 7a 7b a 1b 1c 2a 2b 2c 3a 3b 3c 4a b 4c 5a 5b 6a 6b 6c Totalt antall poeng 60 Karaktergrenser Karakter I Poeng I prosent Nebuchadnezzars synspunkter om årets eksamen Forholdsvis grei eksamen. Noe stort fokus på geometri, med mye standardoppgaver på del 1. Mange elever har klaget på oppgavene om sirkellikninger, da dette først introduseres i R2. Å gi 12 poeng på oppgave 2 regnes som en gavepakke. En del elever slet også med forstå siste oppgave som med fordel kunne vært forklart bedre, da dette er en enkel oppgave i seg selv. Forhåndssensur Forhåndssensur blir ikke lagt ut for høst-eksamener. IV

5 REA R1 Høst Fasit svar til regneoppgaver Oppgave 1 a) 4(2x 1) = 8x 4 b) (x 1)/ x 2 2x c) 3x 2 e 2x + 2x 3 e 2x = x 2 (2x + 3)e 2x Oppgave 2 a) k = 1 b) (x + 1)(x 1)(x 3) Oppgave 3 a) Vendepunktet er (1, 0) b) Vendetangent y = 4x + 4 Oppgave 4 Forklaring Oppgave 5 Bevis Oppgave 6 a) x = 3/4 = 0.75 b) x = 2 Oppgave 7 a) t = 4 b) Minste avstanden er 5/ Oppgave 1 a) BAC = 45 b) D( 3, 4) c) t = 2 Oppgave 2 a) P (J B) = 94/ b) P (B) = % P (B J) = 94/ % c) P (B J) = = 58.0 % Oppgave 3 a) Tegning b) x-aksen: (0, 5), (0, 22/3), y-aksen: ( 11/4, 0), ( 8, 0) c) v (5) = 2389/ Oppgave 4 a) Vis at V

6 REA R1 Høst b) T (x) = 4x (4/3)x 2 c) Minst areal når x = 3 da er arealet T (3) = 6. Oppgave 5 a) Sentrum: (1, 2), radius 3 b) t = ±3 Oppgave 6 Bevis VI

7 Del 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f(x) = (2x 1) 2 b) g(x) = x 2 2x c) h(x) = x 3 e 2x Oppgave 2 (3 poeng) Funksjonen f er gitt ved f(x) = x 3 3x 2 + kx + 3 a) Bestem k slik at divisjonen f(x) : (x 1) går opp. b) Bruk polynomdivisjon til å skrive f(x) som et produkt av lineære faktorer (førstegradsfaktorer) når k har verdien du fant i oppgave 12. Oppgave 3 (4 poeng) Funksjonen f er gitt ved f(x) = x 3 3x 2 x + 3 a) Bestem vendepunktet på grafen til f. b) Bestem likningen til vendetangenten. 1 av 8

8 REA R1 Del 1 Høst Oppgave 4 (3 poeng) På figuren er det tegnet grafene til funksjonene f og g gitt ved f(x) = (x 1)(x 3) og g(x) = x 1 En elev skulle bestemme skjæringspunktene mellom grafene ved regning. Eleven besvarte oppgaven slik 5 y f(x) = g(x) (x 1)(x 3) = x 1 (x 1)(x 3) = (x 1) (x 3) = 1 x = 4 y = 4 1 = 3 Skjæringspunktet er (4, 3) x a) Kommenter elevens besvarelse Figur 1 b) Bestem skjæringspunktene mellom grafene ved regning slik du mener oppgaven bør løses. Oppgave 5 (3 poeng) Figuren viser et kvadrat ABCD med side a. Diagonalene AC og BD skjærer hveandre i punktet F. D a C a) Forklar at AC BD a b) Forklar at arealet av kvadratet er 1 2 AC BC. F A B Figur 2 2 av 8

9 REA R1 Del 1 Høst Oppgave 6 (3 poeng) Løs likningene a) 3 4x + 7 = 34 b) lg x + lg(x 1) = lg 2 Oppgave 7 (3 poeng) Vi har gitt punktene A(3, 0), B(7, 3) og C(0, t). a) Bestem t slik at BAC = 90 b) Bestem den minste avstanden fra A til BC for denne t-verdien. 3 av 8

10 Del 2 Med hjelpemidler Oppgave 1 (6 poeng) Punktene A(0, 0), B(6, 0), C(4, 4) og D(t, 4) er hjørner i ABCD 4 y D C A B x Figur 3 a) Bruk skalarprodukt til å bestemme BAC b) Bestem t slik at ABCD blir et parallellogram. c) Bestem t ved regning slik at AC BD. 4 av 8

11 REA R1 Del 2 Høst Oppgave 2 (5 poeng) En skole har 350 elever, 182 gutter og 168 jenter. Av disse tar 71 gutter og 94 jenter bussen til skolen. En elev blir trukket ut tilfeldig. Vi lar hendelesen J og B være gitt som J: Eleven er en jente G: Eleven er en Gutt a) Bestem P (J B) b) Bestem P (B) og P (B J). Er J og B uavhengige hendelser? Begrunn svaret ditt. c) Bestem P (J B) Oppgave 3 (7 poeng) Posisjonen til en partikkel ved tiden t er gitt ved r (t) = [ 1 4 t2 3t, t + 4 t 5 ] a) Tegn grafen til r når t (0, 10] b) Bestem skjæringspunktet mellom banen til partikkelen og koordinataksene. c) Bestem farten v = v (t) når t = 5. Oppgave 4 (8 poeng) DEF er innskrevet i ABC. Begge trekantene er likebeinte, og DE AB. Vi setter DE = x. Høyden fra C til AB er 8, og høyden fra F til DE er h. Videre er AF = F B = 3. a) Forklar at ABC DEC. Bruk dette til å vise at h = x b) Bestem et uttrykk for T (x) for arealet av DEF 5 av 8

12 REA R1 Del 2 Høst C D x E h A 3 F 3 B Figur 4 c) Bestem den største verdien av T (x). Forklar at ABC i dette tilfellet består av fire kongurente trekanter. Oppgave 5 (4 poeng) a) En sirkel er gitt ved x 2 2x + y 2 + 3y 4 = 0 Bestem sentrum og radius i sirkelen ved regning b) En annen sirkel er gitt ved x 2 + 2tx + y 2 4y + 9 = 0, t R Bestem t slik at sirkelen har akkuratt ett punkt felles med x-aksen 6 av 8

13 REA R1 Del 2 Høst Oppgave 6 (6 poeng) ABCD er innskrevet i en sirkel der AC er diameter. Buen AD = u og buen BC = v. Forlengelsene av AD og BC skjærer hverandre i P. Vi setter P = α. Tilsvarende skjærer forlengelsene av AB og DC hverandre i Q. Vi setter Q = β. P u D α A C v B β Q Figur 5 a) La u = 120 og v = 90. Forklar at da er BAD = 75. b) Vis at α = β = 15 i dette tilfellet. c) Vis at α = β for aller verdier av u og v (når u v). 7 av 8

14 REA R1 Del 2 Høst av 8

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Høst 28.11.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 29.11.2012 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R2 Eksamen 6 Vår 21.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 27.01.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 REA30 Matematikk R1 Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Vår 31.05.01 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.010 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1.  Nynorsk/Bokmål Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg

Detaljer

Eksamen R1 Høsten 2013

Eksamen R1 Høsten 2013 Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034 10 b) Løs likningen x + 6x = 16 c) Løs ulikheten x x> 0 d) På tallinjen ovenfor har vi merket av 1 punkter. Hvert

Detaljer

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

Løsningsforslag 1T Eksamen 25.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen 25.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Vår 25.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 31.05.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.05.008 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte Rettleiing om vurderinga: 5 timar: Del 1

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x) DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

Heldagsprøve i R1-8.mai 2009 DEL 1

Heldagsprøve i R1-8.mai 2009 DEL 1 Oppgave 1 Heldagsprøve i R1-8.mai 2009 Løsningsskisser DEL 1 I et koordinatsystem med origo O 0,0 har vi gitt punktene A 1,3, B 3,2 og C t,5. 1. Bestem t slik at AB AC. 2. Bestem t slik at AB AC. 3. Bestem

Detaljer

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten.

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten. DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningene a) 6 4 0 b) lg lg lg(4 ) Oppgave ( poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC og CB. C P 10 A 0

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs

Detaljer

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1 a) Brukopplysningenenedenfortilåfinneuthvaénballkoster,oghvaén hockeykølle koster. 500 kroner 100kroner b) Figuren viser grafene til tre andregradsfunksjoner f, g og h.

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksamen 1T, Våren 2011

Eksamen 1T, Våren 2011 Eksamen 1T, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034

Detaljer

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

3.4 Geometriske steder

3.4 Geometriske steder 3.4 Geometriske steder Geometriske steder er punkter eller punktmengder som følger visse kriterier; dvs. ligger på bestemte steder i forhold til andre punkter eller punktmengder. Av disse kan man definere

Detaljer

Eksamen 02.12.2009. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 02.12.2009. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 0..009 REA0 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: timar:

Detaljer

Eksamen 29.11.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 29.11.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 9..03 REA304 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn seinast

Detaljer

Eksempeloppgåve / Eksempeloppgave

Eksempeloppgåve / Eksempeloppgave Eksempeloppgåve / Eksempeloppgave Matematikk R April 007 Programfag i studiespesialiserande utdanningsprogram / Programfag i studiespesialiserende utdanningsprogram Elevar/Elever Privatistar/Privatister

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

1.9 Oppgaver Løsningsforslag

1.9 Oppgaver Løsningsforslag til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

E K S A M E N. Matematikk 2MX. Privatistar/Privatister. AA6516 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 2MX. Privatistar/Privatister. AA6516 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Matematikk 2MX Privatistar/Privatister 8. desember 2004 Vidaregåande kurs I / Videregående kurs I Studieretning for allmenne, økonomiske og administrative fag Oppgåva

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA654/AA656 Matematikk 3MX Eksamensdato: 6. desember 006 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister

Detaljer

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Eksempeloppgave 2014. REA3024 Matematikk R2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3024 Matematikk R2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 REA04 Matematikk R Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave ( poeng) Løs likningssystemet x 3y 13 4x y Oppgave 3 ( poeng) Løs ulikheten x 6x 0 Oppgave 4

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Eksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål

Eksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål Eksamen 7.11.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Sensorveiledning 30.11.2012. REA3024 Matematikk R2

Sensorveiledning 30.11.2012. REA3024 Matematikk R2 Sensorveiledning 30.11.2012 REA3024 Matematikk R2 1 Om sensorveiledningen Sensorveiledningen inneholder kommentarer til enkeltoppgaver og publiseres på eksamensdagen etter at eksamen er avviklet. Sensorene

Detaljer

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del

Detaljer

Kapittel 3 Geometri Mer øving

Kapittel 3 Geometri Mer øving Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Oppgaver i matematikk 19-åringer, spesialistene

Oppgaver i matematikk 19-åringer, spesialistene Oppgaver i matematikk 19-åringer, spesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I matematikk ble det laget to oppgavetyper: en for elever

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Eksamen 21.05.2012. MAT0010 Matematikk 10. årstrinn (Elever) Del 2. Matematikken i Mesopotamia. Hos frisøren. Bokmål

Eksamen 21.05.2012. MAT0010 Matematikk 10. årstrinn (Elever) Del 2. Matematikken i Mesopotamia. Hos frisøren. Bokmål Eksamen 21.05.2012 MAT0010 Matematikk 10. årstrinn (Elever) Del 2 Hos frisøren Matematikken i Mesopotamia Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal

Detaljer

Løsningsskisser til arbeidsoppgaver i CAS.

Løsningsskisser til arbeidsoppgaver i CAS. Løsningsskisser til arbeidsoppgaver i CAS. Oppgave 1 En bonde har et 20 meter langt gjerde og skal sperre av et rektangulært område der en av sidene i rektangelet er en fjøsvegg. Finn maksimalt areal som

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave (8 poeng) a) Løs likningene ) 7 + + = 6 3 6 ) = 0 b) Løs likningssystemet y= y+ = 3 c) ) Løs likningen 3 = 4 ) Finn en formel for når y = a b d) Vi har gitt funksjonen: (

Detaljer

Eksamen 28.05.2008. AA6516 Matematikk 2MX Privatistar/Privatister. Nynorsk/Bokmål

Eksamen 28.05.2008. AA6516 Matematikk 2MX Privatistar/Privatister. Nynorsk/Bokmål Eksamen 8.05.008 AA656 Matematikk MX Privatistar/Privatister Nynorsk/Bokmål Oppgave I hele oppgave skal du på hvert delspørsmål velge mellom alternativ I og alternativ II. Du skal bare regne ett av alternativene,

Detaljer

OPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD

OPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD OPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD Oppgaver merket med * er vanskeligere enn de andre. OPPGAVE 1 a) Bevis at en firkant har en omskrevet sirkel hvis og bare hvis motstående vinkler er supplementære

Detaljer

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det?

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det? Likninger av første grad med en ukjent 1. Løs følgende likninger x 3 + 4x a. + = 16 2x 7 2 x 1 x + 3 b. + 2 = 0 x x 2 1 1 1 c. (2x + 3) (3 4x) = (4x 7) 3 2 6 d. 2 x + 3( 2 x) = 3 2. Lag en likning som

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4

Detaljer

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister Eksamen Fag: VG1341 Matematikk 1MY Eksamensdato: 3. mai 2006 Felles allmenne fag Privatistar/Privatister Oppgåva ligg føre på begge målformer, først nynorsk, deretter bokmål. / Oppgaven foreligger på begge

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 041008 REA30 Matematikk R1 Nnorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 eksamensoppgaver.org September 17, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Eksamen 27.05.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 27.05.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer

DEL 1. Uten hjelpemidler. 1) Deriver funksjonen. b) Skriv så enkelt som mulig. d) Skriv så enkelt som mulig

DEL 1. Uten hjelpemidler. 1) Deriver funksjonen. b) Skriv så enkelt som mulig. d) Skriv så enkelt som mulig DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Vi har funksjonen 3 f( x) = x 5 x+ 1) Deriver funksjonen. ) Bestem f (1). Hva forteller svaret deg om grafen til f? b) Skriv så enkelt som mulig 3 x x+ 4

Detaljer

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 05.12.2013 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt:

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene.

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Løs likningene a) 2x 10 x( x 5) x b) lg 3 5 2 Oppgave 2 (1 poeng) Bruk en kvadratsetning til å bestemme verdien av produktet 995 995 Oppgave 3 (2 poeng) Løs

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 a) Skriv tallet 2460000 på standardform. b) Regn ut: 3 3 3 2 81 4 + 12 5 + 8 + 4 3 c) Løs likningssystemet: 2x y = 3 x+ 2y = 4 d) Løs ulikheten: 2 2x + 2x+ 4 0 e) Løs

Detaljer

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse R1-6.1-6.4 Geometri Løsningsskisse I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30 a) Hvilke kongruente trekanter finner du her? b) Hvilke formlike trekanter finner du her? c) Finn alle vinklene

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges? Oppgave 2 (1 poeng)

Detaljer

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette? OPPGAVE 1 a) Deriver funksjonen f( x) = 5x tanx b) Deriver funksjonen ( ) 3 g( x) = x + cosx c) Bestem integralet (sin x cos x) dx d) Løs ligningen ved regning π,4,6cos x = 1,8, 1 4 x e) I et selskap blir

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

Løsningsforslag for 1P høsten 2015

Løsningsforslag for 1P høsten 2015 Løsningsforslag for 1P høsten 015 Dette løsningsforslaget er mest en veiledning til hvordan oppgaven kan løses og forstås. Noen av forklaringene som er gitt kan greit utelates i en besvarelse. Del 1 Oppgave

Detaljer

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker.

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. Bestem sannsynligheten for at én gutt og én jente møter

Detaljer

EKSAMENSSAMARBEIDENDE FORKURSINSTITUSJONER

EKSAMENSSAMARBEIDENDE FORKURSINSTITUSJONER EKSAMENSSAMARBEIDENDE FORKURSINSTITUSJONER Forkurs for ingeniørutdanning og maritim høgskoleutdanning Universitetet i Stavanger, Universitetet i Tromsø, Høgskolen i Buskerud, Høgskulen i Sogn og Fjordane,

Detaljer

Kurshefte GeoGebra. Ungdomstrinnet

Kurshefte GeoGebra. Ungdomstrinnet Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes

Detaljer

Studieretning: Allmenne, økonomiske og administrative fag

Studieretning: Allmenne, økonomiske og administrative fag Eksamen Fag: AA654 Matematikk 3MX Eksamensdato: 3. juni 005 Vidaregåande kurs II /Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar / Elever Oppgåva ligg føre på begge

Detaljer