Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
|
|
- Noah Holter
- 9 år siden
- Visninger:
Transkript
1 Eksamen REA30 Matematikk R1 Nynorsk/Bokmål
2 Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast inn seinast etter 5 timar. Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon. Framgangsmåte: Du skal svare på alle oppgåvene i Del 1 og Del. Der oppgåveteksten ikkje seier noko anna, kan du fritt velje framgangsmåte. Om oppgåva krev ein bestemt løysingsmetode, vil også ein alternativ metode kunne gi noko utteljing. Rettleiing om vurderinga: Poeng i Del 1 og Del er berre rettleiande i vurderinga. Karakteren blir fastsett etter ei samla vurdering. Det betyr at sensor vurderer i kva grad du viser rekneferdigheiter og matematisk forståing gjennomfører logiske resonnement ser samanhengar i faget, er oppfinnsam og kan ta i bruk fagkunnskap i nye situasjonar kan bruke formålstenlege hjelpemiddel vurderer om svar er rimelege forklarer framgangsmåtar og grunngir svar skriv oversiktleg og er nøyaktig med utrekningar, nemningar, tabellar og grafiske framstillingar Eksamen REA30 Matematikk R1 Vår 011 Side av 16
3 DEL 1 Utan hjelpemiddel Oppgåve 1 (18 poeng) 500 = + 8 er a) Vis at den deriverte til funksjonen ( ) O ( ) = 3 O b) Deriver funksjonane 1) f ( ) = 3ln( ) ) g( ) = 3 e c) Vi har gitt polynomfunksjonen 3 f ( ) = ) Vis at f (1) = 0. Bruk polynomdivisjon til å faktorisere f ( ) i førstegradsfaktorar. ) Løys ulikskapen f ( ) 0 d) Mengda av lava som sprutar ut per time ved eit vulkanutbrot, kan tilnærma beskrivast ved eit funksjonsuttrykk ft. () Funksjonsverdiane er målte i tonn, og t er talet på timar etter byrjinga av utbrotet. Du får vite at: f f f ( ) (0) = 300, (10) = 0 og 10 = 10 Kva kan du seie om vulkanutbrotet på grunnlag av desse opplysningane? e) Skriv så enkelt som mogleg a lg ( a b) + lg ( ab ) + lg 3 b Eksamen REA30 Matematikk R1 Vår 011 Side 3 av 16
4 f) Skriv så enkelt som mogleg g) Ei linje l har parameterframstillinga = 1+ t l : y = + t Eit punkt P ( 4, 1) ligg utanfor linja. Rekne ut avstanden frå P til linja l. h) Eit linjestykke AB har lengd 10 cm. Konstruer ein Δ ABC der C = 90 og AC = 7 cm Oppgåve (6 poeng) I ein ABC er A = 90. Ein sirkel med sentrum i S er skriven inn i trekanten. Sidene AC og BC tangerer sirkelen i punkta D og E. Linja gjennom B og S skjer DE i F. Sjå skissa til høgre. Du får oppgitt at DC = EC. Vi set ABC = v, BCA= u og BFE = a) Forklar at u+ v = 90 og at DEC = 90 u b) Forklar at v FBE = og at BEF = 90 + u c) Vis at = 45 Eksamen REA30 Matematikk R1 Vår 011 Side 4 av 16
5 DEL Med hjelpemiddel Oppgåve 3 (7 poeng) Vi har eit rett prisme der lengda av grunnflata er fire gonger så stor som breidda. Volumet er 3 00 cm. Vi set breidda lik cm. Sjå skissa. 50 a) Vis at h = b) Vis at overflata O av prismet kan skrivast ( ) = + O c) I oppgåve 1 a) i Del 1 viste du at O ( ) =. Bruk den deriverte til å finne den minste overflata O som prismet kan ha. Kva er lengda, breidda og høgda no? 3 Vi har eit anna rett prisme der lengda av grunnflata er tre gonger så stor som breidda. Volumet 3 er 00 cm. d) Finn den minste overflata som dette prismet kan ha. Eksamen REA30 Matematikk R1 Vår 011 Side 5 av 16
6 Oppgåve 4 (4 poeng) På ein skole er det 350 elevar. 150 av dei er gutar. Ei undersøking viser at 100 gutar og 180 jenter har med seg matpakke kvar dag. Éin elev blir trekt ut tilfeldig. La A og B vere dei to hendingane A: Eleven er ein gut. B: Eleven har med seg matpakke kvar dag. a) Forklar med ord kva vi meiner med PA ( B). Finn dette sannsynet. b) Finn sannsyna PB ( ) og PBA. ( ) Er dei to hendingane A og B uavhengige? Oppgåve 5 (9 poeng) Punkta A(, 1) og B( 5, 3) er gitt. a) Finn AB og rekne ut AB. Vektoren AC = 1, ] er gitt. b) Bestem koordinatane til punktet C. c) Rekne ut AC BC og kommenter svaret. Ei rett linje l går gjennom punktet P ( 3, 4) og er parallell med AC. d) Finn ei parameterframstilling for linja l. e) Finn koordinatane til punktet der l skjer y -aksen. Punktet Q( 8, 6) er gitt. Ein vektor QR har lengda 10, og R er eit punkt på linja l. f) Bestem koordinatane til R. Eksamen REA30 Matematikk R1 Vår 011 Side 6 av 16
7 Oppgåve 6 ( poeng) Du får oppgitt at ein funksjon f er definert for 0, 10. Funksjonen er kontinuerleg, men ikkje deriverbar i =, og ikkje kontinuerleg i = 5. Teikne ei skisse som viser korleis grafen til f kan sjå ut. Oppgåve 7 (6 poeng) I denne oppgåva skal vi undersøkje påstanden: Alle primtal som er større enn, kan skrivast som differansen mellom to kvadrattal. a) Skriv av og fyll ut tabellen Primtal Naturlege tal Kvadrattal Differanse p n 1 n n n n n I tabellen er p primtal, og n1 og n er naturlege tal, slik at: n1 + n = p n 1 n = 1 p+ 1 p 1 b) Vis at vi kan skrive: n1 = og n = c) Bevis at påstanden i ruta ovanfor er riktig. Eksamen REA30 Matematikk R1 Vår 011 Side 7 av 16
8 Oppgåve 8 ( 8 poeng) Matematikaren Arkimedes (ca f.kr.) studerte figuren du ser nedanfor. Det kvite området på figuren kallar vi skomakarkniven. Området er avgrensa av ein ytre halvsirkel og to indre halvsirklar. Dei to indre halvsirklane, som er fargelagde på figuren, har sentrum i D og E. Dei indre halvsirklane har radius R og r. Punkta D, C og E ligg på linjestykket AB. a) Vis at lengda av sirkelbogen AB er lik summen av lengdene av dei to sirkelbogane AC og CB. På figuren er CH AB. b) Forklar at ACH er formlik med HCB. c) Bruk dette til å vise at CH = R r d) Vis at arealet av ein sirkel med diameter CH er lik arealet av skomakarkniven. Eksamen REA30 Matematikk R1 Vår 011 Side 8 av 16
9 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn senest etter 5 timer. Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Framgangsmåte: Du skal svare på alle oppgavene i Del 1 og Del. Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Veiledning om vurderingen: Poeng i Del 1 og Del er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at sensor vurderer i hvilken grad du viser regneferdigheter og matematisk forståelse gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner kan bruke hensiktsmessige hjelpemidler vurderer om svar er rimelige forklarer framgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger Eksamen REA30 Matematikk R1 Vår 011 Side 9 av 16
10 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) 500 = + 8 er a) Vis at den deriverte til funksjonen ( ) O ( ) = 3 O b) Deriver funksjonene 1) f ( ) = 3ln( ) ) g( ) = 3 e c) Vi har gitt polynomfunksjonen 3 f ( ) = ) Vis at f (1) = 0. Bruk polynomdivisjon til å faktorisere f ( ) i førstegradsfaktorer. ) Løs ulikheten f ( ) 0 d) Mengden av lava som spruter ut per time ved et vulkanutbrudd, kan tilnærmet beskrives ved et funksjonsuttrykk ft. () Funksjonsverdiene er målt i tonn, og t er antall timer etter begynnelsen av utbruddet. Du får vite at: f f f ( ) (0) = 300, (10) = 0 og 10 = 10 Hva kan du si om vulkanutbruddet på grunnlag av disse opplysningene? e) Skriv så enkelt som mulig a lg ( a b) + lg ( ab ) + lg 3 b Eksamen REA30 Matematikk R1 Vår 011 Side 10 av 16
11 f) Skriv så enkelt som mulig g) En linje l har parameterframstillingen = 1+ t l : y = + t Et punkt P ( 4, 1) ligger utenfor linjen. Regn ut avstanden fra P til linjen l. h) Et linjestykke AB har lengde 10 cm. Konstruer en ABC der C = 90 og AC = 7 cm Oppgave (6 poeng) I en ABC er A = 90. En sirkel med sentrum i S er innskrevet i trekanten. Sidene AC og BC tangerer sirkelen i punktene D og E. Linjen gjennom B og S skjærer DE i F. Se skissen til høyre. Du får oppgitt at DC = EC. Vi setter ABC = v, BCA= u og BFE = a) Forklar at u+ v = 90 og at DEC = 90 u b) Forklar at v FBE = og at BEF = 90 + u c) Vis at = 45 Eksamen REA30 Matematikk R1 Vår 011 Side 11 av 16
12 DEL Med hjelpemidler Oppgave 3 (7 poeng) Vi har et rett prisme der lengden av grunnflaten er fire ganger så stor som bredden. Volumet er 3 00 cm. Vi setter bredden lik cm. Se skissen. 50 a) Vis at h = b) Vis at overflaten O av prismet kan skrives ( ) = + O c) I oppgave 1 a) i Del 1 viste du at O ( ) =. Bruk den deriverte til å finne den minste overflaten O som prismet kan ha. Hva er lengden, bredden og høyden nå? 3 Vi har et annet rett prisme der lengden av grunnflaten er tre ganger så stor som bredden. 3 Volumet er 00 cm. d) Finn den minste overflaten som dette prismet kan ha. Eksamen REA30 Matematikk R1 Vår 011 Side 1 av 16
13 Oppgave 4 (4 poeng) På en skole er det 350 elever. 150 av disse er gutter. En undersøkelse viser at 100 gutter og 180 jenter har med seg matpakke hver dag. Én elev trekkes ut tilfeldig. La A og B være de to hendelsene A: Eleven er en gutt. B: Eleven har med matpakke hver dag. a) Forklar med ord hva vi mener med PA ( B). Finn denne sannsynligheten. b) Finn sannsynlighetene PB ( ) og PBA. ( ) Er de to hendelsene A og B uavhengige? Oppgave 5 (9 poeng) Punktene A(, 1) og B( 5, 3) er gitt. a) Finn AB og regn ut AB. Vektoren AC = 1, ] er gitt. b) Bestem koordinatene til punktet C. c) Regn ut AC BC og kommenter svaret. En rett linje l går gjennom punktet P ( 3, 4) og er parallell med AC. d) Finn en parameterframstilling for linjen l. e) Finn koordinatene til punktet der l skjærer y -aksen. Punktet Q( 8, 6) er gitt. En vektor QR har lengden 10, og R er et punkt på linjen l. f) Bestem koordinatene til R. Eksamen REA30 Matematikk R1 Vår 011 Side 13 av 16
14 Oppgave 6 ( poeng) Du får oppgitt at en funksjon f er definert for 0, 10. Funksjonen er kontinuerlig, men ikke deriverbar i =, og ikke kontinuerlig i = 5. Tegn en skisse som viser hvordan grafen til f kan se ut. Oppgave 7 (6 poeng) I denne oppgaven skal vi undersøke påstanden: Alle primtall som er større enn, kan skrives som differansen mellom to kvadrattall. a) Skriv av og fyll ut tabellen Primtall Naturlige tall Kvadrattall Differanse p n 1 n n n n n I tabellen er p primtall, og n1 og n er naturlige tall, slik at: n1 + n = p n 1 n = 1 p+ 1 p 1 b) Vis at vi kan skrive: n1 = og n = c) Bevis at påstanden i ruten ovenfor er riktig. Eksamen REA30 Matematikk R1 Vår 011 Side 14 av 16
15 Oppgave 8 ( 8 poeng) Matematikeren Arkimedes (ca f.kr.) studerte figuren du ser nedenfor. Det hvite området på figuren kalles skomakerkniven. Området er avgrenset av en ytre halvsirkel og to indre halvsirkler. De to indre halvsirklene, som er fargelagt på figuren, har sentrum i D og E. De indre halvsirklene har radius R og r. Punktene D, C og E ligger på linjestykket AB. a) Vis at lengden av sirkelbuen AB er lik summen av lengdene av de to sirkelbuene AC og CB. På figuren er CH AB. b) Forklar at ACH er formlik med HCB. c) Bruk dette til å vise at CH = R r d) Vis at arealet av en sirkel med diameter CH er lik arealet av skomakerkniven. Eksamen REA30 Matematikk R1 Vår 011 Side 15 av 16
16 Schweigaards gate 15 Postboks 9359 Grønland 0135 OSLO Telefon
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn
DetaljerEksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 29.11.2012 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen REA3022 R1, Våren 2011
Eksamen REA30 R1, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) 500 8 er a) Vis at den deriverte til funksjonen
DetaljerEksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del
DetaljerEksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.05.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.05.008 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte Rettleiing om vurderinga: 5 timar: Del 1
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
DetaljerEksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
DetaljerEksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerLøsningsforslag R1 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag R1 Eksamen 6 Vår 31.05.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerEksamen REA3022 Matematikk R1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 19.05.015 REA30 Matematikk R1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 0.05.016 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksamen 29.11.2013. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9..03 REA304 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn seinast
DetaljerEksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 04.06.01 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9.05.204 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del 2: 5 timar: Del skal leverast inn etter 2 timar. Del 2 skal leverast
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 7.11.015 REA04 Matematikk R Ny eksamensordning Del 1: timar (utan hjelpemiddel) / timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale verktøy
DetaljerEksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 19.05.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksempeloppgåve/ Eksempeloppgave Desember 2007
Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel på Del Hjelpemiddel på Del Vedlegg Vedlegg som skal leverast
DetaljerEksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen 28.11.2011. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.011 REA06 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen. MAT1013 Matematikk 1T. Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 23.11.2015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del 2: 2 timar (med hjelpemiddel) / 2 timer (med hjelpemidler) Minstekrav til
DetaljerEksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
DetaljerEksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.05.014 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 0.05.015 REA304 Matematikk R Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 1.11.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
DetaljerEksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.01 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 25.05.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 26.05.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
DetaljerEksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.013 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 8.05.018 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.
DetaljerEksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 28.11.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 3.11.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 26.11.2015. REA3026 Matematikk S1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 6.11.015 REA306 Matematikk S1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
DetaljerEksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 25.11.2013. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksempeloppgåve/ Eksempeloppgave 2009
Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:
DetaljerEksamen 31.05.2011. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 31.05.011 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen. MAT1017 Matematikk 2T Nynorsk/Bokmål
Eksamen 27.05.2016 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal
DetaljerEksamen 02.12.2009. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 0..009 REA0 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: timar:
DetaljerEksamen. 14. november MAT1006 Matematikk 1T-Y. Programområde: Alle programområde / programområder. Nynorsk/Bokmål
Eksamen 14. november 017 MAT1006 Matematikk 1T-Y Programområde: Alle programområde / programområder Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid 4 timar Del 1 skal leverast inn etter,5 timar.
DetaljerEksamen 25.05.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del
DetaljerEksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
DetaljerEksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 014 REA30 Matematikk R1 Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy
DetaljerDEL 1. Uten hjelpemidler 500+ er x
DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15
DetaljerEksamen. 30. mai MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 30. mai 018 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
DetaljerEksamen 23.11.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 27.11.2013. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerFylkeskommunenes landssamarbeid. Eksamen MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 28.05.2019 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Eksamen varar i 4 timar. Del 1 skal leverast inn etter
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 041008 REA30 Matematikk R1 Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 31.05.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
DetaljerEksamen 24.05.2013. MAT1011 Matematikk 1P. http://eksamensarkiv.net/ Nynorsk/Bokmål
Eksamen 24.05.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 30.11.2009. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 30.11.009 MAT1008 Matematikk T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 19.05.2014. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 19.05.014 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 02.12.2008. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 0.1.008 MAT1008 Matematikk T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar
DetaljerEksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 22.05.2009. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 22.05.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen. 1. juni MAT 1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 1. juni 017 MAT 1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
DetaljerFylkeskommunenes landssamarbeid. Eksamen MAT1001 Matematikk 1P-Y. Programområde: Design og håndverk. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 28.05.2019 MAT1001 Matematikk 1P-Y Programområde: Design og håndverk Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Eksamen varar i 4 timar. Del 1 skal leverast
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres
DetaljerEksempeloppgåve / Eksempeloppgave
Eksempeloppgåve / Eksempeloppgave Matematikk R April 007 Programfag i studiespesialiserande utdanningsprogram / Programfag i studiespesialiserende utdanningsprogram Elevar/Elever Privatistar/Privatister
DetaljerEksamen MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 19.05.2009 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen 27.11.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksempeloppgåve/ Eksempeloppgave Desember 2007
Eksempeloppgåve/ Eksempeloppgave Desember 007 REA306 Matematikk S1 Programfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel på Del 1 Hjelpemiddel på Del Vedlegg Vedlegg som skal leverast
DetaljerEksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 03.1.009 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksempeloppgåve / Eksempeloppgave
Eksempeloppgåve / Eksempeloppgave Matematikk S1 April 007 Programfag i studiespesialiserande program / Programfag i studiespesialiserende program Elevar/Elever Privatistar/Privatister Oppgåva ligg føre
DetaljerEksamen 27.05.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 27.05.2013 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen. MAT1011 Matematikk 1P Nynorsk/Bokmål
Eksamen 25.05.2016 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram
Eksamen 15. november 016 MAT1006 Matematikk 1T-Y Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del
DetaljerDer oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5
DetaljerEksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerEksamen 26.05.2014. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 26.05.2014 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerFylkeskommunenes landssamarbeid. Eksamen MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 13.11.2018 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Eksamen varer i 4 timar. Del 1 skal leverast inn etter
DetaljerEksamen 27.05.2010. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal
DetaljerEksamen 25.05.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Detaljer