Eksamen MAT1008 Matematikk 2T. Nynorsk/Bokmål
|
|
- Hjørdis Arntzen
- 8 år siden
- Visninger:
Transkript
1 Eksamen MAT1008 Matematikk 2T Nynorsk/Bokmål
2 Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast inn seinast etter 5 timar. Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon. Du skal svare på alle oppgåvene. Der oppgåveteksten ikkje seier noko anna, kan du fritt velje framgangsmåte. Om oppgåva krev ein bestemt løysingsmetode, vil også ein alternativ metode kunne gi noko utteljing. Rettleiing om vurderinga: Poeng i Del 1 og Del 2 er berre rettleiande i vurderinga. Karakteren blir fastsett etter ei samla vurdering. Det betyr at sensor vurderer i kva grad du viser reknedugleik og matematisk forståing gjennomfører logiske resonnement ser samanhengar i faget, er oppfinnsam og kan ta i bruk fagkunnskap i nye situasjonar kan bruke formålstenlege hjelpemiddel vurderer om svar er rimelege forklarer framgangsmåtar og grunngir svar skriv oversiktleg og er nøyaktig med utrekningar, nemningar, tabellar og grafiske framstillingar Eksamen MAT1008 Matematikk 2T Våren 2011 Side 2 av 20
3 DEL 1 Utan hjelpemiddel Oppgåve 1 (13 poeng) a) Vi har to punkt A ( 2, 5) og ( 4,3) B i eit koordinatsystem. 1) Finn AB. 2) Rekn ut avstanden frå A til B. b) Løys likninga x 2 + 6x = 16 c) På tallinja ovanfor har vi merkt av 12 punkt. Kvart av tala nedanfor tilsvarer eitt av punkta A - L på tallinja. Rekn ut eller forklar kvar kvart av tala skal plasserast. 1) 2) ,5 3) 21 4) tan30 5) 6) Eksamen MAT1008 Matematikk 2T Våren 2011 Side 3 av 20
4 d) Løys ulikskapen x 2 x > 0 e) I koordinatsystemet ovanfor har vi teikna ei rett linje. Finn ei parameterframstilling for linja. f) Ein ettermiddag sit åtte elevar på skolen og arbeider. Dei bestemmer at to av dei skal gå og kjøpe pizza. På kor mange måtar kan dei to veljast ut? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 4 av 20
5 Oppgåve 2 (6 poeng) 2 Ein funksjon f er gitt ved f ( x) = x 2. a) Teikn grafen til f i eit koordinatsystem for x 3, 3. b) Finn ved rekning likninga for den rette linja som går gjennom punkta ( 0, f (0)) og ( 2, f (2)). c) Finn likninga for tangenten til f i punktet der x = 1 ved rekning. Teikn denne tangenten i same koordinatsystem som du brukte i a). Oppgåve 3 (5 poeng) Figuren ovanfor viser eit kvadrat ABCD. Sidene i kvadratet har lengd 1. E er midtpunkt på BC, og F er midtpunkt på CD. a) 5 Bruk Pytagoras setning til å vise at AE og AF har lengd. 2 b) Vis at arealet av AEF er 3 8. c) Vis at 3 sinα =. 5 Eksamen MAT1008 Matematikk 2T Våren 2011 Side 5 av 20
6 DEL 2 Med hjelpemiddel Oppgåve 4 (8 poeng) Kjelde: ( ) Kor mange gram CO2 ein bil slepper ut per kilometer er gitt ved fx x x 2 ( ) = 0,046 6, der x er farten til bilen målt i km/h. a) Teikn grafen til f i eit koordinatsystem for x 20, 100. b) Finn grafisk og ved rekning 1) kor fort bilen køyrer dersom han held konstant fart og slepper ut 150 g CO2 per kilometer. 2) kva fart som gir minst CO2-utslepp per kilometer og kor stort CO2-utsleppet per kilometer er da. Bilen køyrer i 70 km/h i ein halv time. c) Kor mykje CO2 slepper bilen ut i løpet av denne halvtimen? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 6 av 20
7 Oppgåve 5 (6 poeng) Kjelde: ( ) Ovanfor ser du eit utdrag frå ein artikkel henta frå nettsidene til Teknisk Ukeblad. Artikkelen refererer til ei undersøking som viser at éin av fem har same passord overalt. Vi går ut frå at dette også gjeld for elevar i vidaregåande skole i Noreg. I ein klasse ved ein vidaregåande skole i Noreg er det 25 elevar. a) 1) Finn sannsynet for at ingen av elevane har same passord overalt. 2) Finn sannsynet for at minst éin av elevane har same passord overalt. b) Finn sannsynet for at fleire enn fem av elevane har same passord overalt. I ein annan klasse er det 20 elevar. Det viser seg at 6 av desse har same passord overalt. Vi vel tilfeldig fem elevar frå denne klassen. c) Finn sannsynet for at to av desse elevane har same passord overalt. Eksamen MAT1008 Matematikk 2T Våren 2011 Side 7 av 20
8 Oppgåve 6 (7 poeng) Eit tre står på ei horisontal slette. Ved eit gitt tidspunkt kastar sola ein 12 m lang skugge bak treet. Ein pinne som er 1,2 m lang, har ved same tidspunkt ein 1,6 m lang skugge. Sjå skissa ovanfor. a) Kor høgt er treet? b) Vis at solstrålane ved dette tidspunktet dannar ein vinkel på 36,9 med sletta. I enden av sletta er det ei skråning som dannar vinkelen u med horisontallinja. I skråninga står det også eit tre. Dette treet står vinkelrett på horisontalplanet. Sjå skissa ovanfor. Per og Kari vil prøve å rekne ut kor høgt treet i skråninga er, ved hjelp av trigonometri. Dei tek med seg eit metermål, ein planke og ein kalkulator. c) Korleis kan Per og Kari gå fram for å bestemme vinkelen u? Per og Kari reknar ut at u = 25. Skuggen frå treet fell 17 m nedover skråninga. Vi går ut frå at vinkelen mellom solstrålane og horisontallinja er den same som i b). d) Kor høgt er treet i skråninga? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 8 av 20
9 Oppgåve 7 (9 poeng) År Samla opplag (i 1 000) Kjelde: ( ) Tabellen ovanfor viser det samla opplaget til norske aviser i perioden frå 2002 til a) 1) Marker verdiane frå tabellen som punkt i eit koordinatsystem. La x vere åra etter 2002 og y det samla opplaget ( i 1 000). 2) Vis ved regresjon at funksjonen f gitt ved fx ( ) = 54,61x er ein god modell for det samla opplaget av aviser. b) Når vil, ifølgje modellen i a) 2), det samla opplaget vere halvert i forhold til det samla opplaget i 2008? Vi vil no finne ein ny modell for det samla opplaget av aviser. c) 1) Bruk regresjon og finn ein eksponentialfunksjon som passar godt med datamaterialet. 2) Når vil, ifølgje modellen i c) 1), det samla opplaget vere halvert i forhold til opplaget i 2008? I dag (2011) er det ca. 4,9 millionar innbyggjarar i Noreg. Vi går ut frå at innbyggjartalet vil auke med 0,9 % per år framover. d) I kva år vil da det samla opplaget av aviser her i landet utgjere 25 % av innbyggjartalet dersom vi legg modellen i c) 1) til grunn? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 9 av 20
10 Oppgåve 8 (6 poeng) Figuren ovanfor viser ein halvsirkel med diameter AB. S er midtpunktet på AB, og C er eit punkt på sirkelperiferien. Vi set u = SB og v = SC. a) Forklar at AC = u + v og at BC = u + v. b) Forklar at u = v. c) 1) Bruk resultata i a) og b) til å vise at AC BC = 0. 2) Formuler ei setning som seier noko om kva slags trekant ABC må vere. Eksamen MAT1008 Matematikk 2T Våren 2011 Side 10 av 20
11 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Du skal svare på alle oppgavene. Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Veiledning om vurderingen: Poeng i Del 1 og Del 2 er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at sensor vurderer i hvilken grad du viser regneferdigheter og matematisk forståelse gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner kan bruke hensiktsmessige hjelpemidler vurderer om svar er rimelige forklarer framgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger Eksamen MAT1008 Matematikk 2T Våren 2011 Side 11 av 20
12 DEL 1 Uten hjelpemidler Oppgave 1 (13 poeng) a) Vi har to punkter A ( 2, 5) og ( 4,3) B i et koordinatsystem. 1) Finn AB. 2) Regn ut avstanden fra A til B. b) Løs likningen x 2 + 6x = 16 c) På tallinjen ovenfor har vi merket av 12 punkter. Hvert av tallene nedenfor tilsvarer ett av punktene A L på tallinjen. Regn ut eller forklar hvor hvert av tallene skal plasseres. 1) 2) ,5 3) 21 4) tan30 5) 6) Eksamen MAT1008 Matematikk 2T Våren 2011 Side 12 av 20
13 d) Løs ulikheten 2 x x > 0 e) I koordinatsystemet ovenfor har vi tegnet en rett linje. Finn en parameterframstilling for linjen. f) En ettermiddag sitter åtte elever på skolen og arbeider. De bestemmer at to av dem skal gå og kjøpe pizza. På hvor mange måter kan de to velges ut? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 13 av 20
14 Oppgave 2 (6 poeng) 2 En funksjon f er gitt ved f ( x) = x 2. a) Tegn grafen til f i et koordinatsystem for x 3, 3. b) Finn ved regning likningen for den rette linjen som går gjennom punktene ( 0, f (0)) og ( 2, f (2)). c) Finn likningen for tangenten til f i punktet der x = 1 ved regning. Tegn denne tangenten i samme koordinatsystem som du brukte i a). Oppgave 3 (5 poeng) Figuren ovenfor viser et kvadrat ABCD. Sidene i kvadratet har lengde 1. E er midtpunkt på BC, og F er midtpunkt på CD. a) 5 Bruk Pytagoras setning til å vise at AE og AF har lengde. 2 b) Vis at arealet av AEF er 3 8. c) Vis at 3 sinα =. 5 Eksamen MAT1008 Matematikk 2T Våren 2011 Side 14 av 20
15 DEL 2 Med hjelpemidler Oppgave 4 (8 poeng) Kilde: ( ) Antall gram CO2 en bil slipper ut per kilometer er gitt ved fx x x 2 ( ) = 0,046 6, der x er farten til bilen målt i km/h. a) Tegn grafen til f i et koordinatsystem for x 20, 100. b) Finn grafisk og ved regning 1) hvor fort bilen kjører dersom den holder konstant fart og slipper ut 150 g CO2 per kilometer. 2) hvilken fart som gir minst CO2-utslipp per kilometer og hvor stort CO2-utslippet per kilometer er da. Bilen kjører i 70 km/h i en halv time. c) Hvor mye CO2 slipper bilen ut i løpet av denne halvtimen? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 15 av 20
16 Oppgave 5 (6 poeng) Kilde: ( ) Ovenfor ser du utdrag fra en artikkel hentet fra nettsidene til Teknisk Ukeblad. Artikkelen refererer til en undersøkelse som viser at én av fem har samme passord overalt. Vi antar at dette også gjelder for elever i videregående skole i Norge. I en klasse ved en videregående skole i Norge er det 25 elever. a) 1) Finn sannsynligheten for at ingen av elevene har samme passord overalt. 2) Finn sannsynligheten for at minst én av elevene har samme passord overalt. b) Finn sannsynligheten for at flere enn fem av elevene har samme passord overalt. I en annen klasse er det 20 elever. Det viser seg at 6 av disse har samme passord overalt. Vi velger tilfeldig fem elever fra denne klassen. c) Finn sannsynligheten for at to av disse elevene har samme passord overalt. Eksamen MAT1008 Matematikk 2T Våren 2011 Side 16 av 20
17 Oppgave 6 (7 poeng) Et tre står på en horisontal slette. Ved et gitt tidspunkt kaster solen en 12 m lang skygge bak treet. En pinne som er 1,2 m lang, har ved samme tidspunkt en 1,6 m lang skygge. Se skissen ovenfor. a) Hvor høyt er treet? b) Vis at solstrålene ved dette tidspunktet danner en vinkel på 36,9 med sletten. I enden av sletten er det en skråning som danner vinkelen u med horisontallinjen. I skråningen står det også et tre. Dette treet står vinkelrett på horisontalplanet. Se skissen ovenfor. Per og Kari vil prøve å regne ut hvor høyt treet i skråningen er, ved hjelp av trigonometri. De tar med seg et metermål, en planke og en kalkulator. c) Hvordan kan Per og Kari gå fram for å bestemme vinkelen u? Per og Kari regner ut at u = 25. Skyggen fra treet faller 17 m nedover skråningen. Vi antar at vinkelen mellom solstrålene og horisontallinjen er den samme som i b). d) Hvor høyt er treet i skråningen? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 17 av 20
18 Oppgave 7 (9 poeng) År Samlet opplag (i 1 000) Kilde: ( ) Tabellen ovenfor viser det samlede opplaget til norske aviser i perioden fra 2002 til a) 1) Marker verdiene fra tabellen som punkter i et koordinatsystem. La x være antall år etter 2002 og y det samlede opplaget ( i 1 000). 2) Vis ved regresjon at funksjonen f gitt ved fx ( ) = 54,61x er en god modell for det samlede opplaget av aviser. b) Når vil, ifølge modellen i a) 2), det samlede opplaget være halvert i forhold til det samlede opplaget i 2008? Vi vil nå finne en ny modell for det samlede opplaget av aviser. c) 1) Bruk regresjon og finn en eksponentialfunksjon som passer godt med datamaterialet. 2) Når vil, ifølge modellen i c) 1), det samlede opplaget være halvert i forhold til opplaget i 2008? I dag (2011) er det ca. 4,9 millioner innbyggere i Norge. Vi antar at innbyggertallet vil øke med 0,9 % per år framover. d) I hvilket år vil da det samlede opplaget av aviser her i landet utgjøre 25 % av antall innbyggere dersom vi legger modellen i c) 1) til grunn? Eksamen MAT1008 Matematikk 2T Våren 2011 Side 18 av 20
19 Oppgave 8 (6 poeng) Figuren ovenfor viser en halvsirkel med diameter AB. S er midtpunktet på AB, og C er et punkt på sirkelperiferien. Vi setter u = SB og v = SC. a) Forklar at AC = u + v og at BC = u + v. b) Forklar at u = v. c) 1) Bruk resultatene i a) og b) til å vise at AC BC = 0. 2) Formuler en setning som sier noe om hva slags trekant ABC må være. Eksamen MAT1008 Matematikk 2T Våren 2011 Side 19 av 20
20 Schweigaards gate 15 Postboks 9359 Grønland 0135 OSLO Telefon
Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 25.05.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
DetaljerEksamen 23.11.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksempeloppgåve/ Eksempeloppgave 2009
Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:
DetaljerEksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerEksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
DetaljerEksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
DetaljerEksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del
DetaljerEksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 02.12.2008. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 0.1.008 MAT1008 Matematikk T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar
DetaljerEksamen 31.05.2011. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 31.05.011 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 29.11.2012 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
DetaljerEksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen REA3022 Matematikk R1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 19.05.015 REA30 Matematikk R1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
DetaljerEksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen 29.11.2013. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9..03 REA304 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn seinast
DetaljerEksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
DetaljerEksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034 10 b) Løs likningen x + 6x = 16 c) Løs ulikheten x x> 0 d) På tallinjen ovenfor har vi merket av 1 punkter. Hvert
DetaljerEksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.05.008 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte Rettleiing om vurderinga: 5 timar: Del 1
DetaljerEksamen 25.05.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen. MAT1013 Matematikk 1T. Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 23.11.2015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del 2: 2 timar (med hjelpemiddel) / 2 timer (med hjelpemidler) Minstekrav til
DetaljerEksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 28.11.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 31.05.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.013 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal
DetaljerEksamen 1T, Våren 2011
Eksamen 1T, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034
DetaljerEksamen 24.05.2013. MAT1011 Matematikk 1P. http://eksamensarkiv.net/ Nynorsk/Bokmål
Eksamen 24.05.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 23.11.2011. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
DetaljerEksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 04.06.01 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 26.05.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 0.05.016 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.05.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerEksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 0.05.015 REA304 Matematikk R Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
DetaljerEksamen. MAT1017 Matematikk 2T Nynorsk/Bokmål
Eksamen 27.05.2016 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 19.05.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 27.11.2013. MAT1010 Matematikk 2T-Y. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1010 Matematikk 2T-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerNynorsk. Eksamensinformasjon
Eksamen 27.05.2008 MAT1005 Matematikk Påbygging 2P-Y Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg:
DetaljerEksamen. MAT1013 Matematikk 1T. Ny eksamensordning 26.05.2015. http://eksamensarkiv.net/
Eksamen 6.05.015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 1.11.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
DetaljerEksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.01 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 8.05.018 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksempeloppgåve / Eksempeloppgave
Eksempeloppgåve / Eksempeloppgave Matematikk R April 007 Programfag i studiespesialiserande utdanningsprogram / Programfag i studiespesialiserende utdanningsprogram Elevar/Elever Privatistar/Privatister
DetaljerEksamen 28.11.2011. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.011 REA06 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 24.11.2014. MAT1011 Matematikk 1P. http://eksamensarkiv.net/ Nynorsk/Bokmål
Eksamen 24.11.2014 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 25.11.2013. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 3.11.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
DetaljerEksamen 30.11.2009. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 30.11.009 MAT1008 Matematikk T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen 26.11.2014. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 26.11.2014 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 27.11.2015. REA3028 Matematikk S2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 27.11.2015 REA3028 Matematikk S2 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del 2: 2 timar (med hjelpemiddel) / 2 timer (med hjelpemidler) Minstekrav til
DetaljerEksamen 02.12.2009. REA3026 Matematikk S1
Eksamen 02.12.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen. 14. november MAT1006 Matematikk 1T-Y. Programområde: Alle programområde / programområder. Nynorsk/Bokmål
Eksamen 14. november 017 MAT1006 Matematikk 1T-Y Programområde: Alle programområde / programområder Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid 4 timar Del 1 skal leverast inn etter,5 timar.
DetaljerEksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.05.014 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerOPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1006 Matematikk teoretisk. Våren 2014. Privatister/Privatistar. VG1 Yrkesfag
OPPLÆRINGSREGION NORD LK06 Finnmark fylkeskommune Troms fylkeskommune Nordland fylkeskommune Nord-Trøndelag fylkeskommune Sør-Trøndelag fylkeskommune Møre og Romsdal fylke Skriftlig eksamen MAT1006 Matematikk
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (16 poeng) a) Vi har to punkter A ( 2, 5) og ( 4,3) B i et koordinatsystem. 1) Finn AB. 2) Regn ut avstanden fra A til B. b) Ovenfor har vi tegnet a og b. La 1 c= a b.
DetaljerEksamen 26.11.2015. REA3026 Matematikk S1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 6.11.015 REA306 Matematikk S1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
DetaljerEksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål
Eksamen 7.11.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksempeloppgåve/ Eksempeloppgave Desember 2007
Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel på Del Hjelpemiddel på Del Vedlegg Vedlegg som skal leverast
DetaljerEksamen 27.11.2013. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 7.11.015 REA04 Matematikk R Ny eksamensordning Del 1: timar (utan hjelpemiddel) / timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale verktøy
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 041008 REA30 Matematikk R1 Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen 02.12.2009. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 0..009 REA0 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: timar:
DetaljerEksempeloppgåve / Eksempeloppgave
Eksempeloppgåve / Eksempeloppgave Matematikk S1 April 007 Programfag i studiespesialiserande program / Programfag i studiespesialiserende program Elevar/Elever Privatistar/Privatister Oppgåva ligg føre
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9.05.204 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del 2: 5 timar: Del skal leverast inn etter 2 timar. Del 2 skal leverast
DetaljerEksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 28.05.2008. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.05.008 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
DetaljerEksamen 1T, Våren 2011
Eksamen 1T, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 3600000
DetaljerEksamen 19.05.2010. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1
DetaljerEksamen 27.05.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 27.05.2013 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 27.11.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 24.05.2013. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.05.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen 19.05.2010. MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
DetaljerEksamen 27.05.2010. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
DetaljerEksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast
DetaljerEksamen. 1. juni MAT 1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 1. juni 017 MAT 1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
DetaljerEksamen. 30. mai MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 30. mai 018 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
DetaljerEksamen MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
DetaljerEksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 28.11.2012. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 28.11.2012 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
DetaljerEksamen 26.05.2014. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 26.05.2014 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram
Eksamen 15. november 016 MAT1006 Matematikk 1T-Y Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del
DetaljerEksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 31.05.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerFylkeskommunenes landssamarbeid. Eksamen MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 13.11.2018 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Eksamen varer i 4 timar. Del 1 skal leverast inn etter
Detaljer