MHD oblique stagnation-point flow of a Newtonian fluid

Størrelse: px
Begynne med side:

Download "MHD oblique stagnation-point flow of a Newtonian fluid"

Transkript

1 Z. Angew. Math. Phys. 63 (), 7 9 c Springer Basel AG -75//7- published online November 3, DOI.7/s Zeitschrift für angewandte Mathematik und Physik ZAMP MHD oblique stagnation-point flow of a Newtonian fluid Alessandra Borrelli, Giulia Giantesio and Maria Cristina Patria Abstract. The steady two-dimensional oblique stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external electromagnetic field (E, H ) is analysed, and some physical situations are examined. In particular, if E vanishes, H lies in the plane of the flow, with a direction not parallel to the boundary, and the induced magnetic field is neglected, it is proved that the oblique stagnation-point flow exists if and only if the external magnetic field is parallel to the dividing streamline. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions, and the resulting ordinary differential problems are solved numerically. Finally, the behaviour of the flow near the boundary is analysed; this depends on the Hartmann number if H is parallel to the dividing streamline. Mathematics Subject Classification (). 76W5 76D. Keywords. MHD flow Oblique stagnation-point flow Newtonian fluids.. Introduction Oblique stagnation-point flow appears when a jet of fluid impinges obliquely on a rigid wall at an arbitrary angle of incidence. From a mathematical point of view, such a flow is obtained by combining orthogonal stagnation-point flow with a shear flow parallel to the wall. The steady two-dimensional oblique stagnation-point flow of a Newtonian fluid has been object of many investigations starting from the paper of Stuart in [6]. The oblique solution was later studied by Tamada [7], Dorrepaal [3,5], Wang [9,]; recently, Drazin and Raley [6], and Tooke and Blyth [8] reviewed the problem and included a free parameter associated with the shear flow component, which is related to the pressure gradient. Magnetohydrodynamic stagnation-point flow is an area of investigation discussed by several authors in recent years (see for example [,, 3]). In this class of problems, the fluid is electrically conducting and its motion towards the wall occurs in the presence of an applied electromagnetic field. The aim of this paper is to study how the steady oblique stagnation-point flow of a Newtonian fluid is influenced by a uniform external electromagnetic field (E, H ). The motions we find depend upon how the applied electromagnetic field is oriented relative to the flat boundary. First of all, we consider an inviscid fluid and analyse three cases, which are significant from a physical point of view. In the first two cases, an external constant field, either electric or magnetic, is impressed parallel to the rigid wall. In both cases, we find that an oblique stagnation-point flow exists, and we obtain the exact induced magnetic field. The presence of the electromagnetic field modifies the pressure p, which is smaller than the pressure in the purely hydrodynamical flow. In the third case, we suppose that E vanishes and H lies in the plane of the flow, with a direction not parallel to the boundary. Under the hypothesis that the magnetic Reynolds number is small, we neglect the induced magnetic field, as is customary in the literature. We prove that the oblique stagnation-point flow exists if and only if H is parallel to the dividing streamline. In regard of this result, we point out that the analysis contained in [] appears incorrect, because the Authors carry out their analysis by supposing the external magnetic field orthogonal to the boundary, but we prove in Theorem.6 that in that case the oblique stagnation-point flow does not exist for an inviscid fluid.

2 7 A. Borrelli et al. ZAMP The presence of H parallel to the dividing streamline modifies p, which is smaller than the pressure in the purely hydrodynamical flow. In the second part, we consider the same problems for a Newtonian fluid. As it is customary when one studies the plane stagnation-point flow for a Newtonian fluid, we assume that at infinity the flow approaches the flow of an inviscid fluid for which the stagnation-point is shifted from the origin [6, 5, 8]. The coordinates of this new stagnation-point contain two constants: A and B. A is determined as part of the solution of the orthogonal flow, and B is free. As far as the flow is concerned, in the first two cases we find the same equations of the oblique stagnation-point flow in absence of electromagnetic field, while the induced magnetic field is obtained by direct integration. Hence, the external uniform electromagnetic field does not influence the flow, and modifies only the pressure. Moreover, p has a constant component parallel to the wall proportional to B A. Thisdoesnot appear in the orthogonal stagnation-point flow. This component determines the displacement parallel to the boundary of the uniform shear flow. The flow is obtained for different values of B by numerical integration using a shooting method. We remark that the thickness of the layer affected by the viscosity is larger than that in the orthogonal stagnation-point flow. Finally, in the more general case in which H is parallel to the dividing streamline of the inviscid flow, we find that the flow has to satisfy an ordinary differential problem whose solution depend on H through the Hartmann number M. The numerical integration is provided using a finite-differences method. In this case, A (and so the stagnation-point) depends on M and decreases as M is increased. Further, the influence of the viscosity appears only in a layer near to the wall depending on M whose thickness decreases as M increases from zero. This is standard in magnetohydrodynamics. Some numerical examples and pictures are given in order to illustrate the effects due to the magnetic field. The paper is organized in this way: In Sect., we formulate the problem in the three cases for an inviscid fluid and summarize the results in Theorems.,. and.6. Section 3 is devoted to treat the same physical problems for a Newtonian fluid. Theorems 3., 3.3 and 3. collect our results. Further, we analyse the behaviour of the flow near the wall. This depends on the Hartmann number in the third case. Along the wall, we calculate three important coordinates: the origin which is the stagnation-point, the point of maximum pressure and the point of zero tangential stress (zero skin friction) where the dividing streamline meets the boundary. These points depend on M in the third case. As in electrically inert Newtonian fluid, the ratio of the slope of the dividing streamline at the wall to its slope at the infinity is independent of the angle of incidence; in the last case, it depends on M. In Sect., we numerically integrate the previous problems, and discuss some numerical results.. Inviscid fluids Consider the steady plane MHD flow of an inviscid, homogeneous, incompressible, electrically conducting fluid near a stagnation point occupying the region S, given by S = {x R 3 :(x,x 3 ) R,x > }. (.) The boundary of S, having the equation x =, is a rigid, fixed, non-electrically conducting wall. The equations governing such a flow in the absence of external mechanical body forces are: ρv v = p + μ e ( H) H,

3 Vol. 63 () MHD oblique stagnation-point flow 73 v =, H = σ e (E + μ e v H), E =, E =, H =, in S (.) where v is the velocity field, p is the pressure, E and H are the electric and magnetic fields, respectively, ρ is the mass density (constant > ), μ e is the magnetic permeability and σ e is the electrical conductivity (μ e,σ e = constants > ). We assume that the region S = {x R 3 :(x,x 3 ) R,x < } to be a vacuum (free space), and μ e is equal to the magnetic permeability of free space. To (.) we append the usual boundary condition for v: v = at x =. Further, we suppose that the tangential components of H and E are continuous through the plane x =. We are interested in the oblique plane stagnation-point flow so that v = ax + bx, v = ax, v 3 =, x R, x R +, (.3) with a, b constants (a >). As known, the streamlines of such a flow are hyperbolas whose asymptotes have the equations: x = and x = a b x. These two straight lines are degenerate streamlines too. Our aim is to study how such a flow is influenced by a uniform external electromagnetic field (E, H ). To this end, we consider three cases which, from a physical point of view, are significant... Case I E = E e 3, H =. Let the induced electromagnetic field (E i, H i H) beintheform E i = Ee i + Ee i + E3e i 3, H = h(x )e, where (e, e, e 3 ) is the canonical base of R 3. The boundary conditions require that E i =,E3 i = at x =, h() =. (.) From (.) follows that E E i + E = ψ, where ψ is the electrostatic scalar potential. Moreover, (.) 3 provides ψ = ψ(x 3 )and dψ (x 3 )=aμ e h(x )x + h (x ). dx 3 σ e From this equation we deduce that both members are equal to the same constant. Boundary condition (.) furnishes

4 7 A. Borrelli et al. ZAMP h + aσ e μ e hx = σ e E, x >, ψ = E x 3 + ψ, x 3 R. (.5) The integration of differential problem (.5),(.) 3 gives e h(x )= σ e E e ax with e = σ e μ e = electrical resistivity. As far as the pressure field is concerned, from (.) we get x e at e dt, x R +, (.6) p = ρa (x + x ) μ e h (x )+p, x R, x R +, where h is given by (.6) andp is the pressure in the stagnation point. We observe that the presence of E modifies the pressure field which is smaller than the pressure in the purely hydrodynamical flow. Our results can be summarized in the following: Theorem.. Let a homogeneous, incompressible, electrically conducting inviscid fluid occupy the region S. The steady plane MHD oblique stagnation-point flow of such a fluid has the following form when a uniform external electric field E = E e 3 is impressed: v =(ax + bx )e ax e, H = h(x )e, E = E e 3, p = ρa (x + x ) μ e h (x )+p, x R, x R + where h(x )= σ e E e ax Remark.. We note that the function: x e x x e e at e dt. e t dt =: daw(x), x R + is known as Dawson s integral and has the properties: x<< daw(x) x, x>> daw(x) x. Remark.3. The solution of the problem relative to the electromagnetic field in S is E = E = E e 3 and H = H =. In order to plot the function h, it is suitable to introduce dimensionless parameters and variables. To this end, we denote by V a characteristic velocity and put So (.5) can be written as where is the magnetic Reynolds number. L = V a, = x L, h(l) Ψ() =. σ e LE Ψ ()+R m Ψ() = R m = LV e

5 Vol. 63 () MHD oblique stagnation-point flow 75 x E H x x 3 Fig.. Flow description in Case I 6 Ψ 8 Ψ Ψ.8. Ψ Fig.. Case I: plots showing the graphs of Ψ for R m = 3,,, Therefore, Ψ() = e Rm e Rm t dt. Fig. shows the graphs of the function Ψ for some values of R m.

6 76 A. Borrelli et al. ZAMP x H H x x 3 Fig. 3. Flow description in Case II We note that there is a layer lining the boundary beyond which Ψ vanishes. Its thickness increases if R m decreases; moreover, at = Rm the function Ψ assumes a minimum whose value decreases as R m decreases... Case II E =, H = H e. Let the induced electromagnetic field (E i E, H i )beintheform E = E e + E e + E 3 e 3, H =[h(x )+H ]e. We append the boundary conditions (.). By proceeding as in CASE I, we deduce ψ = ψ(x 3 )and dψ (x 3 )=aμ e [h(x )+H ]x + h (x ). dx 3 σ e From this relation, we get h + a e hx = a e x H, x >, h() = (.7) and ψ = ψ from which E =. The solution of (.7) is h(x )=H (e ax e ), x R +, (.8) so that H = H e ax e e. Moreover, by virtue of (.) we deduce that the pressure field is given by p(x,x )= ρa (x + x ) μ e H e ax e + p, x R, x R +. We observe that the value of the pressure at the stagnation point is p μ e H.

7 Vol. 63 () MHD oblique stagnation-point flow Ψ Fig.. Case II: plot showing Ψ for R m = Finally, also in this case the presence of H modifies the pressure which is smaller than the pressure in the purely hydrodynamical flow. Therefore, we have obtained the following: Theorem.. Let a homogeneous, incompressible, electrically conducting inviscid fluid occupy the region S. The steady plane MHD oblique stagnation-point flow of such a fluid has the following form when a uniform external magnetic field H = H e is impressed: v =(ax + bx )e ax e, H = H e ax e e, E =, p = ρa (x + x ) μ e H e ax e + p, x R, x R +. Remark.5. The solution of the problem relative to the electromagnetic field in S is E = E = and H = H = H e. In dimensionless form, h becomes Ψ() =e Rm, R +, where Ψ() = h(l). H Figure shows that Ψ has an inflection point at =. Rm.3. Case III E =, H = H (cos ϑe +sinϑe ) with ϑ fixed in (,π). Suppose the induced electromagnetic field (E i E, H i )tobeintheform E = E e + E e + E 3 e 3, H i = h (x,x )e + h (x,x )e.

8 78 A. Borrelli et al. ZAMP x H x x 3 Fig. 5. Flow description in Case III Taking into account (.) 3,(.3) we obtain: [ h σ e E = h ] σ e μ e (v h v h + H v sin ϑ H v cos ϑ) e 3. (.9) x x Hence ψ = ψ(x 3 ) and we conclude that E =, aswehaveincaseii. Therefore, from (.) 3 H = σ e μ e v H, from which it follows h (x,x ) h (x,x ) x x = σ e μ e {(ax + bx )[h (x,x )+H sin ϑ]+ax [h (x,x )+H cos ϑ]}. (.) To this equation we must adjoin (.) 6, i.e. : h + h =. (.) x x So (h,h ) satisfies the PDE system (.), (.) with suitable boundary conditions. It is very difficult to find an explicit solution to this differential problem; so we proceed as it is customary in the literature by neglecting the induced magnetic field (h,h ). This approximation is motivated by physical arguments for MHD flow at small magnetic Reynolds number, e.g. in the flow of liquid metals. Then, ( H) H σ e μ e (v H ) H = σ e μ e H [a sin ϑx +(b sin ϑ + a cos ϑ)x ][ sin ϑe +cosϑe ]. On substituting this approximation in (.) we get: p = ρa x B x σ e sin ϑ[a sin ϑx +(bsin ϑ + a cos ϑ)x ], p = ρa x + B x σ e cos ϑ[a sin ϑx +(bsin ϑ + a cos ϑ)x ], p = p = p(x,x ), (.) x 3 with B = μ e H.

9 Vol. 63 () MHD oblique stagnation-point flow 79 It is possible to find a function p = p(x,x ) satisfying equations (.) if and only if p = p. (.3) x x x x Taking into account (.), the previous condition furnishes sin ϑ(a cos ϑ + b sin ϑ) =. (.) From (.), we get tan ϑ = a b. (.5) So the MHD oblique stagnation-point flow is possible if and only if H is parallel to the dividing streamline x = a b x. We underline that in particular if H is normal to the plane x = (i.e. ϑ = π/), then there is no pressure that satisfies equations (.) and therefore the oblique stagnation-point flow given by (.3) does not exist. Under the condition (.5), the pressure field has the form p = ρa (x + x ) σ eb a a + b (ax + bx ) + p, x R, x R +. (.6) Our results can be summarized in the following: Theorem.6. Let a homogeneous, incompressible, electrically conducting inviscid fluid occupy the region S. If we impress an external magnetic field H = H (cos ϑe +sinϑe ), <ϑ<π,andwe neglect the induced magnetic field, then the steady MHD oblique plane stagnation-point flow of such a fluid is possible if and only if tan ϑ = a b, i.e. H H = a + b ( be +ae ). Moreover, v =(ax + bx )e ax e, p = ρa (x + x ) σ eb a a + b (ax + bx ) + p, x R, x R +. Remark.7. In order to study oblique stagnation-point flow for Newtonian fluids, it is convenient to consider a more general motion. More precisely, we suppose the fluid obliquely impinging on the flat plane x = A and v = ax + b(x B), v = a(x A), v 3 =, x R, x A, (.7) with A, B = constants. In this way, the stagnation point is not (, ), but the point ( b (B A),A). a In this case, the streamlines are the hyperbolas whose asymptotes are x = a b x +B A and x = A. As it is easy to verify, in the absence of (E, H), the pressure field is given by: p = ρa {[x b a (B A)] +(x A) } + p. We underline that under these new assumptions, Theorems.,. and.6 continue to hold by replacing x,x with x b a (B A), x A, respectively.

10 8 A. Borrelli et al. ZAMP 3. Newtonian fluids Consider now the steady plane MHD flow of a Newtonian, homogeneous, incompressible, electrically conducting fluid near a stagnation point occupying the region S given by (.). In the absence of external mechanical body forces, the MHD equations governing such a flow are the equations (.) where (.) must be replaced with: v v = ρ p + ν v + μ e ( H) H, (3.) ρ where ν is the kinematic viscosity. As far as boundary conditions are concerned, we modify only the condition for v, assuming the no-slip boundary condition v x= =. (3.) Since we are interested to the oblique plane stagnation-point flow, we suppose v = ax f (x )+bg(x ), v = af(x ), v 3 =, x R, x R + (3.3) with f,g unknown functions. The condition (3.) supplies f() =, f () =, g() =. (3.) Moreover, as it is customary when studying stagnation-point flow for a Newtonian fluid, we assume that at infinity, the flow approaches the flow of an inviscid fluid. Therefore, to (3.) we must append also the following boundary conditions lim x + f (x )=, lim x g (x )=. (3.5) + By following the arguments of [6], and [8], we suppose that, at infinity, the Newtonian fluid has the same behaviour of an inviscid fluid which impinges the plane x = A, and has the stagnation-point at ( b (B A),A). In all the following cases, when we will refer to an inviscid fluid, all results obtained in a Sect. have to be modified by replacing x,x with x b a (B A), x A, respectively. In particular, the constants A, B are related to the asymptotic behaviour of f, g at infinity in the following way: lim x + [f(x ) x ]= A, lim [g(x ) x ]= B. (3.6) x + As we will see, A is determined as part of the solution of the orthogonal flow [5], instead B is a free parameter [6]. In order to study the influence of a uniform external electromagnetic field, we consider the three cases analysed in the previous section. 3.. Case I-N By proceeding as well as for an inviscid fluid, from (.) 3, (.) electromagnetic field, we obtain and boundary conditions for the h + a e fh = e E, x >, h() =, ψ(x 3 )= E x 3 + ψ, x 3 R. (3.7)

11 Vol. 63 () MHD oblique stagnation-point flow 8 If we regard f as a known function, the integration of the differential problem (3.7) gives h(x )= σ e E e a x e f(t)dt x e a s e f(t)dt ds, x R +. (3.8) As is easy to verify, ( the induced magnetic fields given by (3.8) and (.6) have the same asymptotic behaviour at infinity ) ee σ e. a(x A) Now we proceed in order to determine p, f, g. Substituting (3.3) into(3.) we obtain: p = p(x,x ), ax (νf + aff af )+b[νg + a(fg f g)] = p, ρ x νaf + a f f + μ e ρ h h = p. (3.9) ρ x Then, by integrating (3.9) 3, we find p(x,x )= ρa f (x ) ρaνf (x ) μ e h (x )+P(x ) where P (x ) is determined supposing that, far from the wall, the pressure p has the same behaviour as for an inviscid electroconducting fluid, whose velocity is given by (.7). Therefore, since the induced magnetic fields given by (3.8), (.6) have the same asymptotic behaviour, we get, by virtue of (3.5), (3.6) P (x )= ρ a [x b a (B A)] + p + ρaν. Finally, the pressure field assumes the form p = ρ a [x b a (B A)x + f (x )] ρaνf (x ) μ e h (x )+p (3.) with p = p + ρaν ρ b (B A). Equation (3.9) together (3.) furnishes ν a f + ff f +=, ν a g + fg f g = B A, (3.) with f() =, f () =, g() =, lim x + f (x )=, lim x g (x )=. (3.) + We remark that (f,g) satisfies the same differential problem that governs the oblique stagnation-point flow in the absence of an electromagnetic field. Hence, the external uniform electromagnetic field does not influence the flow. Moreover, as we can see from (3.), p has a constant component in the x direction proportional to B A which determines the displacement of the uniform shear flow parallel to the wall x =. Therefore, we have obtained the following

12 8 A. Borrelli et al. ZAMP Theorem 3.. Let a homogeneous, incompressible, electrically conducting Newtonian fluid occupy the region S. The steady MHD oblique plane stagnation-point flow of such a fluid has the following form when a uniform external electric field E = E e 3 is impressed: v =[ax f (x )+bg(x )]e af(x )e, H = h(x )e, E = E e 3, p = ρ a [x b a (B A)x + f (x )] ρaνf (x ) μ e h (x )+p, x R, x R +, where (f,g) satisfies the problem (3.),(3.) and h(x ) is given by (3.8). If we put ( a ν ν f a = ν x, φ() = ( ) a ν γ() = ν g a, Ψ() = ) a, a h ( ν a ), ν σ e E then we can write problem (3.7), (3.), and (3.) in dimensionless form φ + φφ φ +=, γ + φγ φ γ = β α, Ψ + R m φψ=, φ() =, φ () =, γ() =, Ψ() =, lim + φ () =, lim + γ () =, (3.3) where a a β = ν B, α = ν A, R m = ν = magnetic Reynolds number. e Notice that the function φ influences the functions γ and Ψ but not viceversa. The function φ satisfies the well-known Hiemenz equation [6, 5]. We recall that Hiemenz stagnation flow cannot be analytically solved, but only by a numerical integration. Existence and uniqueness of the solution to Hiemenz stagnation flow were shown by Hartmann [8], Tam [], and Craven and Peletier []. As far as problem (3.3),(3.3) 6,(3.3) 9 is concerned, the solution is formally obtained as [6] γ() =(α β)φ ()+Cφ ()Φ() (3.) with C = φ ()[γ () φ ()(α β)], φ() = {[φ (s)] e s φ(t)dt} ds. (3.5) We have numerically computed the functions γ,γ (as well as φ, φ,φ ) for various values of the parameter β, as we will see in Sect.. Precisely, we have taken β α = 5 α, α,, α,5 α (as in [8]). Other Authors (e.g. Stuart [6], and Tamada [7]) take β = α, while Dorrepaal takes β =[3,5]. We note that the constant C, given by (3.5), contains α, φ (), γ () which are not assigned. Their values are determined by numerical integration of problem (3.3). Finally, the induced magnetic field in dimensionless form is given by: Ψ() = e Rm φ(s)ds e Rm t φ(s)ds dt, R +.

13 Vol. 63 () MHD oblique stagnation-point flow 83 Remark 3.. There are along the wall x =three important coordinates: the origin x =which is the stagnation-point for the flow, the point x = x p of maximum pressure and the point x = x s of zero tangential stress (zero skin friction) where the dividing streamline of equation ξφ()+ b ν γ(s)ds =, ξ = a a x (3.6) meets the boundary [3, 5]. In consideration of (3.) and(3.3), we see that ν ν x p = b (β α), a3 x γ () s = b a 3 φ (). (3.7) We note that x p does not depend on h and the ratio ( as we will see in Sect. ) x p =(α β) φ () x s γ () is the same for all angles of incidence. Finally, we recall that studying the small- behaviour of γ(s)ds φ() [3], the slope of the dividing streamline at the wall is given by [6]: 3a[φ ()] m s = b[(β α)φ () + γ ()] and does not depend on the kinematic viscosity. Thus, the ratio of this slope to that of the dividing streamline at infinity (m i = a ) is the same for all oblique stagnation-point flows and is given by b m s = 3 [φ ()] m i [(β α)φ () + γ ()]. (3.8) This ratio is independent of a and b, depending only upon the constant pressure gradient parallel to the boundary through B A. [5] 3.. Case II-N By proceeding as one would with an inviscid fluid, from (.) 3,(.) and boundary conditions for the electromagnetic field, we get h + a e fh = a e fh, x >, h() =, ψ(x 3 )=ψ E =. (3.9) The integration of (3.9) leads to h(x )=H (e a x e f(t)dt ), x R +, (3.) so that H = H e a x e f(s)ds e. The pressure field, as is easy to verify, becomes p = ρ a [x b a (B A)x + f (x )] ρaνf (x ) μ e [h(x )+H ] + p, (3.) p = p + ρaν ρ b (B A) and (f,g) satisfies problem (3.). Therefore, in this case as well, the external uniform electromagnetic field does not influence the flow.

14 8 A. Borrelli et al. ZAMP Thus, we obtain the following: Theorem 3.3. Let a homogeneous, incompressible, electrically conducting Newtonian fluid occupy the region S. The steady MHD oblique plane stagnation-point flow of such a fluid has the following form when a uniform external magnetic field H = H e is impressed: v =[ax f (x )+bg(x )]e af(x )e, H =[H + h(x )]e, E =, p = ρ a [x b a (B A)x + f (x )] ρaνf (x ) μ e [h(x )+H ] + p, x R, x R + where (f,g) satisfies the problem (3.),(3.), andh(x ) is given by (3.). In dimensionless form, h(x ) becomes Ψ() =e Rm φ(t)dt, R +, (3.) where Ψ() = h( ν a ). H Of course, Remark 3. continues to hold in this case Case III-N Taking into account the results obtained for an inviscid fluid, we assume H H = a + b ( be +ae ), E =. By means of the same arguments of CASE III, we deduce E = H = σ e μ e (v H) and we neglect the induced magnetic field, replacing (3.) with the equation: v v = ρ p + ν v + μ e ρ (v H ) H. (3.3) We substitute (3.3) into(3.3) to determine p, f, g. This yields p = p(x,x ), ax (νf + aff af a σ e ρ B a + b f ) +b[νg + a(fg f g) a σ e B ρ a + b (g f)] = p, ρ x νaf + a f f + σ e B ρ a + b [a bx f + ab (g f)] = ρ The integration of (3.) 3 gives p = ρa f (x ) ρaνf (x ) σ e B a + b [a bx f(x )+ab where P (x ) has to be found in CASE I-N, II-N. x (g(s) f(s))ds]+p (x ) p. (3.) x

15 Vol. 63 () MHD oblique stagnation-point flow 85 After some calculations, we obtain with p constant. So the pressure field is: P (x )= ρ a ( + a ρ σ e B ) a + b [x b a (B A)] + p p = ρ a [x b a (B A)x + f (x )] ρaνf (x ) σ eb { a + b a bx f(x )+ab x (g(s) f(s))ds +a 3 [x b } a (B A)x ] + p, x R, x R +. (3.5) The constant p represents the pressure at the stagnation point. Then, (3.) supplies ν a f + ff f ++M ( f )=, ν a g + fg gf + M (f g) =(+M )(B A), (3.6) where aσe M =B ρ(a + b = Hartmann number. ) We append boundary conditions (3.), and (3.5) to the system (3.6). We remark that, unlike the previous cases, the external electromagnetic field modifies the flow, and if M = the system (3.6) reduces to the system (3.). Theorem 3.. Let a homogeneous, incompressible, electrically conducting Newtonian fluid occupy the region S. If we impress the external magnetic field H H = a + b ( be +ae ) and if we neglect the induced magnetic field, then the steady MHD oblique plane stagnation-point flow of such a fluid has the form v =[ax f (x )+bg(x )]e af(x )e, E =, p = ρ a [x b a (B A)x + f (x )] ρaνf (x ) σ eb { a + b a bx f(x )+ab x (g(s) f(s))ds +a 3 [x b } a (B A)x ] + p, x R, x R +, where (f,g) satisfies problem (3.6), (3.) and(3.5). System (3.6) in dimensionless form becomes φ + φφ φ ++M ( φ )=, γ + φγ φ γ + M (φ γ) =(+M )(β α) (3.7) and we adjoin boundary conditions (3.3) 9. Notice the one-way coupling that the function φ influences the function γ but not viceversa.

16 86 A. Borrelli et al. ZAMP φ φ φ Fig. 6. Case I-N: plot showing the behaviour of φ (Hiemenz function), φ,φ Remark 3.5. We recall that the solution of the differential problem (3.7), (3.3), (3.3) 5 and (3.3) 8 exists and it is unique as proved by Hoernel in [9]. As far as γ is concerned, it satisfies a linear second-order non-homogeneous differential equation, if we regard φ as a known function. After some calculations, we obtain that γ is formally expressed by γ() =(α β)φ ()+Cφ ()Φ() +M φ () Φ(s)φ(s)φ (s)e s φ(t)dt ds Φ() φ(s)φ (s)e s φ(t)dt ds with C, Φ() are given by (3.5) again. We note that if M =, then (3.8) reduces to (3.). (3.8) Remark 3.6. The points x = x p of maximum pressure and x = x s of zero tangential stress on x = are formally the same as in CASE I-N and II-N. However, these points depend on M. Finally, the slope of the dividing streamline at the wall is given by: 3a[φ ()] ( + M )b[(β α)φ () + γ ()].. Numerical results and discussion In this section, we discuss the numerical solutions of the problems studied in CASES I, II, III-N... Case I-N We have solved problem (3.3) numerically by using a shooting algorithm. Figure 6 shows the graphics of Hiemenz function and its derivatives. As one can see, lim + φ ()=, lim + φ () =.At =., one has φ =.99 and, if >., then φ = α with α =.679. From the numerical integration, we get φ () =.36. Our results are consistent with the previous studies.

17 Vol. 63 () MHD oblique stagnation-point flow γ γ Fig. 7. Case I-N: Figures 7 and 7 show γ and γ with, from above, β α = 5 α, α,,α, 5 α, respectively β α γ () C Table. CASE I-N: γ (),C, xp x s, ms m i, γ for some values of β α x p x s m s m i γ Figures 7,and7 show the profiles of γ(),γ (), for some values of β α, i.e. β α = 5 α, α,, α,5 α. As far as γ () is concerned, we show in Table its values for different β (β = 5,, α,α, 5). We note that the constant C, given by (3.5), contains α, φ (), γ () which are not assigned, but their values have been determined by the numerical integration of problem (3.3). Table points out that C has always the same value,.79, according to the value determined by Stuart [6] and Glauert [7] by means of asymptotic estimate of the integral Φ() at infinity. In Table, we list also the numerically computed values of (denoted by γ )atwhichγ =.99 (if β α ), or γ =. (if β α<). So when > γ, then γ = β. We have that γ is greater than.. Hence the influence of the viscosity appears only in a layer lining the boundary whose thickness is ν γ. We remark that the layer affected by the viscosity is proportional to and its thickness is larger a ν than in the orthogonal stagnation-point flow, which is. (see Figs. 6, 7). a Observing again Table, we notice that x s (given by (3.7) ) has the sign of b if β α> and the sign of b if β α. Moreover, if b is positive (negative) x s increases (decreases) as β α increases. As far as x s is concerned, if β α increases from a negative value to zero, x s decreases and so x s approaches the origin, otherwise, as β α increases from zero to a positive value, x s increases and so x s departs from the origin. Figures 8, 8, 8 3 show the streamlines and the points ν ξ p = a x p, ξ s = for b =andβ α = α,, α, respectively. a ν a x s (.)

18 88 A. Borrelli et al. ZAMP ξ s ξ ξ p p ξ ξ ξ s ξ ξ s ξ p Fig. 8. Case I-N: plots showing the streamlines and the points ξ p,ξ s for b =andβ α = α,, α, respectively a Ψ Ψ Fig. 9. Case I-N: plots showing Ψ with R m =, 6 Figure 9 shows the behaviour of the induced magnetic field Ψ with R m =, that is similar to the behaviour of Ψ in CASE I (inviscid fluid). Figure 9 shows the behaviour of Ψ with R m = 6 ;for [,.6] the graph is approximately linear, because in this interval, for very small values of R m,the equation (3.3) 3 reduces to Ψ =.

19 Vol. 63 () MHD oblique stagnation-point flow Ψ Fig.. Case II-N: plot showing Ψ for R m = Table. CASE III-N: dependence of α and φ () on M M α φ () Case II-N In this case the ordinary differential problem governing (φ, γ) is the same as in CASE I-N; we have only to compute Ψ(), given by (3.). Figure shows that Ψ has a similar behaviour as in CASE II..3. Case III-N We have solved the problem (3.7) with the boundary conditions (3.3) 9 by using a finite-differences method, because the usual shooting does not produce the desired accuracy []. We remark that the values of α and φ () depend on M, as we can see from Table. More precisely, α decreases and φ () increases as M is increased from, as we would expect physically. Table 3 shows numerical results of some parameters significant from a physical point of view for M =,,, 5, and β α = 5 α, α,, α,5 α. As far as the dependence of γ () on M is concerned, from Table 3 we can see that its value increases when M increases if β α<, otherwise it decreases. In Fig., we can see the profiles φ, φ,φ for M =, while Fig. 3 shows the behaviour of φ for different M. Figures, show the profiles of γ(),γ (), for M = and for some values of β α, i.e. β α = 5 α, α,, α,5 α. In Figs., 5, 6, we provide the behaviour of γ for different M when β α is fixed.

20 9 A. Borrelli et al. ZAMP M β α γ () C Table 3. CASE III-N: descriptive quantities for some value of M γ () φ () x p x s m s m i φ γ φ φ φ Fig.. Case III-N: plots showing φ, φ,φ for M = We have plotted the profiles of φ, φ,φ,γ,γ for M = because they have an analogous behaviour for M. Moreover, we observe (see Table 3) that the constant C in (3.8) has approximately always the same value if we fix M and it decreases as M decreases.

21 Vol. 63 () MHD oblique stagnation-point flow γ γ Fig.. Case III-N: plots showing γ,γ with M = and, from above, β α = 5 α, α,, α, 5 α, respectively M= M=5 M= M= M= φ Fig. 3. Case III-N: plots showing φ for different M In Table 3, we also list, for some M and β α = 5 α, α,,α, 5 α, the values of φ, γ beyond which φ = α and γ = β, respectively. We note that γ is greater than the corresponding value of ν φ ; so the influence of the viscosity appears only in the region < γ, i.e. x < a γ. Further we underline that the thickness of this layer depends on M and decreases when M increases (as easily seen in Figs. 3,, 5, 6). This effect is normal in magnetohydrodynamics. Finally we notice that the points x p,x s, given by (3.7), lie on the same side of the origin. Their location depends on M and β α, as seen in Table 3. Figures 7 show the streamlines and the points ξ p,ξ s for b a =,β α = α,, α,and M =, 5. We can observe that x p tends to as M x s increases.

22 9 A. Borrelli et al. ZAMP γ M= γ.. M= M= M= M=5 5 M=5 M= M= M= M= Fig.. Case III-N: plots showing γ for different M. In the first picture β α = 5 α, in the second β α = α.. γ..9.8 M= M=5 M= M= γ M= M=5 M= M= M=.7.6 M= Fig. 5. Case III-N: plots showing γ for different M. In the first picture β α =, in the second β α = α 5 5 M=5 M= M= M= γ M= Fig. 6. Case III-N: plots showing γ for different M with β α =5 α

23 Vol. 63 () MHD oblique stagnation-point flow ξ ξ s p 3 3 ξ ξ ξ s p 3 3 ξ ξ s ξ p 3 3 ξ.5 ξ ξ s p 3 3 ξ ξ ξ s p 3 3 ξ ξ ξ s p 3 3 ξ Fig. 7. Case III-N: Figs, (7),3,5 show the streamlines and the points ξ p,ξ s for b =andβ α = α,, α, respectively, a and M =.Figures(7),,6 for M =5 References. Ariel, P.D.: Hiemenz flow in hydromagnetics. Acta Mech. 3, 3 3 (99). Craven, A.H., Peletier, L.A.: On the uniqueness of solutions of the Falkner-Skan equation. Mathematika 9, 9 33 (97)

24 9 A. Borrelli et al. ZAMP 3. Dorrepaal, J.M.: An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimension. J. Fluid Mech. 63, 7 (986). Dorrepaal, J.M., Mosavizadeh, S.: Steady compressible magnethohydrodynamic flow near a point of reattachment. Phys. Fluids, 5 58 (998) 5. Dorrepaal, J.M.: Is two-dimensional oblique stagnation-point flow unique?. Can. Appl. Math. Q. 8, 6 66 () 6. Drazin, P., Riley, N.: The Navier-Stokes Equations. A Classification of Flows and Exact Solutions. London Mathematical Society, Lecture notes series 33, Cambridge University Press, (7) 7. Glauert, M.B.: The Laminar Boundary Layer on Oscillating Plates and Cylinders. J. Fluid Mech., 97 (956) 8. Hartmann, P.: Ordinary Differential Equations. Siam, Madison () 9. Hoernel, J.D.: On the similarity solutions for a steady MHD equation. Commun. Nonlinear Sci. Numer. Simulat. 3, (8). Grosan, T., Pop, I., Revnic, C., Ingham, D.B.: Magnetohydrodynamic oblique stagnation-point flow. Acta Mech., (9). Mahapatra, T.R., Gupta, A.S.: Magnetohydrodynamic stagnation-point flow towards a stretching sheet. Acta Mech. 5, 9 96 (). Mahapatra, T.R., Nandy, S.K., Gupta, A.S.: Analytical solution of magnetohydrodynamic stagnation-point flow of a power-low fluid towards a stretching surface. Appl. Math. Comput. 5, (9) 3. Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, Massachusetts (979). Tam, K. Kuen: A note on the existence of a solution of the Falkner-Skan Equation. Canad. Math. Bull. 3, 5 7 (97) 5. Schlichting, H., Gersten, K.: Boundary Layer Theory 8th revised and Enlarged. Springer, Berlin (3) 6. Stuart, J.T.: The viscous flow near a stagnation point when the external flow has uniform vorticity. J. Aerospace Sci. 6, 5 (959) 7. Tamada, K.J.: Two-dimensional stagnation-point flow impinging obliquely on an oscillating flat plate. J. Phys. Soc. Jpn. 7, 3 3 (979) 8. Tooke, R.M., Blyth, M.G.: A note on oblique stagnation-point flow. Phys. Fluids, 3 (8) 9. Wang, C.Y.: Stagnation flows with slip: exact solutions of Navier-Stokes equations. ZAMP 5, 8 89 (3). Wang, C.Y.: Similarity stagnation point solutions of the Navier-Stokes equations-review and extension. Eur. J. Mech. B-Fluids 7, (8) Alessandra Borrelli, Giulia Giantesio and Maria Cristina Patria Dipartimento di Matematica Università di Ferrara via Machiavelli 35 Ferrara Italy brs@unife.it G. Giantesio gntgli@unife.it M. C. Patria pat@unife.it (Received: July, )

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Faglig kontakt under eksamen: Reidar Kristoffersen, tlf.: 73 59 35 67 EKSAMEN I TEP 4110 FUIDMEKANIKK Bokmål/Nnorsk/English

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

Semesteroppgave. Gassturbinprosess

Semesteroppgave. Gassturbinprosess Semesteroppgave Gassturbinprosess Sted: Varmeteknisk Laboratorium, Kolbjørn Hejes vei 1.A Målsetting: Etter å ha gjennomført semesteroppgaven skal studenten ha fått kjennskap til hvordan en jetmotor (Brayton

Detaljer

Solution Assignment 10 TEP 4100

Solution Assignment 10 TEP 4100 8 9 Solion Assignment 10 TEP 4100 Solion The flow rate through a specified water pipe is given. The pressure drop, the head loss, and the pumping power requirements are to be determined. Assumptions 1

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

Ma Flerdimensjonal Analyse Øving 1

Ma Flerdimensjonal Analyse Øving 1 Ma1203 - Flerdimensjonal Analyse Øving 1 Øistein Søvik Brukernavn: Oistes 23.01.2012 Oppgaver 10.1 6. Show that the triangle with verticies (1, 2, 3), (4, 0, 5) and (3, 6, 4) has a right angle. z y x Utifra

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid : Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag SOLUTIONS Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, 2013. Tid : 09.00 13.00 Oppgave 1 a) La U R n være enhetsdisken x

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University Energy Dissipation in Hybrid Stars Sophia Han Washington University Texas Symposium December 8-13, 2013 Mark Alford, Sophia Han, Kai Schwenzer 1 Context Nuclear Matter Crust Quark Matter Core -Sharp interface:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Oppgave. føden)? i tråd med

Oppgave. føden)? i tråd med Oppgaver Sigurd Skogestad, Eksamen septek 16. des. 2013 Oppgave 2. Destillasjon En destillasjonskolonne har 7 teoretiske trinn (koker + 3 ideelle plater under føden + 2 ideellee plater over føden + partielll

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI2034 - Community ecology - Faglig kontakt under eksamen/contact person/subject

Detaljer

Ma Flerdimensjonal Analyse Øving 11

Ma Flerdimensjonal Analyse Øving 11 Ma3 - Flerdimensjonal Analyse Øving Øistein Søvik 7.3. Oppgaver 5.3 5. Find the moment of inertie about the -axis. Eg the value of δ x + y ds, for a wire of constant density δ lying along the curve : r

Detaljer

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015 Qi-Wu-Zhang model 2D Chern insulator León Martin 19. November 2015 Motivation Repeat: Rice-Mele-model Bulk behavior Edge states Layering 2D Chern insulators Robustness of edge states Motivation topological

Detaljer

Minimumskrav bør være å etablere at samtykke ikke bare må være gitt frivillig, men også informert.

Minimumskrav bør være å etablere at samtykke ikke bare må være gitt frivillig, men også informert. Sensorveiledning SPED1200 vår 2018 NB! Studentene har fått beskjed om at de kan bruke engelske ord og uttrykk i besvarelsen uten at dette betraktes som negativt. Dette skal altså ikke trekke ned i vurderingen.

Detaljer

Right Triangle Trigonometry

Right Triangle Trigonometry 0 Capter Trigonometry 70. f 8 7 8 Vertical asymptote: 8 0 y 7 0 7 8 9 9 ± 8 y Slant asymptote: ± 89 ;.,. y 7 8 y-intercept: 0, 8 -intercept:.8, 0 Section. Rigt Triangle Trigonometry You sould know te rigt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014) Satellite Stereo Imagery Synthetic Aperture Radar Johnson et al., Geosphere (2014) Non-regular sampling Missing data due to lack of correlation, shadows, water, Potentially 3D as opposed to purely 2D (i.e.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Eksamen 9. desember 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Løsningsskisse Oppgave 1 a) Define the following events: A: Getting an ace as your first card B: Getting

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen (finn@techteach.no). Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Tid: 7. april 28. Varighet 4 timer. Vekt i sluttkarakteren: 3%. Hjelpemidler: Ingen trykte eller

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

Det teknisk- naturvitenskapelige fakultet

Det teknisk- naturvitenskapelige fakultet Det teknisk- naturvitenskapelige fakultet SUBJECT: BIB 120 KONSTRUKSJONSMEKANIKK 1 DATE: September 5, 2012 TIME: AID: 15:00 19:00 (4 hours) Authorized calculator, Dictionary (English-Norwegian) and drawing

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1310 Økonomisk aktivitet og økonomisk politikk Exam: ECON1310 Macroeconomic theory and policy Eksamensdag: 18.05.01 Sensur blir annonsert: 07.06.01

Detaljer

Page 2 of 3. Problem 1.

Page 2 of 3. Problem 1. Page of 3 Problem. Derive formulas for the a nb coefficients in the Second-Order Upstream scheme (SOU) for the convection-diffusion equation for the concentration of diatom type algae with fall velocity

Detaljer

Solution for INF3480 exam spring 2012

Solution for INF3480 exam spring 2012 Solution for INF3480 exam spring 0 June 6, 0 Exercise Only in Norwegian a Hvis du har en robot hvor ikke den dynamiske modellen er kjent eller spesielt vanskelig å utlede eksakt, kan en metode liknende

Detaljer